
Young Won Lim
6/9/23

Vectored Interrupt Programming

Vectored Interrupt
Programming

2 Young Won Lim
6/9/23

 Copyright (c) 2023 - 2014 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Vectored Interrupt
Programming

3 Young Won Lim
6/9/23

Based on

ARM System-on-Chip Architecture, 2nd ed, Steve Furber

Introduction to ARM Cortex-M Microcontrollers
– Embedded Systems, Jonathan W. Valvano

Digital Design and Computer Architecture,
D. M. Harris and S. L. Harris

ARM assembler in Raspberry Pi
Roger Ferrer Ibáñez

https://thinkingeek.com/arm-assembler-raspberry-pi/

Vectored Interrupt
Programming

4 Young Won Lim
6/9/23

Standard Interrupt Controller

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

The standard interrupt controller
sends an interrupt signal to the processor core
when an external device requests servicing.

It can be programmed to ignore or mask
an individual device or set of devices.

The interrupt handler determines
which device requires servicing
by reading a device bitmap register
in the interrupt controller.

standard interrupt controller

programmable mask

interrupt source
by reading a device register

Vectored Interrupt
Programming

5 Young Won Lim
6/9/23

Vectored Interrupt Controller

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

The VIC is more powerful
than the standard interrupt controller

● prioritizes interrupts
● simplifies the determination of interrupt source

(of which device caused the interrupt)

● a priority is associated with a handler address
for each interrupt request

● the VIC asserts an interrupt signal to the core
only when the priority of a new interrupt is higher than that of the currently executing interrupt handler.

VIC = IVT + Priority

Vectored Interrupt Controller (VIC)
Interrupt Vector Table (IVT)

priority – handler address

preemptive interrupt handling

Vectored Interrupt
Programming

6 Young Won Lim
6/9/23

Multiple ISR handlers

https://embetronicx.com/tutorials/microcontrollers/stm32/vectored-interrupt-controller-nested-vectored-interrupt-controller-vic-nvic/

Usually in the old generation controllers,
there is only one ISR
that handles multiple interrupt sources.

the ISR checks the particular register
to find the interrupt source
– who is interrupting the processor.

large interrupt latency

to reduce interrupt latency,
ARM has come up with an idea of
a vector interrupt controller (VIC)
where each interrupt can have separate ISR’s

each ISR address will be
stored in the Interrupt Vector Table.

IRQ source 1 ----- ISR 1 address
IRQ source 2 ----- ISR 2 address
IRQ source 3 ----- ISR 3 address

… …

If IRQ source i, then jump to ISRi

Default ISR

ISR determines the interrupt source

One ISR – multiple interrupt sources

Large latency

Separate ISR’s, IVT

Vectored Interrupt
Programming

7 Young Won Lim
6/9/23

IRQ sources and ISR addresses

https://embetronicx.com/tutorials/microcontrollers/stm32/vectored-interrupt-controller-nested-vectored-interrupt-controller-vic-nvic/

The VIC provides a software interface
to the interrupt system.

In a standard interrupt controller,
software must determine

the source that is requesting service
where its ISR is loaded.

In a vectored interrupt controller,
hardware supplies

the starting address,
or vector address, of the ISR
corresponding to the interrupt source
that has the highest priority

SW (ISR) determines the interrupt source

Jump address must be loaded

HW determines the interrupt source

A table lookup of IVT provides
the jump address (the specific ISR)

Vectored Interrupt
Programming

8 Young Won Lim
6/9/23

Interrupt Vector Table

https://www.quora.com/What-is-the-difference-between-ARMs-nested-vectored-interrupt-controller-and-an-interrupt-vector-table-which-seems-to-be-used-by-the-other-processors

Interrupt vector table (IVT)

contains the address of the IRQ handlers
of every interrupt.

directs the PC where to go,
when an interrupt occurs.

refers early generation of VIC,
because they just point the address
when an interrupt occurs.

priority was not fully applied

VIC = IVT + Priority

Old VIC = IVT only, no priority

Vectored Interrupt
Programming

9 Young Won Lim
6/9/23

VIC interrupt handling types (1)

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

the VIC interrupt handling types

● make the core jump directly to the handler address
for the device (Vectored IRQ)

● either call the standard interrupt exception handler,
which can load the handler address
for the device from the VIC (Non-Vectored IRQ)

in lpc214x

VICVectAddr : holds the address of the associated ISR i.e the one which is currently active.
VICDefVectAddr : stores the address of the “default/common” ISR for a Non-Vectored IRQ occurs

VIC = IVT + Priority

Vectored IRQ
unique ISR
jump to the address

Non-vectored IRQ
default ISR
load the address

Vectored Interrupt
Programming

10 Young Won Lim
6/9/23

VIC interrupt handling types (2)

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

VIRQ (Vectored IRQ) has
dedicated IRQ service routine
for each Vectored interrupt source

NVIRQ (Non-Vectored IRQ) has
the same IRQ service routine
for all Non-Vectored Interrupts.

in lpc214x

VICVectAddr : holds the address of the associated ISR i.e the one which is currently active.
VICDefVectAddr : stores the address of the “default/common” ISR for a Non-Vectored IRQ occurs

VIC = IVT + Priority

Vectored IRQ
dedicated ISR for each IRQ source

Non-vectored IRQ
default ISR for all IRQ sources

Vectored Interrupt
Programming

11 Young Won Lim
6/9/23

VIC interrupt handling types (3)

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

Vectored means that
the CPU is aware of the address of the ISR
when the interrupt occurs

Non-Vectored means that
CPU doesn’t know the address of the ISR
nor the source of the IRQ
when the interrupt occurs
it needs to be supplied with the ISR address.

For the Vectored Interrupt Controller,
the system internally maintains a table
IVT (Interrupt Vector Table)

which contains the information
about Interrupts sources
and their corresponding ISR address.

IRQ source 1 ISR 1 address
IRQ source 2 ISR 2 address
IRQ source 3 ISR 3 address

… …

VIC = IVT + Priority

Vectored IRQ
ISR address is known
jump to the address

Non-vectored IRQ
IRQ address not known
load the address

Vectored Interrupt
Programming

12 Young Won Lim
6/9/23

ARM FIQ

https://embetronicx.com/tutorials/microcontrollers/stm32/vectored-interrupt-controller-nested-vectored-interrupt-controller-vic-nvic/

In an ARM system, two levels of interrupts are available:

 Fast Interrupt reQuest (FIQ)
– For fast, low latency interrupt handling.

