· ·
 Inversion Integration (H.1)
20160420
 Copyright (c) 2015 - 2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

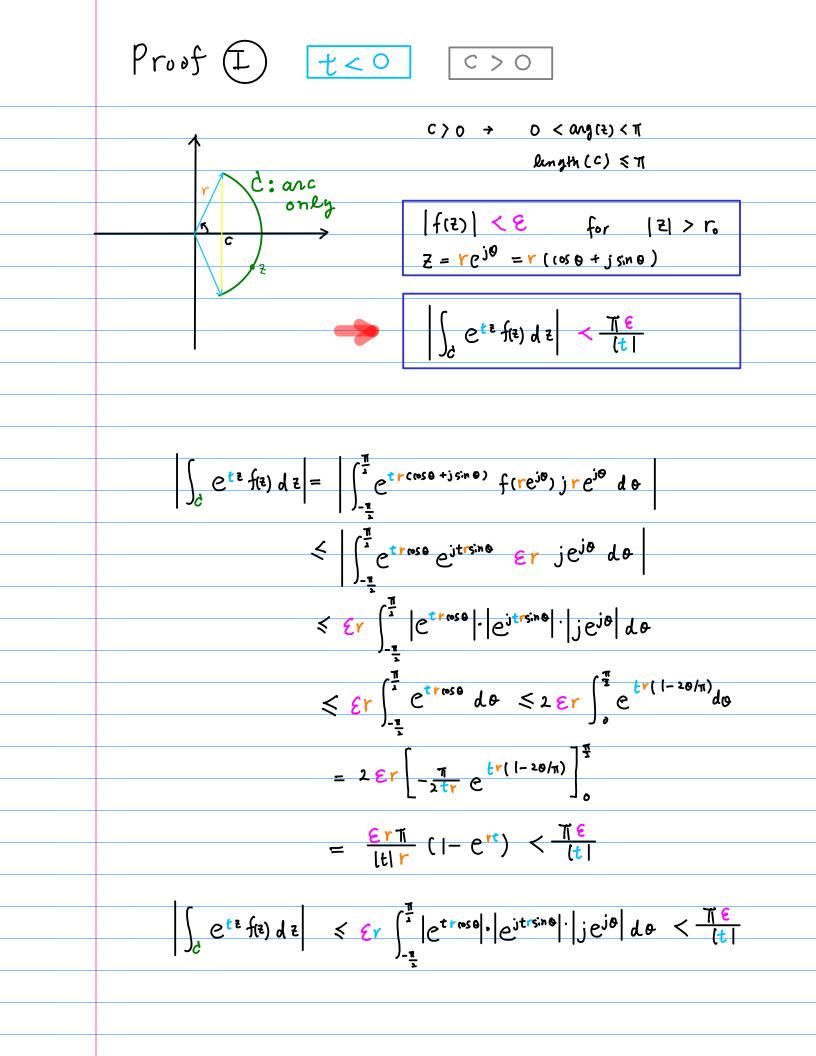
Based on
1. Transforms and Application Primer
for Engineers with Examples and MATLAB
 Alexander D. Poularikas
2. Transforms and Application Handbook
Alexander D. Poularikas

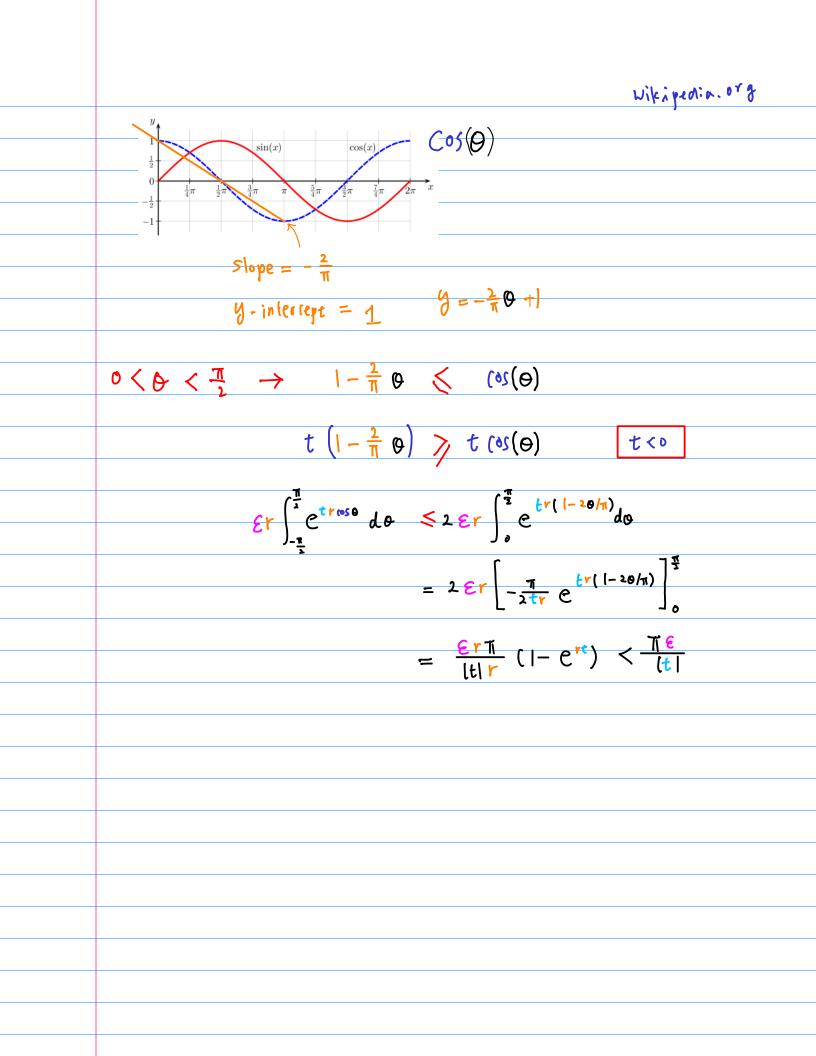
AB: and of a circle
$$[Z] = R$$
 $0 \le 0 \le 0$,
 $\lim_{R \to \infty} \exists W(Z) = k$
 $\lim_{R \to \infty} \int_{AB} W(Z) dZ = jk [0, -0]$

