Elementary Matrix (2A)

Copyright (c) 2012-2015 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License"

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Gauss-Jordan Elimination

Forward Phase - Gaussian Elimination

$$
\left.\left.\begin{array}{l}
\left(\begin{array}{ccc|c}
+2 & +1 & -1 & +8 \\
-3 & -1 & +2 & -11 \\
-2 & +1 & +2 & -3
\end{array}\right) \Rightarrow\left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
-3 & -1 & +2 & -11 \\
-2 & +1 & +2 & -3
\end{array}\right) \Rightarrow\left(\begin{array}{cc|c}
+1 & +1 / 2 & -1 / 2 \\
0 & +4 \\
0 & +1 / 2 & +1 / 2
\end{array}\right. \\
+1 \\
0
\end{array}+2 \begin{array}{cc}
+1 & +5
\end{array}\right]\right)
$$

Backward Phase

$\left(\begin{array}{ccc|c}+1 & +1 / 2 & \boxed{-1 / 2} & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & +1 & -1\end{array}\right) \Rightarrow\left(\begin{array}{ccc|c}+1 & +1 / 2 & 0 & +7 / 2 \\ 0 & +1 & 0 & +3 \\ 0 & 0 & +1 & -1\end{array}\right) \mapsto\left(\begin{array}{ccc|c}+1 & 0 & 0 & +2 \\ 0 & +1 & 0 & +3 \\ 0 & 0 & +1 & -1\end{array}\right)$

Elementary Row Operation

Interchange two rows

Multiply a row by a nonzero constant

Add a multiple of one row to another

Elementary Matrix

Identity Matrix
$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

Interchange two rows

Multiply a row by a nonzero constant

Add a multiple of one row to another

Multiplication by an Elementary Matrix

$$
\begin{aligned}
& {\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \quad\left[\begin{array}{lll}
4 & 5 & 6 \\
1 & 2 & 3 \\
7 & 8 & 9
\end{array}\right]} \\
& {\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \quad\left[\begin{array}{lll}
3 & 6 & 9 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
4 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \quad\left[\begin{array}{ccc}
1 & 2 & 3 \\
8 & 13 & 18 \\
7 & 8 & 9
\end{array}\right]}
\end{aligned}
$$

Elementary Matrix

Interchange two rows

Multiply a row by a nonzero constant

Add a multiple of one row to another

Gauss-Jordan Elimination - Step 1

$$
\begin{aligned}
& \begin{array}{rlr}
+2 x_{1}+x_{2}-x_{3} & =8 & \left(L_{1}\right) \\
-3 x_{1}-x_{2}+2 x_{3} & =-11 & \left(L_{2}\right) \\
-2 x_{1}+x_{2}+2 x_{3} & =-3 & \left(L_{3}\right)
\end{array} \\
& E_{1} \\
& \left(\begin{array}{ccc}
1 / 2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad\left[\begin{array}{ccc|c}
+2 & +1 & -1 & +8 \\
-3 & -1 & +2 & -11 \\
-2 & +1 & +2 & -3
\end{array}\right) \\
& \begin{array}{ll}
+1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}=4 & \left(\frac{1}{2} \times L_{1}\right) \\
-3 x_{1}-x_{2}+2 x_{3}=-11 \\
-2 x_{1}+x_{2}+2 x_{3}=-3 & \left(L_{2}\right) \\
\left(L_{3}\right)
\end{array} \quad\left(\begin{array}{rcc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
-3 & -1 & +2 & -11 \\
-2 & +1 & +2 & -3
\end{array}\right)
\end{aligned}
$$

Gauss-Jordan Elimination - Step 2

$$
\begin{aligned}
+1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3} & =+4 \\
-3 x_{1}-x_{2}+2 x_{3} & =-11 \\
-2 x_{1}+x_{2}+2 x_{3} & =-3
\end{aligned}
$$

$$
\left[\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
-3 & -1 & +2 & -11 \\
-2 & +1 & +2 & -3
\end{array}\right]
$$

\boldsymbol{E}_{3}
$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1\end{array}\right) \quad\left[\begin{array}{lll}1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \quad\left[\begin{array}{ccc|c}+1 & +1 / 2 & -1 / 2 & +4 \\ -3 & -1 & +2 & -11 \\ -2 & +1 & +2 & -3\end{array}\right]$

$$
\begin{aligned}
+1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3} & =+4 \\
0 x_{1}+\frac{1}{2} x_{2}+\frac{1}{2} x_{3} & =+1 \\
0 x_{1}+2 x_{2}+1 x_{3} & =+5
\end{aligned}
$$

$$
\left(L_{1}\right)
$$

$$
3 \times L_{1}+L_{2}
$$

$$
\left.2 \times L_{4}+L_{3}\right)
$$

$$
\left[\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 / 2 & +1 / 2 & +1 \\
\hline 0 & +2 & +1 & +5
\end{array}\right]
$$