 Interrupt ReQuest (IRQ)
– For more general interrupts.

● a single FIQ source system for a low-latency interrupt

● the ISR is executed directly
without determining the source of the interrupt

● this reduces the interrupt latency

● the banked registers of FIQ mode
can be used more efficiently,
without incurring a context save overhead

Single FIQ source system

Register bank

Vectored Interrupt
Programming

13 Young Won Lim
6/9/23

3 categories of IRQ’s

https://embetronicx.com/tutorials/microcontrollers/stm32/vectored-interrupt-controller-nested-vectored-interrupt-controller-vic-nvic/

The ARM Vectored Interrupt Controller (VIC)
takes 32 interrupt request inputs and
programmably assigns them into 3 categories,

● FIQ
● vectored IRQ
● non-vectored IRQ.

Vectored Interrupt
Programming

14 Young Won Lim
6/9/23

Nested Vectored Interrupt Controller

https://embetronicx.com/tutorials/microcontrollers/stm32/vectored-interrupt-controller-nested-vectored-interrupt-controller-vic-nvic/

A Nested Vectored Interrupt Controller (NVIC)
is used to manage the interrupts
from multiple interrupt sources.

NVIC is closely integrated with the processor core
to achieve low-latency interrupt processing and
efficient processing of late arriving interrupts.

Vectored Interrupt
Programming

15 Young Won Lim
6/9/23

NVIC vs. VIC (1)

https://www.quora.com/What-is-the-difference-between-ARMs-nested-vectored-interrupt-controller-and-an-interrupt-vector-table-which-seems-to-be-used-by-the-other-processors

every interrupt with certain priority levels

each interrupt is serviced / processed
with its own priority level.

Servicing / processing the interrupt means
the processing of the part of codes
inside the IRQ handler
of the respective interrupt.

Interrupt handling of

● Nested Vectored Interrupt Controller (NVIC)
● Vectored Interrupt Controller (VIC)
● Interrupt Vector Table (IVT)

Vectored Interrupt
Programming

16 Young Won Lim
6/9/23

NVIC vs. VIC (2)

https://www.quora.com/What-is-the-difference-between-ARMs-nested-vectored-interrupt-controller-and-an-interrupt-vector-table-which-seems-to-be-used-by-the-other-processors

Example assumption :

Priority 1 (P1) - highest
Priority 2 (P2) - second highest

There are two different interrupts X and Y
with priority levels P1 and P2 respectively.

● interrupts X and Y occur at the same time.

● interrupt Y (P2) has occured first and
while servicing interrupt Y (P2)
interrupt X (P1) occurs

Vectored Interrupt
Programming

17 Young Won Lim
6/9/23

Nested VIC handling (1)

https://www.quora.com/What-is-the-difference-between-ARMs-nested-vectored-interrupt-controller-and-an-interrupt-vector-table-which-seems-to-be-used-by-the-other-processors

● If interrupts X and Y occur at the same time.

first X (P1) is processed,
Y (P2) is put on hold.

After processing X,
Y is processed.

X’s ISR Y’s ISR

X int
(P1)

Y int
(P2)

Vectored Interrupt
Programming

18 Young Won Lim
6/9/23

Nested VIC handling (2)

https://www.quora.com/What-is-the-difference-between-ARMs-nested-vectored-interrupt-controller-and-an-interrupt-vector-table-which-seems-to-be-used-by-the-other-processors

● If interrupt Y (P2) has occured first and
interrupt X (P1) occurs
while servicing interrupt Y (P2)

Then, the controller puts
the interrupt Y's IRQ handler on hold

and processes
the interrupt X's IRQ handler completely

and then resumes
the interrupt Y's IRQ handler

So, it processes interrupt
by nesting them within each other.

X’s ISR Y’s ISR

X int
(P1)

Y int
(P2)

Vectored Interrupt
Programming

19 Young Won Lim
6/9/23

VIC handling (1)

https://www.quora.com/What-is-the-difference-between-ARMs-nested-vectored-interrupt-controller-and-an-interrupt-vector-table-which-seems-to-be-used-by-the-other-processors

● If interrupts X and Y occur at the same time.

first X (P1) is processed,
Y (P2) is put on hold.

After processing X,
Y is processed.

X’s ISR Y’s ISR

X int
(P1)

Y int
(P2)

Vectored Interrupt
Programming

20 Young Won Lim
6/9/23

VIC handling (2)

https://www.quora.com/What-is-the-difference-between-ARMs-nested-vectored-interrupt-controller-and-an-interrupt-vector-table-which-seems-to-be-used-by-the-other-processors

● If interrupt Y (P2) has occured first and
interrupt X (P1) occurs
while servicing interrupt Y (P2)

Then, the controller processes
the interrupt Y's IRQ handler completely

and then the processes
the interrupt X’s IRQ handler

X’s ISR Y’s ISR

X int
(P1)

Y int
(P2)

Vectored Interrupt
Programming

21 Young Won Lim
6/9/23

NVIC features in cortex M (1)

https://embetronicx.com/tutorials/microcontrollers/stm32/vectored-interrupt-controller-nested-vectored-interrupt-controller-vic-nvic/

● external interrupts (1 ~ 240)

● bits of priority (3 ~ 8)

● a dynamic re-prioritization of interrupts.

● priority grouping enables the selection of

preempting interrupt levels

non-preempting interrupt levels.

● support for tail-chaining and late arrival of interrupts.

This enables back-to-back interrupt processing

without the overhead of state saving and restoration

between interrupts.

Vectored Interrupt
Programming

22 Young Won Lim
6/9/23

NVIC features in cortex M (2)

https://embetronicx.com/tutorials/microcontrollers/stm32/vectored-interrupt-controller-nested-vectored-interrupt-controller-vic-nvic/

● processor state automatically

saved on interrupt entry,

restored on interrupt exit,

with no instruction overhead.

● Optional Wake-up Interrupt Controller (WIC),

providing ultra-low-power sleep mode support.

● Vector table can be located in either RAM or flash.

All interrupts including the core exceptions
are managed by the NVIC.