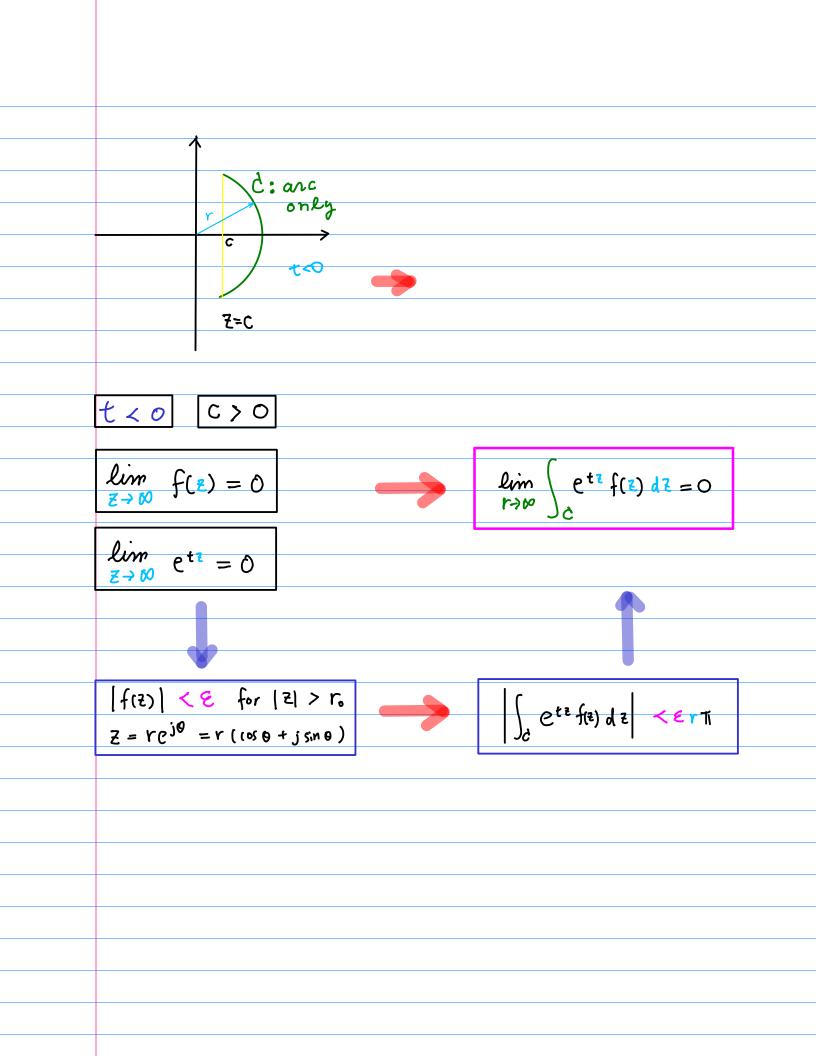
AB: and of a circle $|z-z_0|=r$ $0_1 \le 0 \le \theta_2$ $\lim_{\substack{k \to 0}} (z - z_k) W(z) = k$ $\lim_{R \to \infty} \int_{AB} w(z) dz = jk(0_2 - 0_1)$

Max value of W(z) along a path C = MMax value of the integral of W(z) along a path C = MLwhere the length of a path C = l $\left|\int_{c} w(z) dz \right| \leq M d$

Jordan's Lemma If t < 0 $as z \rightarrow \infty$ $f(z) \rightarrow o$ Then as $r \to \infty$ $\int e^{t^2} f(z) dz \to 0$ t<0 C>0 C: anc only $\lim_{z \to \infty} f(z) = 0$ С $\lim_{Z \to \infty} e^{tt} = 0$ Z=C lim r-700 $e^{t \cdot t} f(\cdot) d \cdot t = 0$







Jordan's Lemma summary txo t < 0 $\lim_{z \to \infty} f(z) = 0$ $as z \rightarrow \infty f(z) \rightarrow o$ as $Y \to \infty$ $\int e^{t^2} f(z) dz \to 0$ $\lim_{r \to \infty} \left\{ e^{tz} f(z) dz = 0 \right\}$ c:anc only С $t < 0 \quad \lim_{z \to \infty} f(z) = 0 \implies \lim_{r \to \infty} e^{tz} f(z) dz = 0$ $\lim_{r \to \infty} \int e^{tz} f(z) dz = \lim_{r \to \infty} \left[\int e^{tz} f(z) dz + \int e^{tz} f(z) dz \right]$ Bromwich only contour $e^{tz} f(z) dz = -2\pi j \sum_{k} \operatorname{Res}_{k}$

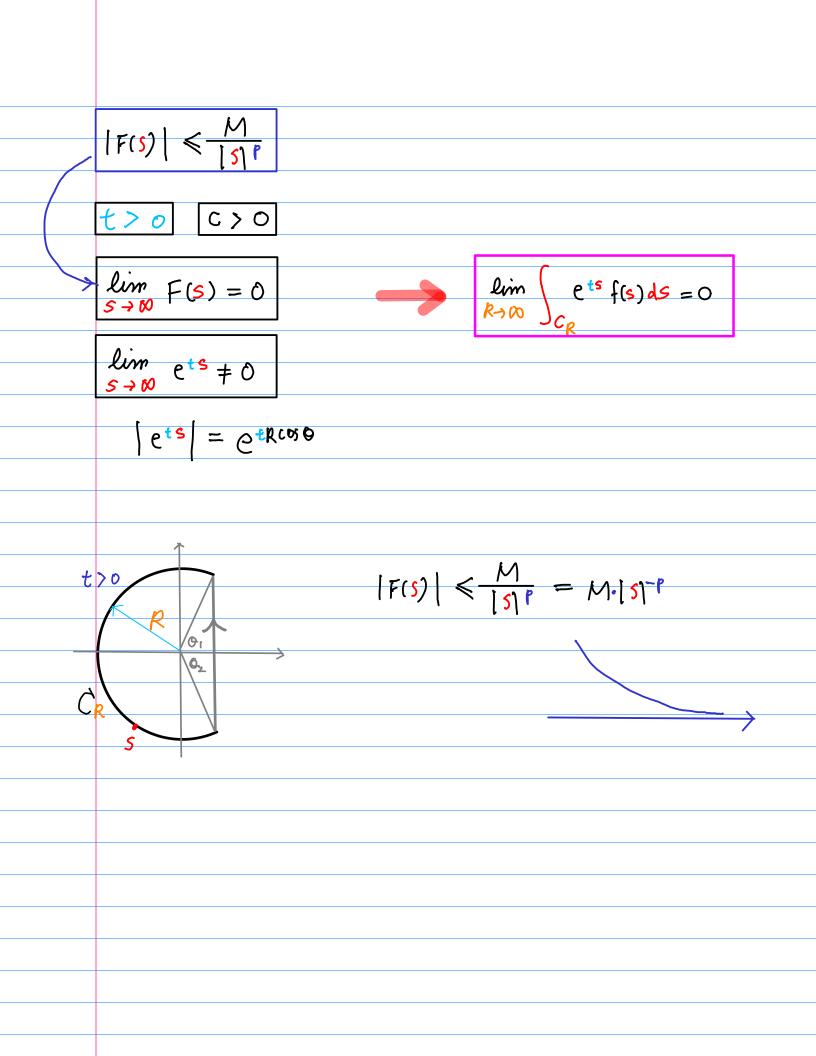
$$\frac{t < 0}{100} \qquad \text{arc to the night}$$

$$\frac{1}{100} \left(e^{tz} f(z) dz = -2\pi j \sum_{k} \text{Res}_{k} \right)$$

$$\frac{t > 0}{100} \qquad \text{arc to the left}$$

$$\frac{1}{100} \left(e^{tz} f(z) dz = +2\pi j \sum_{k} \text{Res}_{k} \right)$$

Proof I t>0 C>0 for 5 on CR t>0 $S = R e^{i\theta} \quad 0_1 \leq \theta \leq \theta_2$ $ds = i R e^{i0} d0$ 6, C_R ds = R dgFor s on CR, suppose that F(S) satisfies $|F(s)| \leq \frac{M}{|s|^p}$ some p>0, all R>Ko lim ets Frs) ds = 0 (t>0)