Gauss-Jordan Elimination - Step 3

$$
\begin{aligned}
& +1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}=+4 \\
& \left(L_{1}\right) \\
& 0 x_{1}+\frac{1}{2} x_{2}+\frac{1}{2} x_{3}=+1 \quad\left(L_{2}\right) \\
& 0 x_{1}+2 x_{2}+1 x_{3}=+5 \\
& \left(L_{3}\right) \\
& \left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 / 2 & +1 / 2 & +1 \\
0 & +2 & +1 & +5
\end{array}\right) \\
& \begin{array}{c}
\boldsymbol{E}_{4} \\
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{array} \\
& \left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 / 2 & +1 / 2 & +1 \\
0 & +2 & +1 & +5
\end{array}\right) \\
& \begin{array}{rll}
+1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3} & =+4 & \left(L_{1}\right) \\
0 x_{1}+1 x_{2}+1 x_{3} & =+2 & \\
0 x_{1}+2 x_{2}+1 x_{3} & =+5 & \left(L_{3}\right)
\end{array} \\
& \left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +2 \\
0 & +2 & +1 & +5
\end{array}\right)
\end{aligned}
$$

Gauss-Jordan Elimination - Step 4

$$
\left.\begin{array}{rl}
\begin{array}{rl}
+1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}=+4 \\
0 x_{1}+1 x_{2}+1 x_{3}=+2 & \left(L_{1}\right) \\
0 x_{1}+2 x_{2}+1 x_{3}=+5 & \left(L_{2}\right) \\
& \left(\begin{array}{ccc}
\left.E_{5}\right)
\end{array}\right. \\
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right)
\end{array} & \left(\begin{array}{ccc}
+1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 \\
0 & +2 & +1
\end{array}\right. \\
+2
\end{array}\right)
$$

Gauss-Jordan Elimination - Step 5

$$
\left.\begin{array}{rl}
\begin{array}{rl}
+1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}=+4 \\
0 x_{1}+1 x_{2}+1 x_{3}=+2
\end{array} & \left(L_{1}\right) \\
0 x_{1}+0 x_{2}-1 x_{3}=+1 & \left(L_{2}\right) \\
& \left(\begin{array}{ccc}
E_{6}
\end{array}\right. \\
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
\end{array} \quad\left[\begin{array}{ccc|c}
+1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +2 \\
0 & 0 & -1 & +1
\end{array}\right]\right)
$$

Forward Phase

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
+2 & +1 & -1 & +8 \\
-3 & -1 & +2 & -11 \\
-2 & +1 & +2 & -3
\end{array}\right) \Rightarrow\left[\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
-3 & -1 & +2 & -11 \\
-2 & +1 & +2 & -3
\end{array}\right) \Rightarrow\left[\begin{array}{ccc}
+1 & +1 / 2 & -1 / 2 \\
\hline 0 & +1 / 2 & +1 / 2
\end{array}+4\right. \\
& \left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +2 \\
0 & +2 & +1 & +5
\end{array}\right) \Rightarrow\left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +2 \\
0 & 0 & -1 & +1
\end{array}\right) \Rightarrow\left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +2 \\
0 & 0 & +1 & -1
\end{array}\right)
\end{aligned}
$$

Forward Phase - Gaussian Elimination

Gauss-Jordan Elimination - Step 6

$+1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}$	$=+4$
$0 x_{1}+1 x_{2}+1 x_{3}$	$=+2$
$0 x_{1}+0 x_{2}+1 x_{3}$	$=-1$

$$
\left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & \boxed{+1} & +2 \\
0 & 0 & +1 & -1
\end{array}\right)
$$

| \boldsymbol{E}_{8} | |
| :---: | :---: | :---: |
| $\left.\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right) \quad\left[\begin{array}{ccc}1 & 0 & 1 / 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \quad\left(\begin{array}{ccc\|c}+1 & +1 / 2 & \boxed{-1 / 2} & +4 \\ 0 & +1 & \boxed{+1} & +2 \\ 0 & 0 & +1 & -1\end{array}\right)$ | |