The NVIC maintains knowledge of
the stacked, or nested, interrupts
to enable tail-chaining of interrupts.

Vectored Interrupt
Programming

23 Young Won Lim
6/9/23

Nesting, Tail Chaining, and Late Arrival

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

● preemption
interrupts the context
by pushing registers onto a stack
and popping them later
to return to the interrupted context

● tail-chaining
allows additional handlers to be executed
without additional pushing and popping of registers.

consider a diagram
priority on the vertical axis
time on the horizontal.

Vectored Interrupt
Programming

24 Young Won Lim
6/9/23

Nesting (1)

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

foreground push ISR2 push ISR1 pop ISR2 pop foreground

IRQ1

IRQ2

Base CPU

ISR1

ISR2 ISR2

Core execution

Higher priority
● a thread
● two interrupt, (IRQ1 has a higher priority than IRQ2)

IRQ1 preempts IRQ2
IRQ2 has a lower priority

IRQ2 IRQ1

Vectored Interrupt
Programming

25 Young Won Lim
6/9/23

Nesting (2)

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

● at some point IRQ2 is requested and
the thread is immediately preempted
by pushing it onto the stack,
and start running the ISR2

foreground push ISR2 push ISR1 pop ISR2 pop foreground

IRQ1 preempts IRQ2

● When ISR2 completes,
we pop back to the thread.

● initially, the thread is running at base priority level.

● while ISR2 is active, IRQ1 requests
since IRQ1 has a higher priority than IRQ2,
ISR2 is also preempted
and pushed onto the stack,
and ISR1 is executed.

● when ISR1 completes, we pop back
to the next highest priority ISR2.

Vectored Interrupt
Programming

26 Young Won Lim
6/9/23

Nesting (3)

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

● The benefit
- distinct levels of priority
- always working on the most important task
- minimize the interrupt latency

for the highest priority interrupt at any time.

● The cost
- a few cycles performing housekeeping (push, pop)
 around the interrupts.

● creating multiple stack frames
increases the need for stack memory
consumes energy for several memory cycles

push push pop pop

Stack frame
For ISR1

Stack frame
For ISR2

increasing stack

Vectored Interrupt
Programming

27 Young Won Lim
6/9/23

Tail chaining (1)

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

foreground TC ISR2push ISR1 pop foreground

IRQ1

IRQ2

Base CPU

ISR1

ISR2

Core execution

Higher priority

pushpop ISR2 pop foreground

IRQ1 IRQ2

IRQ2 cannot preempt IRQ1
IRQ2 has lower / equal prioity

IRQ2 must wait
ISR2 is served after ISR1

Vectored Interrupt
Programming

28 Young Won Lim
6/9/23

push ISR1

Tail chaining (2)

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

● At the end of ISR1,
the NVIC then arbitrates to IRQ2 and runs ISR2
simply by reading the vector table again and
branching to that address.

● Only when ISR2 is completed
and there are no other pending interrupts,
the stack popped to return to the thread.

foreground TC ISR2push ISR1 pop foreground

pushpop ISR2 pop foreground

● Priority (IRQ2) ≤ Priority (IRQ1)
thus IRQ2 cannot preempt IRQ1.

● IRQ1 preempts the thread with a stack push.
● while ISR1 runs, IRQ2 occurs,

● IRQ2 remains pending
● ISR1 runs to completion

IRQ2 cannot preempt IRQ1
IRQ2 has lower / equal prioity

read the vector table again
branch to ISR2 address

IRQ1 IRQ2

IRQ2 must wait
ISR2 is served after ISR1

Vectored Interrupt
Programming

29 Young Won Lim
6/9/23

Tail chaining (3)

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

● At the end of ISR1, (tail chaining)
the NVIC then arbitrates to IRQ2 and runs ISR2
simply by reading the vector table again and
branching to that address.

foreground TC ISR2push ISR1 pop foreground

● Priority (IRQ2) ≤ Priority (IRQ1)
thus IRQ2 cannot preempt IRQ1.

● In this case, there was less control of interrupt latency.
● cannot preempt, must wait

● as any lower or equal priority interrupt
that occurred while another interrupt was active,
would have to wait for that active ISR to complete.

read the vector table again
branch to ISR2 address

IRQ1 IRQ2
IRQ2 cannot preempt IRQ1
IRQ2 has lower / equal prioity

IRQ2 must wait
ISR2 is served after ISR1

Vectored Interrupt
Programming

30 Young Won Lim
6/9/23

Tail chaining (4)

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

foreground TC ISR2push ISR1 pop foreground

pushpop ISR2 pop foreground

to perform the housekeeping between interrupts
● fewer cycles were spent
● less energy used
● less memory space used

these lead to
● better overall throughput
● lower power
● smaller memory requirements

IRQ1 IRQ2

read the vector table again
branch to ISR2 address

IRQ2 cannot preempt IRQ1
IRQ2 has lower / equal prioity

IRQ2 must wait
ISR2 is served after ISR1

Vectored Interrupt
Programming

31 Young Won Lim
6/9/23

Tail chaining (5)

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

● ARM recommends programming interrupts into
as few priority levels as needed,
and therefore, using tail-chaining as widely as possible
to take advantage of these benefits.

ISR4 ISR3 ISR2 ISR1

ISR4 ISR3 ISR2 ISR1

ISR4 ISR3 ISR2 ISR1 ISR2 ISR3 ISR4

Priority (IRQ4)
< Priority (IRQ3)
< Priority (IRQ2)
< Priority (IRQ1)
4 distinct priority levels

Priority (IRQ4)
= Priority (IRQ3)
= Priority (IRQ2)
= Priority (IRQ1)
the same priority level

IRQ4 IRQ3 IRQ2 IRQ1

IRQ4 IRQ3 IRQ2 IRQ1

Vectored Interrupt
Programming

32 Young Won Lim
6/9/23

Late arrival A (1)

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

foreground push ISR2TCISR1 pop foreground

IRQ1

IRQ2

Base CPU

ISR1

ISR2

Core execution

Higher priority

IRQ1 is handled even after
IRQ2’s entry sequence has started

push ISR1 pop foregroundpush pop

IRQ2 IRQ2IRQ1 IRQ1

ISR2

IRQ2 IRQ1

IRQ1 preempts IRQ2
IRQ2 has a lower priority

Exception entry

Vectored Interrupt
Programming

33 Young Won Lim
6/9/23

Late arrival A (2)