for sufficiently large R
all poles of F(s) are included in the are CR

$$\Rightarrow$$
 F(s) continuous on CR for all large R

$$\int e^{t} F(s) ds \leq \int |e^{t}| |F(s)| ds|$$

$$\leq \int e^{tR(s)0} \frac{M}{|s|^{r}} ds|$$

$$\int e^{t} Re^{i0} ds \leq i R e^{i0} ds$$

$$ds = i R e^{i0} ds$$

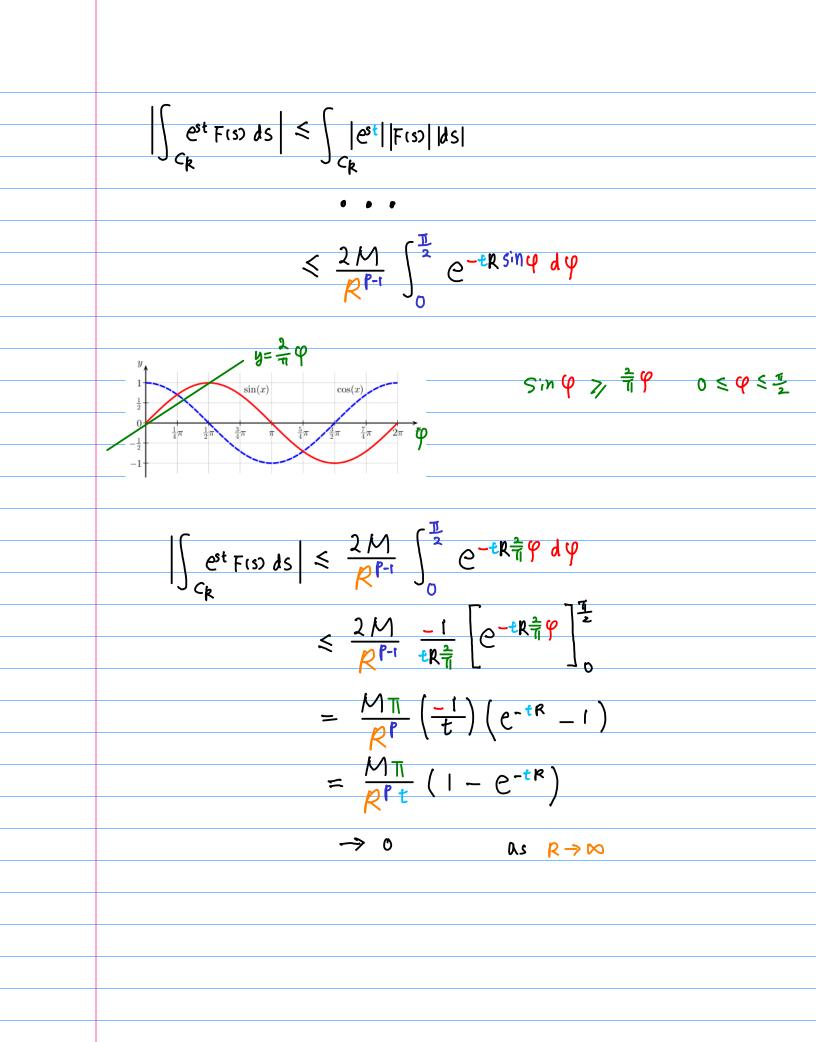
$$ds = i R e^{i0} ds$$

$$ds = R do |s| = R$$

$$\leq \int \frac{1}{2} e^{tR(s)0} \frac{M}{R^{r}} R ds$$

$$\leq \frac{M}{R^{r}} \int \frac{1}{2} e^{tR(s)0} ds$$

$$\leq \frac{M}{R^{r+}} \int e^{tR(s)0} ds$$



$$\left| \int_{C_{\mathbf{R}}} e^{\mathbf{e}\cdot} \mathbf{F}(\mathbf{s}) d\mathbf{s} \right| \leq \int_{C_{\mathbf{R}}} |e^{\mathbf{e}\cdot}| |\mathbf{F}(\mathbf{s})| d\mathbf{s}|$$

$$\leq \int_{C_{\mathbf{R}}} e^{\mathbf{e}\cdot\mathbf{R}(\mathbf{s})\mathbf{0}} \frac{M}{|\mathbf{s}|^{\mathbf{f}}} |\mathbf{s}|$$

$$\leq \int_{\frac{T}{2}}^{\frac{T}{2}} e^{\mathbf{e}\cdot\mathbf{R}(\mathbf{s})\mathbf{0}} \frac{M}{|\mathbf{R}|^{\mathbf{f}}} |\mathbf{R}| d\mathbf{0}$$

$$\leq \frac{M}{|\mathbf{R}|^{\mathbf{f}}} \int_{\frac{T}{2}}^{T} e^{-\mathbf{e}\cdot\mathbf{R}(\mathbf{s})\mathbf{0}} d\mathbf{0}$$

$$\leq \frac{M}{|\mathbf{R}|^{\mathbf{f}}} \int_{0}^{T} e^{-\mathbf{e}\cdot\mathbf{R}(\mathbf{s})\mathbf{0}} d\mathbf{0}$$

$$\leq \frac{2M}{|\mathbf{R}|^{\mathbf{f}}} \int_{0}^{T} e^{-\mathbf{e}\cdot\mathbf{R}(\mathbf{s})\mathbf{0}} d\mathbf{0}$$

$$\leq \frac{2M}{|\mathbf{R}|^{\mathbf{f}}} \int_{0}^{T} e^{-\mathbf{e}\cdot\mathbf{R}(\mathbf{s})\mathbf{0}} d\mathbf{0}$$

$$\leq \frac{2M}{|\mathbf{R}|^{\mathbf{f}}} \int_{0}^{T} e^{-\mathbf{e}\cdot\mathbf{R}(\mathbf{s})\mathbf{0}} d\mathbf{0}$$

$$= \frac{M\pi}{|\mathbf{R}|^{\mathbf{f}}} \left[e^{-\mathbf{e}\cdot\mathbf{R}\frac{\pi}{\mathbf{1}}\mathbf{0}} \right]_{0}^{\mathbf{f}}$$

$$= \frac{M\pi}{|\mathbf{R}|^{\mathbf{f}}} \left[e^{-\mathbf{e}\cdot\mathbf{R}\frac{\pi}{\mathbf{1}}\mathbf{0}} \right]_{0}^{\mathbf{f}}$$

$$= \frac{M\pi}{|\mathbf{R}|^{\mathbf{f}}} \left[(1 - e^{-\mathbf{e}\cdot\mathbf{R}}) \right]$$

$$\rightarrow 0 \qquad \text{As } \mathbf{R} \rightarrow \infty$$

Melin I O = real 8 positive P(z) analytic in the strip X < X < B a, p:real $\int_{x-j\infty}^{x+j\infty} |\phi(z)| dz = \int_{-\infty}^{+\infty} |\phi(x+iy)| dy \quad (onverges)$ $\varphi(z) \rightarrow 0$ uniformly as $|y| \rightarrow \infty$ in the strip $\propto < x < \beta$ $f(0) = \frac{1}{2\pi j} \int O^{-2} \phi(z) dz$ $(z) = \int_{1}^{\infty} 0^{z-1} f(0) d0$