$\left.\begin{array}{rll}+1 x_{1}+\frac{1}{2} x_{2}+0 x_{3} & =+\frac{7}{2} & \left(+\frac{1}{2} \times L_{3}+L_{1}\right) \\ 0 x_{1}+1 x_{2}+0 x_{3} & =+3 & \left(-1 \times L_{3}+L_{2}\right) \\ 0 x_{1}+0 x_{2}+1 x_{3} & =-1 & \left(L_{3}\right)\end{array} \begin{array}{ccc|c}+1 & +1 / 2 & 0 & +7 / 2 \\ 0 & +1 & 0 & +3 \\ 0 & 0 & +1 & -1\end{array}\right)$

Gauss-Jordan Elimination - Step 7

$$
\left.\begin{array}{rlrl}
+1 x_{1}+\frac{1}{2} x_{2}+0 x_{3}= & +\frac{7}{2} & \left(L_{1}\right) \\
0 x_{1}+1 x_{2}+0 x_{3}= & +3 & \left(L_{2}\right) \\
0 x_{1}+0 x_{2}+1 x_{3}= & -1 & \left(L_{3}\right)
\end{array} \quad\left(\begin{array}{ccc|c}
+1 & +1 / 2 & 0 & +7 / 2 \\
0 & +1 & 0 & +3 \\
0 & 0 & +1 & -1
\end{array}\right]\right)
$$

Backward Phase

$$
\left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +2 \\
0 & 0 & +1 & -1
\end{array}\right) \Rightarrow\left(\begin{array}{ccc|c}
+1 & +1 / 2 & 0 & +7 / 2 \\
0 & +1 & 0 & +3 \\
0 & 0 & +1 & -1
\end{array}\right) \Rightarrow\left(\begin{array}{ccc|c}
+1 & 0 & 0 & +2 \\
0 & +1 & 0 & +3 \\
0 & 0 & +1 & -1
\end{array}\right)
$$

Gauss-Jordan Elimination

Forward Phase - Gaussian Elimination

$$
\left.\left.\begin{array}{l}
\left(\begin{array}{ccc|c}
+2 & +1 & -1 & +8 \\
-3 & -1 & +2 & -11 \\
-2 & +1 & +2 & -3
\end{array}\right) \Rightarrow\left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
-3 & -1 & +2 & -11 \\
-2 & +1 & +2 & -3
\end{array}\right) \Rightarrow\left(\begin{array}{cc|c}
+1 & +1 / 2 & -1 / 2 \\
0 & +4 \\
0 & +1 / 2 & +1 / 2
\end{array}\right. \\
+1 \\
0
\end{array}+2 \begin{array}{cc}
+1 & +5
\end{array}\right]\right)
$$

Backward Phase

$\left(\begin{array}{ccc|c}+1 & +1 / 2 & -1 / 2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & +1 & -1\end{array}\right) \Rightarrow\left(\begin{array}{ccc|c}+1 & +1 / 2 & 0 & +7 / 2 \\ 0 & +1 & 0 & +3 \\ 0 & 0 & +1 & -1\end{array}\right) \Rightarrow\left(\begin{array}{ccc|c}+1 & 0 & 0 & +2 \\ 0 & +1 & 0 & +3 \\ 0 & 0 & +1 & -1\end{array}\right)$

Product of Elementary Matrices

$$
\begin{aligned}
& E_{3} \quad E_{2} \quad E_{1} \\
& \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & 0 & 0 \\
3 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 / 2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc|c}
+2 & +1 & -1 & +8 \\
-3 & -1 & +2 & -11 \\
-2 & +1 & +2 & -3
\end{array}\right] \\
& E_{6} \quad E_{5} \quad E_{4} \\
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right) \cdot\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \left(\begin{array}{ccc}
\boldsymbol{E}_{9} & \\
\left(\begin{array}{ccc}
1 & -1 / 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
\boldsymbol{E}_{8} & \\
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
\boldsymbol{E}_{7} \\
1 & 0 & 1 / 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{array}\right.
\end{aligned}
$$

Equivalent Statements

A : invertible

$$
A x=0
$$

only the trivial solution

$$
\begin{array}{cccc}
\boldsymbol{A} & = & \mathbf{x} \\
(\square \\
& \\
& & & \\
& & \left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{array}
$$

A the RREF is \boldsymbol{I}_{n}
(Reduced Row Echelon Form)