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

● a higher priority exception is handled
before a lower priority exception

● just after the entry sequence of
a lower priority exception has started

● the lower priority exception is handled
after the higher priority exception is completed

foreground push ISR2TCISR1 pop foregroundCore execution

IRQ2 IRQ2

push ISR1 pop foregroundpush pop

IRQ2 IRQ2IRQ1 IRQ1

ISR2

IRQ1

IRQ1 is handled even after
IRQ2’s entry sequence has started

IRQ1 preempts IRQ2
IRQ2 has a lower priority

Exception entry

Vectored Interrupt
Programming

34 Young Won Lim
6/9/23

Late arrival A (3)

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

foreground push ISR2TCISR1 pop foregroundCore execution

IRQ2 IRQ2

push ISR1 pop foregroundpush pop

IRQ2 IRQ2IRQ1 IRQ1

ISR2

● also, in the case of the late-arriving interrupt,
the processor might execute its ISR
after fewer cycles of interrupt latency.

● a lower priority IRQ2 interrupt causes
the interrupt entry sequence to start.

● the interrupted context has its registers
pushed onto the stack.

● while this is happening,
a higher priority IRQ1 interrupt occurs

● The processor still has to read
the vector table to get the new vector

● but does not need to restart the stack push,
so some cycles may be saved.

IRQ1

IRQ1 is handled even after
IRQ2’s entry sequence has started

IRQ1 preempts IRQ2
IRQ2 has a lower priority

Exception entry

Vectored Interrupt
Programming

35 Young Won Lim
6/9/23

Late arrival B (1-1)

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

foreground push ISR2TCISR1 pop foreground

IRQ1

IRQ2

Base CPU

ISR1

ISR2

Core execution

Higher priority

push ISR1 pop foregroundpush pop

IRQ2 IRQ2IRQ1 IRQ1

ISR2

IRQ1 IRQ2

IRQ2 cannot preempt IRQ1
IRQ2 has a lower priority

end of ISR1

IRQ2 must wait
ISR2 is served after ISR1

Vectored Interrupt
Programming

36 Young Won Lim
6/9/23

Late arrival B (1-2)

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

foreground push ISR2 TC ISR1 pop foreground

IRQ1

IRQ2

Base CPU

ISR1

ISR2

Core execution

Higher priority

push ISR1pop foregroundpush pop

IRQ2 IRQ2 IRQ1 IRQ1

ISR2

IRQ2 IRQ1

IRQ1 does not preempt IRQ2
IRQ2 has a lower priority

just at the end of ISR2

IRQ1 waits
ISR1 is served after ISR2

Vectored Interrupt
Programming

37 Young Won Lim
6/9/23

Late arrival B (2)

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

● A similar case arises
if a new interrupt ISR2 arrives
just before the end of an ISR1,

● Priority (IRQ2) < Priority (IRQ1)
● Priority (IRQ2) > any other pending or active ISR

● so that the newly detected interrupt
immediately becomes the next interrupt
to be handled in priority order.

foreground push ISR2TCISR1 pop foregroundCore execution

IRQ1

push ISR1 pop foregroundpush pop

IRQ1 IRQ2IRQ1 IRQ2

ISR2

IRQ2

● Again, the vector table needs to be read
to access the new ISR1,
but tail-chaining does not require
any stacking operation

● The interrupt latency could be
lower than normal.

end of ISR1

Vectored Interrupt
Programming

38 Young Won Lim
6/9/23

Late arrival C (1)

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

foreground push ISR2 TC ISR1 pop foreground

IRQ1

IRQ2

Base CPU

ISR1

ISR2

Core execution

Higher priority

IRQ2 IRQ2

push ISR2 ISR1pop foregroundpush pop

IRQ2 IRQ2 IRQ1 IRQ1

pop

IRQ1 occurs just
at the IRQ2’s exit sequence

IRQ1 does not preempt IRQ2
IRQ1 can abort IRQ2’s exit sequence

Vectored Interrupt
Programming

39 Young Won Lim
6/9/23

Late arrival C (2)

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

● In the case where
the exception exit has already started,
a similar situation arises.

● In the traditional model,
the stack pop would have to complete,
and then those same registers
would need to be pushed again
as part of the new exception handler.

pop push
Traditional Interrupt handling
Must complete stack cycle

pop TCARMv8-M processor may abandon
stack operation dynamically

push

push

IRQ1 IRQ2IRQ1

IRQ1 IRQ1

pop

pop

IRQ2

IRQ2

● In Cortex M,
the stack pop can simply be abandoned,
leaving the stack frame on the stack,
and only a tail-chain is then needed
to enter the new ISR.

Vectored Interrupt
Programming

40 Young Won Lim
6/9/23

Late arrival C (3)

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

● ARM7TDMI
● Load Multiple uninterruptible and hence
● The core must complete
● The POP and then full stack PUSH

pop push
Traditional Interrupt handling
Must complete stack cycle

pop TCARMv8-M processor may abandon
stack operation dynamically

push

push

IRQ1 IRQ2IRQ1

IRQ1 IRQ1

● ARMv8-M Processor
● POP may be abandoned early
● if another Interrupt arrives
● If POP is interrupted,
● the new handler can be fetched directly

pop

pop

IRQ2

IRQ2

Vectored Interrupt
Programming

41 Young Won Lim
6/9/23

Late arrival C (4)

https://www.coursera.org/lecture/armv8-m-architecture-fundamentals/nesting-tail-chaining-and-late-arriving-examples-FmA6E

IRQ1

IRQ2

Base CPU

Higher priority

pop TCARMv8-M processor may abandon
stack operation dynamically

push

IRQ1 IRQ1

pop push
Traditional Interrupt handling
Must complete stack cycle push

IRQ1 IRQ2IRQ1

Vectored Interrupt
Programming

42 Young Won Lim
6/9/23

Nesting, Tail Chaining, and Late Arrival (2)

https://stackoverflow.com/questions/52924118/interrupted-load-multiple-store-multiple-on-cortexm

● The ARM-Architecture Reference Manual mentions
three design options that can be implemented for CortexM.