Melin II O = real & positive $\alpha < \operatorname{Re}\{z\} < \beta$ f(0): continuous / piecewise continuous $f(0) = \frac{1}{2\pi j} \int 0^{-2} \phi(z) dz$ (-jø

$$f(\theta) = \frac{1}{2\pi j} \int_{c_{j}}^{c_{i}} \Theta^{-2} \phi(z) dz$$

Melin III

$$f(0) = \frac{1}{2\pi j} \int_{0}^{c_{i}j\omega} 0^{i_{z}} \phi(z) dz$$

$$\phi(z) = \int_{0}^{\omega} 0^{z_{i}} f(0) dx$$

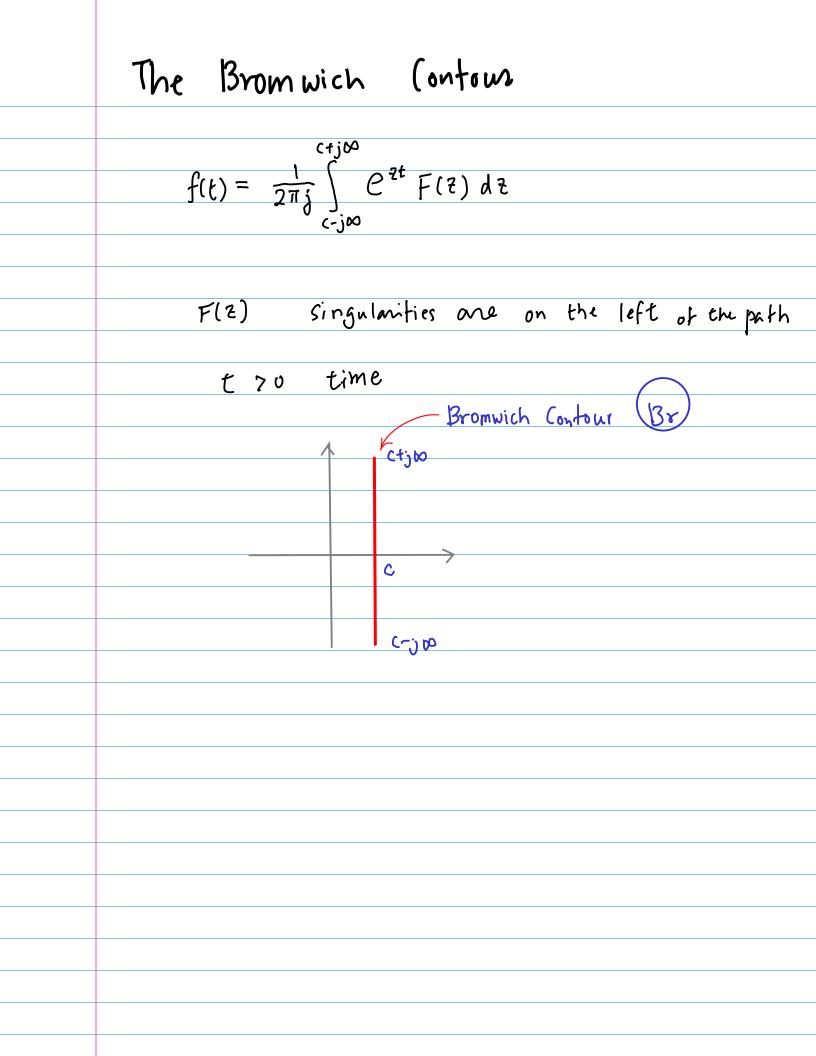