A can be written as a product of \boldsymbol{E}_{k} (Elementary Matrices)

Proof (1)

$$
A_{x}=0
$$

only the trivial solution

$$
\begin{array}{cccc}
\boldsymbol{A} & = & \mathbf{x} \\
\left.\left(\begin{array}{l}
\\
\\
\end{array}\right] \right\rvert\, & = & \left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{array}
$$

$$
\begin{aligned}
\boldsymbol{A} \boldsymbol{x}_{0} & =0 \\
\boldsymbol{A}^{-1} \boldsymbol{A} \boldsymbol{x}_{0} & =\boldsymbol{A}^{-1} 0 \\
\boldsymbol{I}_{n} \boldsymbol{x}_{0} & =0 \\
\boldsymbol{x}_{0} & =0 \quad \text { trivial }
\end{aligned}
$$

Proof (2)

only the trivial solution
After the forward and backward
phases of Gauss-Jordan Elimination
$\left(\begin{array}{ccccc|c}1 & & 0 & \ldots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \ldots & 1 & 0\end{array}\right)$

Proof (3)

A the RREF is \boldsymbol{I}_{n} (Reduced Row Echelon Form)

A can be written as a product of \boldsymbol{E}_{k} (Elementary Matrices)

$$
\begin{aligned}
& \boldsymbol{E}_{k} \cdots \boldsymbol{E}_{2} \boldsymbol{E}_{1} \boldsymbol{A}=\boldsymbol{I}_{n} \\
& \boldsymbol{E}_{k-1} \cdots \boldsymbol{E}_{2} \boldsymbol{E}_{1} \boldsymbol{A}=\boldsymbol{E}_{k}^{-1} \\
& \boldsymbol{A}=\boldsymbol{E}_{k}^{-1} \boldsymbol{E}_{k} \boldsymbol{E}_{k-1} \cdots \boldsymbol{E}_{2} \boldsymbol{E}_{1} \boldsymbol{A}=\boldsymbol{E}_{k}^{-1} \boldsymbol{I}_{n} \\
& \boldsymbol{E}_{2}^{-1} \cdots \boldsymbol{E}_{k}^{-1} \\
& \boldsymbol{E}_{k-1}^{-1} \boldsymbol{E}_{k-1} \cdots \boldsymbol{E}_{2} \boldsymbol{E}_{1} \boldsymbol{A}=\boldsymbol{E}_{k-1}^{-1} \boldsymbol{E}_{k}^{-1} \\
& \text { (Elementary Matrices) }
\end{aligned}
$$

Proof (4)

A can be written as a product of \boldsymbol{E}_{k} (Elementary Matrices)

A : invertible

$$
\begin{array}{r}
\boldsymbol{E}_{k} \cdots \boldsymbol{E}_{2} \boldsymbol{E}_{1} \boldsymbol{A}=\boldsymbol{I}_{n} \\
\boldsymbol{A}^{-1} \boldsymbol{A}=\boldsymbol{I}_{n} \\
\boldsymbol{A}^{-1}=\boldsymbol{E}_{k} \cdots \boldsymbol{E}_{2} \boldsymbol{E}_{1}
\end{array}
$$

Inversion Algorithm (1)

Inversion Algorithm (2)

$$
\begin{aligned}
& \left(\begin{array}{l}
\mathrm{A} \\
\end{array}\right)^{\boldsymbol{x}_{1}}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
& \left.()^{A}\right)^{\boldsymbol{x}_{2}}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \\
& {\left[\boldsymbol{b}_{1}\left|\boldsymbol{b}_{2}\right| \cdots \mid \boldsymbol{b}_{n}\right]} \\
& {\left[X_{1}\left|x_{2}\right| \cdots \mid x_{n}\right]}
\end{aligned}
$$

Homogeneous System

$$
\begin{array}{c|ccccc}
a_{11} x_{1}+a_{12} x_{2}+ & \cdots & +a_{1 n} x_{n}= & 0 & \begin{array}{c}
\text { All constant terms } \\
\text { are zero }
\end{array} \\
a_{21} x_{1}+a_{22} x_{2}+ & \cdots & +a_{2 n} x_{n}= & 0 \\
\vdots & \vdots & & & \vdots & \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+ & \cdots & +a_{m n} x_{n}= & 0
\end{array}
$$

Homogeneous System

All constant terms are zero

References

[1] http://en.wikipedia.org/
[2] Anton \& Busby, "Contemporary Linear Algebra"