● In the Instruction Set Attribute Register 2 (ID_ISAR2), bits[11:8]:

● None supported.
This means the LDM and STM instructions are
not interruptible. ARMv7-M reserved.

● LDM and STM instructions are restartable.
●

● LDM and STM instructions are continuable.

Vectored Interrupt
Programming

43 Young Won Lim
6/9/23

Late Arrival (1)

https://developer.arm.com/documentation/ka001190/latest

● A late-arriving interrupt is an interrupt which is
recognized after the processor has started
its exception entry procedure.

● If the late-arriving interrupt has
higher pre-empting priority
than the exception which the processor
has already started to handle,
then the existing stack push will continue
but the vector fetch will be re-started
using the vector for the late-arriving interrupt.

foreground push ISR2TCISR1 pop foregroundCore execution

IRQ2 IRQ2IRQ1

IRQ1 is handled even after
IRQ2’s entry sequence has started

IRQ1 preempts IRQ2
IRQ2 has a lower priority

Exception entry

after starting an exception entry,
other interrupts are requested

current stack operation – utilized

current vector fetch – not used
abandoned,
restarted

Late Arrival IRQ1
– pre-empting

Vectored Interrupt
Programming

44 Young Won Lim
6/9/23

Late Arrival (2)

https://developer.arm.com/documentation/ka001190/latest

● This guarantees that the interrupt
with the highest pre-empting priority
will be serviced first,
but in some circumstances
this results in some wasted cycles
from the original vector fetch
which was abandoned.

foreground push ISR2TCISR1 pop foregroundCore execution

IRQ2 IRQ2IRQ1

IRQ1 is handled even after
IRQ2’s entry sequence has started

IRQ1 preempts IRQ2
IRQ2 has a lower priority

Exception entry

after starting an exception entry,
other interrupts are requested

current stack operation – utilized

current vector fetch – not used
abandoned,
restarted

→ wasted cycles

push ISR1 pop foregroundpush pop

IRQ2 IRQ2IRQ1 IRQ1

ISR2

Late Arrival IRQ1
– pre-empting

Vectored Interrupt
Programming

45 Young Won Lim
6/9/23

Late Arrival (3)

https://developer.arm.com/documentation/ka001190/latest

● If the late-arriving interrupt
has only equal priority to (or lower priority than)
the exception which the processor
has already started to handle,
then the late-arriving interrupt
will remain pending until
after the exception handler
for the current exception has run

foreground push ISR2TCISR1 pop foregroundCore execution

IRQ1 IRQ2

push ISR1 pop foregroundpush pop

IRQ1 IRQ2IRQ1 IRQ2

ISR2

IRQ2

Pending IRQ2
Wait

IRQ2 cannot preempts IRQ1
IRQ2 has a lower priority

Exception entry

Late Arrival IRQ2
– pending

Vectored Interrupt
Programming

46 Young Won Lim
6/9/23

Late Arrival (4)

https://developer.arm.com/documentation/ka001190/latest

● This is because the late-arriving behaviour
is classed as a pre-empting behaviour, and
is therefore dependent only
upon the pre-empting priority levels
of the interrupts and exceptions.

foreground push ISR2TCISR1 pop foregroundCore execution

IRQ2 IRQ2IRQ1

IRQ1 is handled even after
IRQ2’s entry sequence has started

IRQ1 preempts IRQ2
IRQ2 has a lower priority

Exception entry

foreground push ISR2TCISR1 pop foregroundCore execution

IRQ1 IRQ2IRQ2

Pending IRQ2
Wait

IRQ2 cannot preempts IRQ1
IRQ2 has a lower priority

Exception entry

Late Arrival IRQ1
– pre-empting

Late Arrival IRQ2
– pending

Vectored Interrupt
Programming

47 Young Won Lim
6/9/23

Late Arrival (5)

https://developer.arm.com/documentation/ka001190/latest

● Because the stack push has already been initiated,
the interrupt latency

(meaning the number of cycles
between the arrival of the interrupt request and
execution of the first instruction of its handler)

might be less than the standard interrupt latency
for the particular processor and system.

push ISR1 pop foregroundpush pop

IRQ2 IRQ2IRQ1 IRQ1

ISR2

push ISR1 pop foregroundpush pop

IRQ1 IRQ2IRQ1 IRQ2

ISR2

Late Arrival IRQ1
– pre-empting

Late Arrival IRQ2
– pending

Standard Stack Operations

Vectored Interrupt
Programming

48 Young Won Lim
6/9/23

Late Arrival (6)

https://developer.arm.com/documentation/ka001190/latest

● Some (but not all) Cortex-M processors provide
an implementation-time option for the chip designer
to specify a minimum value for the interrupt latency,
reducing or removing the uncertainty in interrupt latency
by adding stall cycles in such cases.

● Documentation of the specific chip
should provide details of this setting, if applicable.

Interrupt latency > min value

min value
: set at the implementation time

add stall cycles
to small interrupt latency
to meet the min value

Vectored Interrupt
Programming

49 Young Won Lim
6/9/23

Single copy atomicity in ARM (1)

https://stackoverflow.com/questions/24010989/arm-single-copy-atomicity

● a read or write operation is single-copy atomic
if the following conditions are both true:

● after any number of write operations to a memory location,
the value of the memory location is
the value written by one of the write operations.

● It is impossible for part of the value of the memory location
to come from one write operation
and another part of the value to come
from a different write operation

Vectored Interrupt
Programming

50 Young Won Lim
6/9/23

Single copy atomicity in ARM (2)

https://stackoverflow.com/questions/24010989/arm-single-copy-atomicity

● When a read operation and a write operation
are made to the same memory location,
the value obtained by the read operation is one of:

● the value of the memory location
before the write operation

● the value of the memory location
after the write operation.

● It is never the case that
the value of the read operation is
partly the value of the memory location
before the write operation
and partly the value of the memory location
after the write operation.

Vectored Interrupt
Programming

51 Young Won Lim
6/9/23

Single copy atomicity in ARM (3)

https://stackoverflow.com/questions/24010989/arm-single-copy-atomicity

● So your understanding is right - the defining point of a
single-copy atomic operation is that at any given time you
can only ever see either all of it, or none of it.

●

● There is a case in v7 whereby (if I'm interpreting it right)
two normally single-copy atomic stores that occur to the
same location at the same time but with different sizes
break any guarantee of atomicity, so in theory you could
observe some unexpected mix of bytes there - this looks
to have been removed in v8.