$$0 = e^{-t}, \quad t : veal$$

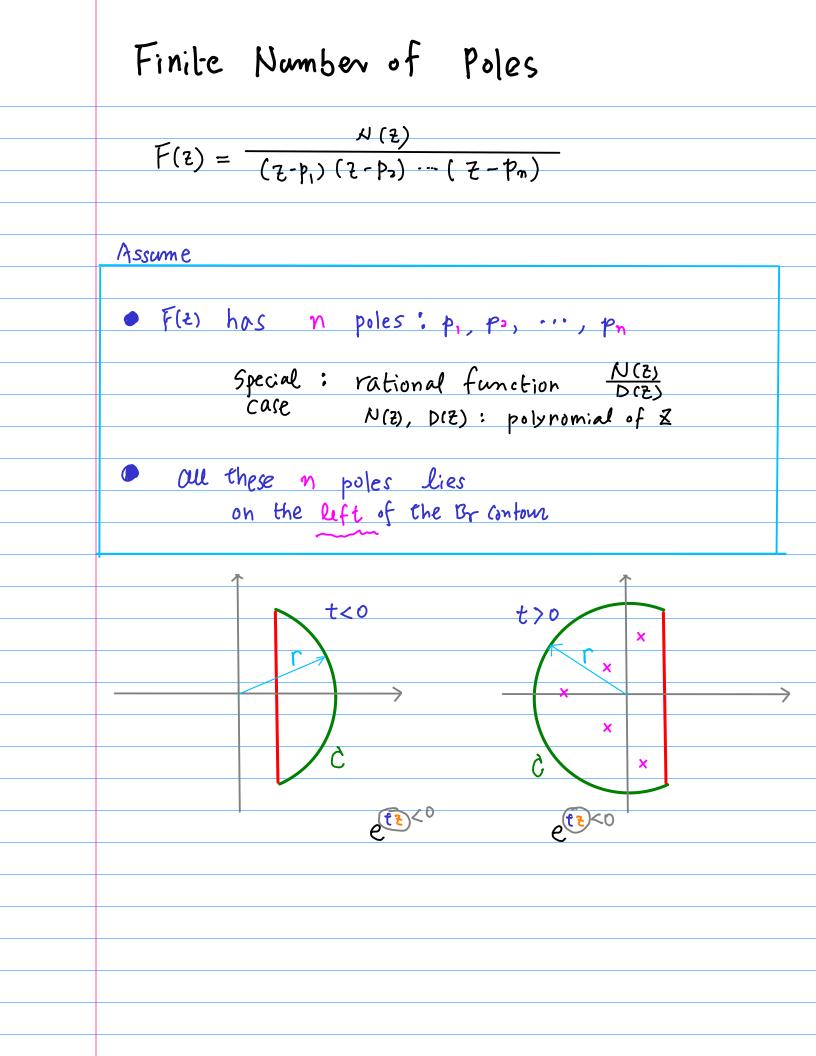
$$z \Rightarrow P$$

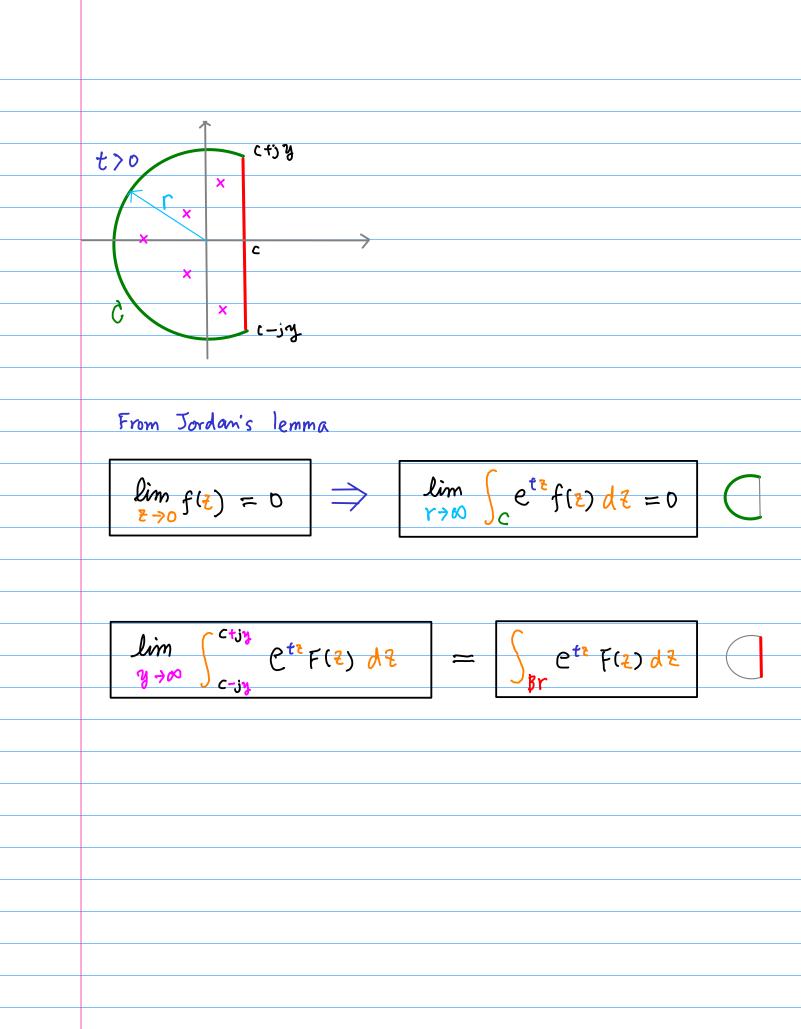
$$f(e^{-t}) \Rightarrow g(t)$$

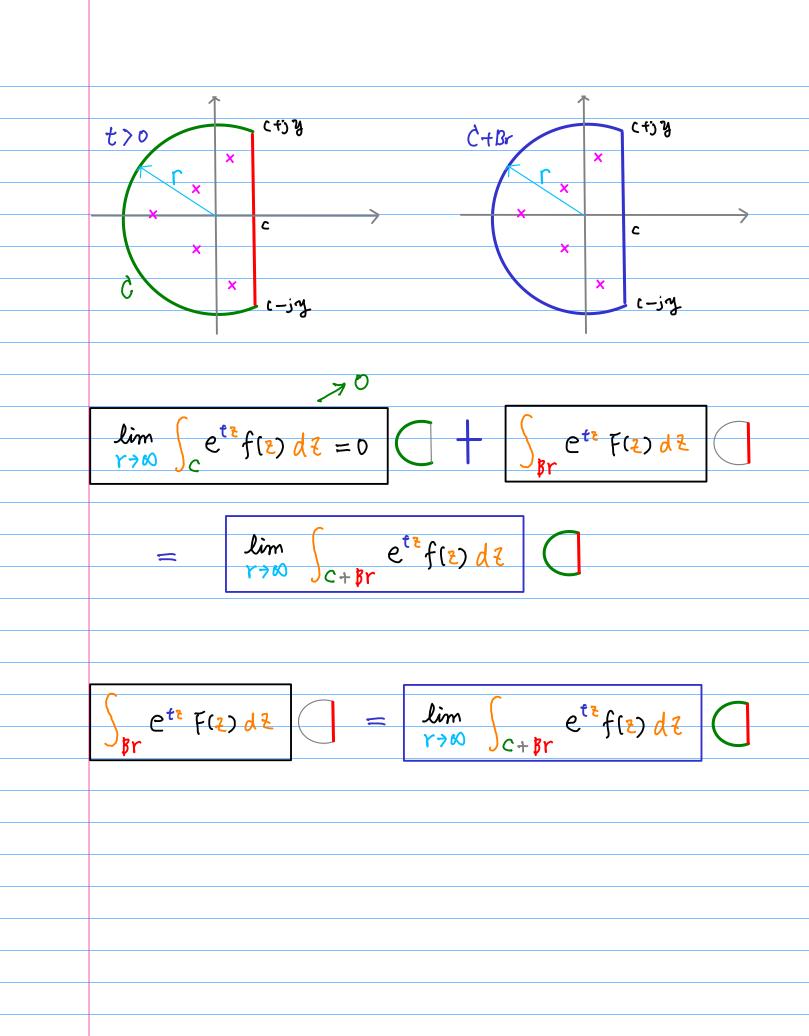
$$g(t) = \frac{1}{2\pi j} \int_{-\infty}^{c_{i}j\omega} e^{zt} \phi(z) dz$$

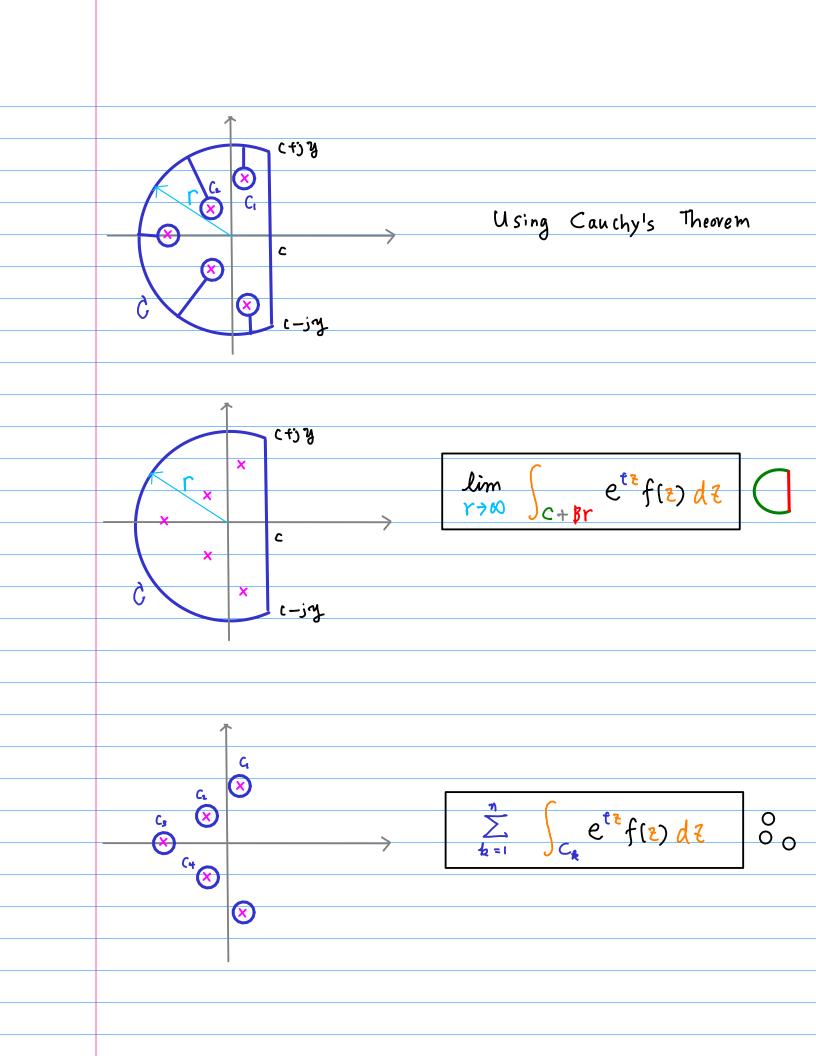
$$\phi(P) = \int_{-\infty}^{\omega} 0^{p_{i}} g(t) dt$$