Vectored Interrupt
Programming

52 Young Won Lim
6/9/23

Interruptible LDM, STM (1)

https://stackoverflow.com/questions/9857760/can-an-arm-interrupt-occur-in-mid-instruction

● the load multiple (LDM) instructions are
explicitly not atomic.

● section A3.5.3 of the ARM V7C
architecture reference manual.

● LDM, LDC, LDC2, LDRD, STM, STC, STC2, STRD,
PUSH, POP, RFE, SRS, VLDM, VLDR, VSTM, and VSTR
instructions

● are executed as a sequence of
word-aligned word accesses.

● each 32-bit word access is guaranteed
to be single-copy atomic.

● the architecture does not require
subsequences of two or more word accesses
from the sequence to be single-copy atomic.

●

Vectored Interrupt
Programming

53 Young Won Lim
6/9/23

Interruptible LDM, STM (2)

https://stackoverflow.com/questions/9857760/can-an-arm-interrupt-occur-in-mid-instruction

● the LDM/STM instructions
can be aborted by an interrupt
and restarted from the beginning on interrupt return

● LDM and STM instructions
can always be interrupted by a data abort,
so they're non atomic in that sense.

● Otherwise, the ARMv7-A architecture
does its best to help you out.

● for interrupts, they can only be interrupted
● if low interrupt latency is enabled,
● AND normal memory is being accessed.

● So at the very least, you won't get
repeated accesses to device memory.

● You don't want to do anything
that expects atomic read/writes of normal memory
though.

Vectored Interrupt
Programming

54 Young Won Lim
6/9/23

Interruptible LDM, STM (3)

https://stackoverflow.com/questions/9857760/can-an-arm-interrupt-occur-in-mid-instruction

● On v7-M, LDM and STM can be interrupted at any time
(see section B1.5.10 of the ARMv7-M Architecture
Reference Manual). It's implementation defined whether or
not the instruction is restarted from the beginning of the list
of loads/stores, or whether it's restarted from where it left
off. As the ARM says:

●

● The ARMv7-M architecture supports continuation of, or
restarting from the beginning, an abandoned LDM or STM
instruction as outlined below. Where an LDM or STM is
abandoned and restarted (ICI bits are not supported), the
instructions should not be used with volatile memory.

●

● In other words, don't rely on LDM or STM being atomic if
you're trying to write portable code.

Vectored Interrupt
Programming

55 Young Won Lim
6/9/23

Interruptible LDM, STM (4)

https://stackoverflow.com/questions/52924118/interrupted-load-multiple-store-multiple-on-cortexm

● If an STM or LDM instruction is interrupted,
EPSR is set to indicate the point
from which the execution can continue,
and then exception entry is triggered.

● the stacked PSR value that contains this information,
just as it contains the Thumb bit from the interrupted code.

● If your new context has
zero in the ISI bits of the stacked PSR,
you should not see a usage fault exception
for the reasons you give.

Vectored Interrupt
Programming

56 Young Won Lim
6/9/23

Interruptible LDM, STM (5)

https://developer.arm.com/documentation/dui0552/a/the-cortex-m3-processor/programmers-model/core-registers

● Application Program Status Register (APSR)

● The APSR contains the current state of the condition
flags from previous instruction executions.

● Interrupt Program Status Register (IPSR)

● The IPSR contains the exception type number of the
current Interrupt Service Routine (ISR)

● Execution Program Status Register (EPSR)

● The EPSR contains the
● thuicoimb state bit, and
● the execution state bits

● for either the:
● If-Then (IT) instruction
● Interruptible-Continuable Instruction (ICI) field for an

interrupted load multiple or store multiple instruction.

Vectored Interrupt
Programming

57 Young Won Lim
6/9/23

Interruptible LDM, STM (6)

https://stackoverflow.com/questions/52924118/interrupted-load-multiple-store-multiple-on-cortexm

● The ICI/IT field is part of EPSR, not IPSR,
not that it makes a huge amount of difference
if you're interacting with xPSR.

● If an STM or LDM instruction is interrupted,
EPSR is
● set to indicate the point

from which the execution can continue, and then
● exception entry is triggered.

● It is therefore the stacked PSR value
that contains this information,

just as it contains the Thumb bit
from the interrupted code.

● If your new context has zero
in the ISI bits of the stacked PSR,
you should not see a usage fault exception for the reasons
you give. (In the absence of any code, I can't really be
more specific than this.)

Vectored Interrupt
Programming

58 Young Won Lim
6/9/23

Interruptible LDM, STM (7)

https://stackoverflow.com/questions/52924118/interrupted-load-multiple-store-multiple-on-cortexm

● If LDM and STM are implemented
as restartable or continuable,
then no, the stack will not be corrupted by this process.
(That would be a nightmare!)

● If LDM and STM are restartable
then the stack pointer is simply reset to the value
it had at the start of the LDM/STM
and the instruction is executed anew;

● if they are continuable
then the stack pointer is not modified
but a partial STM/LDM is performed
to complete the instruction.

Vectored Interrupt
Programming

59 Young Won Lim
6/9/23

Interruptible LDM, STM (8)

https://stackoverflow.com/questions/52924118/interrupted-load-multiple-store-multiple-on-cortexm

● You don't mention exactly how you're achieving a context switch,
but I assume you are manually pushing r4-r11 to the process stack,
then saving the PSP somewhere
and updating it to point to the new context on a different stack,
before popping r4-r11 and triggering an exception return
- that's certainly the usual way to go about it.

Vectored Interrupt
Programming

60 Young Won Lim
6/9/23

Nest VIC (1)

https://www.motioncontroltips.com/what-is-nested-vector-interrupt-control-nvic/

● In a microcontroller, such as those at the heart of industrial motion controllers,
interrupts serve as a way to immediately divert the CPU
from its current task to another, more important task.

● An interrupt can be triggered
internally from the microcontroller (MCU) or
externally, by a peripheral.

● the interrupt alerts the CPU to an occurrence
such as a time-based event
● a specified amount of time has elapsed or
● a specific time is reached, for example,

● a change of state, or
● the start or end of a process.