$$f(t) = \frac{1}{2\pi j} \int_{c-j\infty}^{c+j\infty} e^{2t} F(z) dz$$

$$= \sum_{k=1}^{n} \int_{C_{k}} e^{tz} f(z) dz$$

$$= \sum_{k=1}^{n} \operatorname{Res} \left(e^{tz} f(z), z_{k} \right) \operatorname{Residue} \operatorname{Integral}$$
Line Integration
$$\int_{c} f(z) dz = 2\pi j \sum_{k} \operatorname{Res} \left(f(z), p_{k} \right)$$
if $f(z)$ has a simple pole at $\overline{z} = p$

$$\operatorname{Res} \left(f(z), p \right) = \lim_{z \ge p} (\overline{z-p}) f(\overline{z})$$
if $f(z)$ has a pole of order k at $\overline{z} = q$

$$\operatorname{Res} \left(f(z), q \right) = \lim_{z \ge q} \left[\frac{1}{(q-q)^{d}} \frac{d^{k+1}}{dz^{k+1}} \left[\frac{1}{(q-q)^{d}} \frac{d^{k+1}}{f(\overline{z})} \right] \left[\frac{Q_{k}}{(q-p)^{d}} \right]$$

$$f(t) = \frac{1}{2\tau_{j}} \int_{c} c^{tt} F(t) dt$$

$$f(t) = \frac{1}{2\tau_{j}} \int_{c} c^{tt} F(t) dt$$

$$f(t) = \int_{c} c^{tt} F(t) (2 - 2t) |_{2 = 2t}$$

$$= \left[c^{tt} F_{t}(t) \right]_{2 = 2t}$$

$$f(t) = \sum_{k=1}^{n} \left[c^{tt} F_{k}(t) \right]_{2 = 2t}$$

$$f(t) = \sum_{k=1}^{n} \left[c^{tt} F_{k}(t) \right]_{2 = 2t}$$

$$f(t) = F(t) (2 - 2t)$$

$$F_{k}(t) = F(t) (2 - 2t)$$

$$f(t) = \int_{c} \left[\frac{1}{m!} \frac{d^{m}}{dt^{m}} \left(c^{tt} F(t) (2 - 2t)^{m+1} \right) \right]_{2 = 2t}$$

$$= \left[\frac{1}{m!} \frac{d^{m}}{dt^{m}} \left(c^{tt} F_{k}(t) \right) \right]_{2 = 2t}$$

$$f(t) = \sum_{k=1}^{n} \left[\frac{1}{m!} \frac{d^{m}}{dt^{m}} \left(c^{tt} F_{k}(t) \right) \right]_{2 = 2t}$$

$$f(t) = \sum_{k=1}^{n} \left[\frac{1}{m!} \frac{d^{m}}{dt^{m}} \left(c^{tt} F_{k}(t) \right) \right]_{2 = 2t}$$

(3) Infinitely many poles
if we can find circular arcs with radii
$$\rightarrow 10^{\circ}$$
, such that

$$\frac{100}{2 \rightarrow 0} F(2) = 0 \quad 0^{\circ} n \quad Cn$$

$$\frac{100}{2 \rightarrow 0} \int_{CR} F(2) e^{Rt} d2 = 0 \quad t > 0 \quad (Jordan's Lemma)$$

$$Cn' = Cn + unitical line Re2 = C \quad (hold)$$

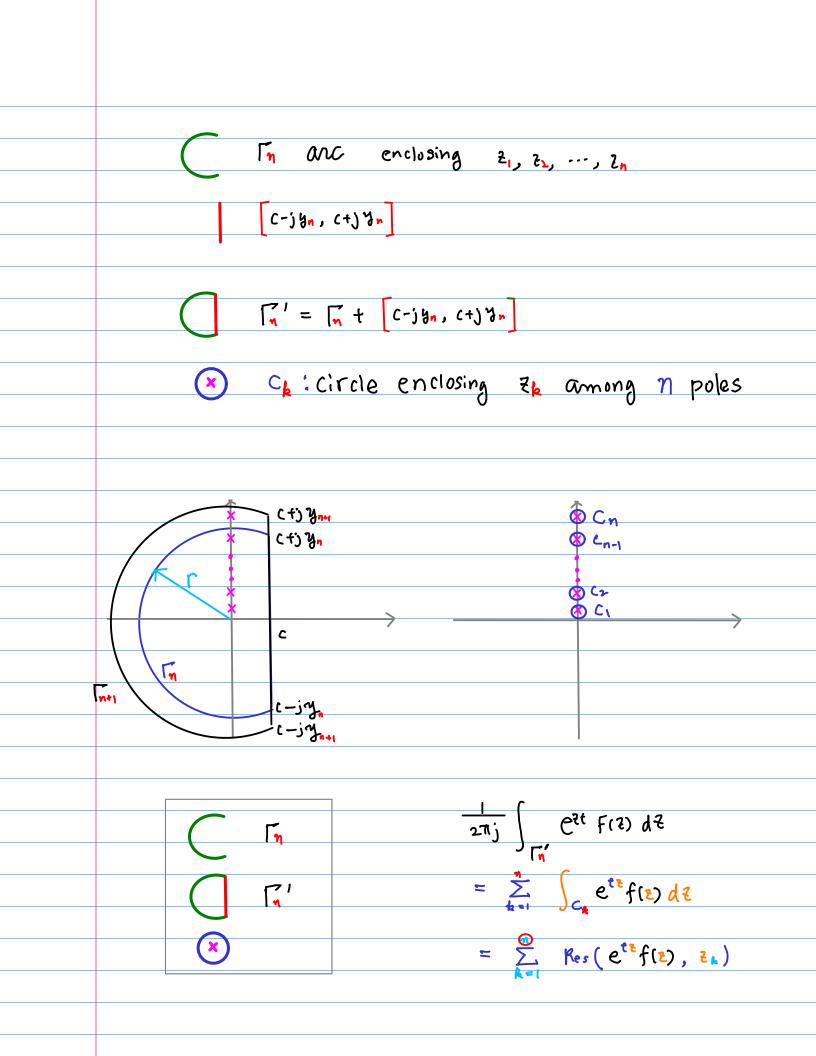
$$f(t) = \lim_{M \rightarrow 10} \frac{1}{2\pi j} \int_{Ct} e^{2t} F(2) d2 \quad t > 0$$

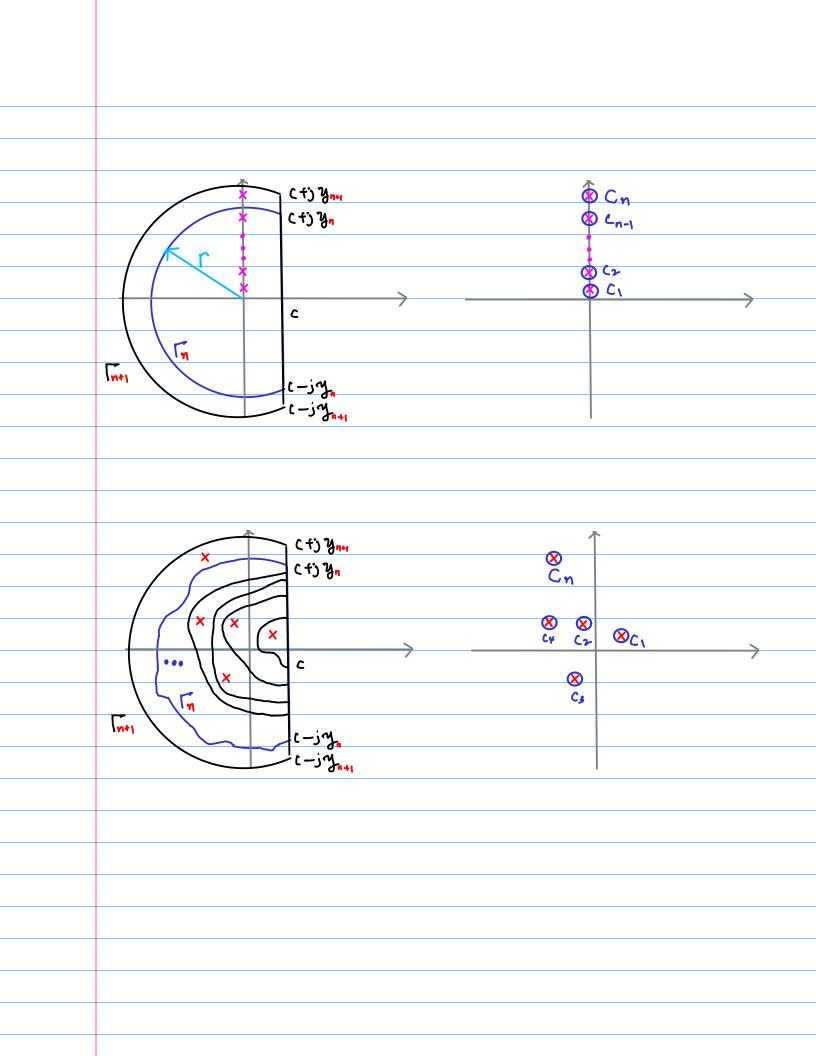
$$f(t) = \lim_{M \rightarrow 10} \frac{1}{2\pi j} \int_{Ct} e^{2t} F(2) d2 \quad t > 0$$

$$f(t) = \sum_{k=1}^{10} F_{k}(2k) e^{2kt}$$

F(2) infinitely many poles
$$\overline{z}_1, \overline{z}_2, \overline{z}_3, \cdots$$

all be the left of the line $Re(\overline{z})=C/D$
without loss of generating
 $[\overline{z}_1] \leq |\overline{z}_2| \leq |\overline{z}_3|$
 $[\overline{z}_1] \leq |\overline{z}_2| \leq |\overline{z}_3|$
 $[\overline{z}_1] = anc enclosing $\overline{z}_1, \overline{z}_2, \overline{z}_3$
 $[\overline{z}_1] = anc enclosing $\overline{z}_1, \overline{z}_2, \overline{z}_3$
 $[\overline{z}_3] = anc enclosing $\overline{z}_1, \overline{z}_2, \overline{z}_3$
 $[\overline{z}_3] = anc enclosing $\overline{z}_1, \overline{z}_2, \overline{z}_3$
 $[\overline{z}_1] = anc enclosing \overline{z}_1, \overline{z}_2, \overline{z}_3$
 $[\overline{z}_1] = anc enclosing \overline{z}_2, \overline{z}_3$
 $[\overline{z}_1] = anc enclosing \overline{z}_1, \overline{z}_2, \overline{z}_3$$$$$$$$$$$$$





$$\frac{1}{2\pi_{j}} \int_{\Gamma_{n}} e^{2t} F(2) d^{2} = \bigotimes_{A=1}^{\infty} \mathbb{R}_{e_{2}} (e^{te}f(2), 2_{A})$$

$$= \frac{1}{2\pi_{j}} \int_{\Gamma_{n}} e^{2t} F(2) d^{2} + \frac{1}{2\pi_{j}} \int_{c-je_{*}}^{c+je_{n}} e^{2t} F(2) d^{2}$$
if $\lim_{n \to \infty} \int_{\Gamma_{n}} e^{2t} F(2) d^{2} = \bigcirc_{n \to \infty} \sum_{A=1}^{\infty} \mathbb{R}_{e_{2}} (e^{te}f(2), 2_{A})$

$$= \frac{1}{2\pi_{j}} \int_{c-je_{*}}^{c+je_{n}} e^{2t} F(2) d^{2} = \sum_{A=1}^{\infty} \mathbb{R}_{e_{2}} (e^{te}f(2), 2_{A})$$

$$= \frac{1}{2\pi_{j}} \int_{c-je_{*}}^{c+je_{n}} e^{2t} F(2) d^{2} = \sum_{A=1}^{\infty} \mathbb{R}_{e_{2}} (e^{te}f(2), 2_{A})$$

$$= \frac{1}{2\pi_{j}} \int_{c-je_{*}}^{c+je_{*}} e^{2t} F(2) d^{2} = \sum_{A=1}^{\infty} \mathbb{R}_{e_{2}} (e^{te}f(2), 2_{A})$$

$$= \frac{1}{2\pi_{j}} \int_{c-je_{*}}^{c+je_{*}} e^{2t} F(2) d^{2} = \sum_{A=1}^{\infty} \mathbb{R}_{e_{2}} (e^{te}f(2), 2_{A})$$

$$= \frac{1}{2\pi_{j}} \int_{c-je_{*}}^{c+je_{*}} e^{2t} F(2) d^{2} = \sum_{A=1}^{\infty} \mathbb{R}_{e_{2}} (e^{te}f(2), 2_{A})$$

$$= \frac{1}{2\pi_{j}} \int_{c-je_{*}}^{c+je_{*}} e^{2t} F(2) d^{2} = \sum_{A=1}^{\infty} \mathbb{R}_{e_{2}} (e^{te}f(2), 2_{A})$$

$$= \frac{1}{2\pi_{j}} \int_{c-je_{*}}^{c+je_{*}} e^{2t} F(2) d^{2} = \sum_{A=1}^{\infty} \mathbb{R}_{e_{2}} (e^{te}f(2), 2_{A})$$