Vectored Interrupt
Programming

61 Young Won Lim
6/9/23

Nest VIC (2-1)

https://www.motioncontroltips.com/what-is-nested-vector-interrupt-control-nvic/

● Another method of monitoring a timed event or change of state
is referred to as “polling.”

● With polling, the status of a timer or state change
is periodically checked.

● The downsides of polling are
the risk of excessive latency (delay)
between the actual change and its detection,
the possibility of missing a change altogether,
and the increased processing time and power it requires.

●

●

●

Vectored Interrupt
Programming

62 Young Won Lim
6/9/23

Nest VIC (2-2)

https://www.motioncontroltips.com/what-is-nested-vector-interrupt-control-nvic/

● When an interrupt occurs,
an interrupt signal is generated,
which causes the CPU to stop its current operation,
save its current state,
and begin the processing program
— referred to as an interrupt service routine (ISR) or interrupt handler
— associated with the interrupt.

●

● When the interrupt processing is complete,
● the CPU restores its previous state and resumes where it left off.

Vectored Interrupt
Programming

63 Young Won Lim
6/9/23

Nest VIC (3)

https://www.motioncontroltips.com/what-is-nested-vector-interrupt-control-nvic/

● Nested vector interrupt control (NVIC) is
a method of prioritizing interrupts,
improving the MCU’s performance and
reducing interrupt latency.

● NVIC also provides implementation schemes
for handling interrupts that occur
when other interrupts are being executed or
when the CPU is in the process of restoring its previous state
and resuming its suspended process.

●

● The term “nested” refers to the fact that in NVIC,
a number of interrupts can be defined
(up to several hundred in some processors), and
each interrupt is assigned a priority,
with “0” being the highest priority.

● In addition, the most critical interrupt
can be made non-maskable,
meaning it cannot be disabled (masked).

Vectored Interrupt
Programming

64 Young Won Lim
6/9/23

Nest VIC (4)

https://www.motioncontroltips.com/what-is-nested-vector-interrupt-control-nvic/

● One function of NVIC is to ensure
that higher priority interrupts are completed
before lower-priority interrupts,
even if the lower-priority interrupt is triggered first.

● For example, if a lower-priority interrupt is
being registered* or executed
and a higher-priority interrupt occurs,
the CPU will stop the lower-priority interrupt
and process the higher-priority one first.

●

● * A register is a special, dedicated memory circuit
within the CPU that can be written and read
much more quickly than regular memory.

●

● The register is used to store information
such as calculation results,
CPU execution states, or
other critical program information.

Vectored Interrupt
Programming

65 Young Won Lim
6/9/23

Nest VIC (5)

https://www.motioncontroltips.com/what-is-nested-vector-interrupt-control-nvic/

● Similarly, a handling scheme referred to as “tail-chaining”
specifies that if an interrupt is pending
while the ISR for another, higher-priority
another interrupt completes,
the processor will immediately begin the ISR
for the next interrupt,
without restoring its previous state.

●

● The term “vector” in nested vector interrupt control
refers to the way in which the CPU finds the program,
or ISR, to be executed when an interrupt occurs.

●

●

Vectored Interrupt
Programming

66 Young Won Lim
6/9/23

Nest VIC (6)

https://www.motioncontroltips.com/what-is-nested-vector-interrupt-control-nvic/

● Nested vector interrupt control uses a vector table
that contains the addresses of the ISRs for each interrupt.

● When an interrupt is triggered,
the processor gets the address from the vector table.

●

● The prioritization and handling schemes
of nested vector interrupt control
reduce the latency and overhead
that interrupts typically introduce and

● ensure low power consumption,
even with high interrupt loading on the controller.

●

Vectored Interrupt
Programming

67 Young Won Lim
6/9/23

Single VIC diagram in STR91x

https://www.st.com/resource/en/application_note/an2593-str91x-interrupt-management-stmicroelectronics.pdf

Interrupt
Request

Logic

FIQ Logic

IRQ Priority
Logic

FIQ status reg

IRQ status reg

IRQ address reg
 Vectored Int 0 source
 Vectored Int 0 ISR address
 Vectored Int 1 source
 Vectored Int 1 ISR address

 Vectored Int 15 source
 Vectored Int 15 ISR address

FIQ to CPU

IRQ to CPU

Int line 0

Int line 1

Int line 15

FIQ

IRQ

STR91x vectored interrupt controller

16 interrupt lines

STR91x

Vectored Interrupt
Programming

68 Young Won Lim
6/9/23

VIC1

Single VIC diagram in STR91x

https://www.st.com/resource/en/application_note/an2593-str91x-interrupt-management-stmicroelectronics.pdf

STR91x vectored interrupt controller

VIC0

VIC0 Int line 0

VIC0 Int line 1

VIC0 Int line 15

FIQ to CPU

IRQ to CPU Daisy
Chain

VIC1 Int line 0

VIC1 Int line 1

VIC1 Int line 15

FIQ to CPU

IRQ to CPU

STR91x

Vectored Interrupt
Programming

69 Young Won Lim
6/9/23

VIC interrupt priority level in STR91x

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

Interrupt Configured Priority
VIC0 FIQ / VIC1 FIQ NA
VIC0 IRQ 0
VIC0 IRQ 1

VIC0 IRQ 15
VIC1 IRQ 0
VIC1 IRQ 1

VIC1 IRQ 15

 Vectored Int 0 source
 Vectored Int 0 ISR address

 Vectored Int 1 source
 Vectored Int 1 ISR address

 Vectored Int 15 source
 Vectored Int 15 ISR address

VIC1 Int line 0

VIC1 Int line 1

VIC1 Int line 15

VIC0 Int line 0

VIC0 Int line 1

VIC0 Int line 15

Highest priority

Lowest priority

STR91x

Vectored Interrupt
Programming

70 Young Won Lim
6/9/23

FIQ interrupt management in STR91x

https://embetronicx.com/tutorials/microcontrollers/stm32/vectored-interrupt-controller-nested-vectored-interrupt-controller-vic-nvic/

● for FIQ there are no priority levels.
● when an enabled FIQ interrupt occurs,

the VIC signals it directly to the ARM core
by asserting the FIQ interrupt line.