$$= \frac{1}{2\pi_{j}} \int_{c-je_{*}}^{c+je_{*}} e^{2t} F(2) d^{2} = \sum_{A=1}^{\infty} \mathbb{R}_{e_{2}} (e^{te}f(2), 2_{A})$$

$$= \frac{1}{2\pi_{j}} \int_{c-je_{*}}^{c+je_{*}} e^{2t} F(2) d^{2} e^{2t} f(2) d^{2} e^{2t} f(2) d^{2} e^{2t}$$

$$= \frac{1}{2\pi_{j}} \int_{c-je_{*}}^{c+je_{*}} e^{2t} F(2) d^{2} e^{2t} f(2) e^{2t}$$

$$F(s) = \frac{1}{S^{*} + w^{*}}$$

$$f(t) = \frac{1}{2\pi j} \oint \frac{e^{st}}{(s+jw)(s-jw)} dt$$

$$Res \left[(s-jw) \frac{e^{st}}{s^{*} + w^{*}} \right]_{s=+jw} = \frac{e^{st}}{s+jw} \Big|_{s=+jw} = \frac{e^{-jwt}}{2jw}$$

$$Res \left[(s+jw) \frac{e^{st}}{s^{*} + w^{*}} \right]_{s=-jw} = \frac{e^{jwt}}{s+jw} = \frac{sm wt}{w}$$

$$f(t) = \sum Res = \frac{e^{iwt} - e^{-jwt}}{2jw} = \frac{sm wt}{w}$$

Deduction of the
$$\int_{1}^{1} \{F(s)\}$$
 formula

$$f(t) \bigoplus F(s) = \int_{1}^{1} \{f(t)\} \\f(t) = \int_{1}^{1} \{F(s)\}$$

$$f(t) = \int_{2}^{1} \frac{f(t)}{f(t)} = \int_{1}^{1} \frac{f(t)}{f(t)} = \int_{1}^{1}$$

$$f(z) : \text{analytic on and inside simple close curve C}$$

$$f(z) = \frac{1}{2\pi i} \oint \frac{f(w)}{w-z} dw \quad \text{the value of } f(z) \\ \text{at a point } z = a \quad \text{inside C}$$

$$\frac{d}{dz}f(z) = \frac{d}{dz} \left[\frac{1}{2\pi i} \oint \frac{f(w)}{w-z} dw \right] \quad f^{Q}(z) = \frac{Q}{2\pi i} \oint \frac{f(w)}{(w-z)^{Q}} dw \\ \frac{d}{dz}f(z) = \frac{d}{dz} \left[\frac{1}{2\pi i} \oint \frac{f(w)}{w-z} dw \right] \quad f^{Q}(z) = \frac{Q}{2\pi i} \oint \frac{f(w)}{(w-z)^{Q}} dw \\ \frac{d}{dz}f(z) = \frac{d}{dz} \left[\frac{1}{2\pi i} \oint \frac{f(w)}{w-z} dw \right] \quad f^{Q}(z) = \frac{Q}{2\pi i} \oint \frac{f(w)}{(w-z)^{Q}} dw \\ \frac{d}{dz}f(z) = \frac{d}{dz} \left[\frac{1}{2\pi i} \oint \frac{f(w)}{w-z} dw \right] \quad f^{Q}(z) = \frac{Q}{2\pi i} \oint \frac{f(w)}{(w-z)^{Q}} dw \\ \frac{d}{dz}f(z) = \frac{d}{dz} \left[\frac{1}{2\pi i} \oint \frac{f(w)}{w-z} dw \right] \quad f^{Q}(z) = \frac{Q}{2\pi i} \oint \frac{f(w)}{(w-z)^{Q}} dw \\ \frac{f^{(n)}(z)}{y} = \frac{n!}{2\pi i} \oint \frac{f(w)}{w-z} dw \\ \frac{f^{(n)}(z)}{w-z} = \frac{n!}{2\pi i} \oint \frac{f^{(n)}(z)}{y} dw \\ \frac{f^{(n)}(z)}{w-z} = \frac{n!}{2\pi i} \oint \frac{f^{(n)}(z)}{w-z} \\ \frac{f^$$

$$f(t) = \frac{1}{2T_{j}} \lim_{R \to 0} \oint_{P^{*}} F(s)e^{st} ds$$

$$P^{*} = \sum residues of F(s)e^{st} at the poles to the right of C (t > 0)$$

$$P^{*} = -\sum residues of F(s)e^{st} at the poles to the right of C (t < 0)$$

$$T = \sum residues \int_{C} \frac{t > 0}{r} \frac{t < 0}{r} \frac{t <$$

$$H(z) = \sum_{n=-\infty}^{\infty} R(n) z^{-n}$$

$$R(n) = \frac{1}{2\pi j} \oint H(z) z^{n-1} dz$$

$$= \sum_{k} Res \{ H(z) z^{n-1}, z_{k} \}$$

One-Sided Z-transform $F(z) = \sum_{n=1}^{\infty} f(nT) z^{-n}$ $f(nT) = \frac{1}{2\pi j} \oint F(z) z^{n-1} dz$ $= \sum_{B} \operatorname{Res} \{ F(z) z^{n+1}, z_{k} \}$ () Simple poles $F(z) = \frac{H(z)}{G(z)}$ $\lim_{z \to a} (z - a) F(z) Z^{n1} = \lim_{z \to a} \left[(z - a) \frac{H(z)}{G(z)} Z^{n1} \right]$ (2) Multiple poles $\frac{1}{(m-1)!} \lim_{z \to a} \frac{d^{m+1}}{dz^{m+1}} \left[(z-a)^m F(z) z^{n+1} \right]$

Two-sided Z-transform $F(z) = \sum_{n=0}^{\infty} f(nT) z^{-n}$ $f(nT) = \frac{1}{2\pi j} \oint F(z) z^{n-1} dz$ $= \sum_{B} \operatorname{Res} \{ F(z) z^{n+1}, z_{k} \}$ D Simple poles $F(z) = \frac{H(z)}{G(z)}$ $\lim_{z \to a} (2-a) F(z) Z^{n-1} = \lim_{z \to a} \left[(2-a) \frac{H(z)}{G(z)} Z^{n-1} \right]$ 2 Multiple poles $\frac{1}{(m-1)!} \lim_{z \to a} \frac{d^{m+1}}{dz^{m+1}} \left[(z-a)^m F(z) z^{n+1} \right]$

$$F(z) = \frac{A(z)}{D(z)} = \frac{b_0 + b_1 z^4 + \dots + b_m z^{-n}}{1 + a_1 z^{1} + \dots + a_n z^{-n}}$$

= $(z + c_1 z^4 + \dots + c_{n-N} z^{-(n+n)} + \frac{M_1(z)}{b(z)})$
A paper function $(M < M)$
$$F(z) = \frac{A(z)}{D(z)} = \frac{b_0 + b_1 z^4 + \dots + b_m z^{-n}}{1 + a_1 z^4 + \dots + b_m z^{n-n+1}} \quad a_0 \neq 0 \quad p < M$$

$$= \frac{b_0 z^{n+1} + b_1 z^{n+1} + \dots + b_m z^{n-n+1}}{z^M + a_1 z^{m+1} + \dots + a_N}$$