● then the ARM core switches to FIQ mode,
and goes to address 0x1C
where the FIQ interrupt handler resides

no priority levels

directly assert FIQ interrupt line

FIQ mode

FIQ interrupt handler at 0x1C

Highest priority

Lowest priority

Interrupt Configured Priority
VIC0 FIQ / VIC1 FIQ NA
VIC0 IRQ 0
VIC0 IRQ 1

VIC0 IRQ 15
VIC1 IRQ 0
VIC1 IRQ 1

VIC1 IRQ 15

STR91x

Vectored Interrupt
Programming

71 Young Won Lim
6/9/23

FIQ interrupt management in STR91x

https://embetronicx.com/tutorials/microcontrollers/stm32/vectored-interrupt-controller-nested-vectored-interrupt-controller-vic-nvic/

● normally in order to minimize FIQ interrupt latency
only one interrupt should be configured as FIQ.

● But it is possible to configure several interrupts as FIQ,
and in this case the application software
must read the FIQ status registers of both VIC0 and VIC1
in order to determine the FIQ interrupt source

● when the interrupt flag is cleared
in the peripheral(s) that generated the interrupt,
the VIC then will stop asserting the FIQ interrupt to CPU
and the flag will be cleared in the VIC FIQ status register

one interrupt source

multiple interrupt sources

read the FIQ status reg

determine the FIQ source

interrupt flag in the peripherals

interrupt flag in the VIC status reg

FIQ Logic

FIQ status reg

FIQ to CPU

STR91x

Vectored Interrupt
Programming

72 Young Won Lim
6/9/23

IRQ interrupt management in STR91x

https://embetronicx.com/tutorials/microcontrollers/stm32/vectored-interrupt-controller-nested-vectored-interrupt-controller-vic-nvic/

1. Vectored IRQ handling
2. Simple (Non vectored) IRQ handling

Vectored handling ensures the best interrupt latency

the hardware priority management of the VIC
 - small latency

the software priority management of the VIC
 - simple handling

STR91x

Vectored Interrupt
Programming

73 Young Won Lim
6/9/23

IRQ interrupt management in STR91x

https://embetronicx.com/tutorials/microcontrollers/stm32/vectored-interrupt-controller-nested-vectored-interrupt-controller-vic-nvic/

Although a software priority management
increases the interrupt latency,
it can be useful in special cases
where a VIC1 interrupt has to be configured
with a higher priority level than a VIC0 interrupt,

- this is not possible when using
the hardware priority management
due to the hardwired priority between VIC0 and VIC1

VIC1

VIC0

Daisy
Chain

VIC0:
Higher priority

Interrupt Configured Priority
VIC0 FIQ / VIC1 FIQ NA
VIC0 IRQ 0
VIC0 IRQ 1

VIC0 IRQ 15
VIC1 IRQ 0
VIC1 IRQ 1

VIC1 IRQ 15

STR91x

Vectored Interrupt
Programming

74 Young Won Lim
6/9/23

Vectored handling of IRQ in STR91x (1)

https://embetronicx.com/tutorials/microcontrollers/stm32/vectored-interrupt-controller-nested-vectored-interrupt-controller-vic-nvic/

When an IRQ interrupt from VIC0 or from VIC1 occurs,

● If the interrupt has a lower priority
than the current interrupt being processed,
then it remains pending in the VIC
until it becomes the higher priority interrupt.

● If the interrupt has the highest priority level
then the VIC0 Vector Address register VIC0_VAR
will be loaded with the ISR address
and an IRQ interrupt will be signalled to CPU.

Note: The VIC0_VAR will be loaded
with the ISR address of the interrupt independently
from the the interrupt source either from VIC0 or from VIC1.

 Vectored Int 0 source
 Vectored Int 0 ISR address
 Vectored Int 1 source
 Vectored Int 1 ISR address

 Vectored Int 15 source
 Vectored Int 15 ISR address

IRQ Priority
Logic

IRQ status reg

IRQ address reg

IRQ
to CPU

STR91x

Vectored Interrupt
Programming

75 Young Won Lim
6/9/23

Vectored handling of IRQ in STR91x (2)

https://embetronicx.com/tutorials/microcontrollers/stm32/vectored-interrupt-controller-nested-vectored-interrupt-controller-vic-nvic/

1. In the IRQ interrupt handler, the software should
read the VIC0_VAR (vector address register)
to determine the ISR address and jump to it.

2. If the interrupt originates from VIC0,
then reading the VIC0_VAR in step 1
will update the priority logic of VIC0:
so interrupts with the same or lower priority levels
will be masked by the VIC.

But if an interrupt originates from VIC1
then you must also read the VIC1_VAR
in order to update the priority logic in VIC1.

 Vectored Int 0 source
 Vectored Int 0 ISR address

 Vectored Int 1 source
 Vectored Int 1 ISR address

 Vectored Int 15 source
 Vectored Int 15 ISR address

IRQ Priority
Logic

IRQ status reg

IRQ address reg

IRQ
to CPU

STR91x

Vectored Interrupt
Programming

76 Young Won Lim
6/9/23

Vectored handling of IRQ in STR91x (3)

https://embetronicx.com/tutorials/microcontrollers/stm32/vectored-interrupt-controller-nested-vectored-interrupt-controller-vic-nvic/

3. After handling the interrupt
including the clearing of the interrupt flags,
you must write any value in the VIC0_VAR
if the interrupt originates from VIC0,
or in the VIC1_VAR
if the interrupt is from VIC1,
in order to indicate to the VIC
that interrupt processing has finished,
so it can update the priority logic:
then a same or lower level interrupt
will be able to interrupt the CPU

STR91x

Vectored Interrupt
Programming

77 Young Won Lim
6/9/23

Non-vectored handling of IRQ in STR91x (1)

https://embetronicx.com/tutorials/microcontrollers/stm32/vectored-interrupt-controller-nested-vectored-interrupt-controller-vic-nvic/

Non-vector handling method of IRQ interrupts
does not use the VIC hardware priority management,

so this means you do not have to read or write
the VIC0_VAR or VIC1_VAR registers
to update the hardware priority logic.

This method can be used
when there is a need to give higher priority
to a VIC1 interrupt over a VIC0 interrupt.

STR91x

Vectored Interrupt
Programming

78 Young Won Lim
6/9/23

Non-vectored handling of IRQ in STR91x (2)

https://embetronicx.com/tutorials/microcontrollers/stm32/vectored-interrupt-controller-nested-vectored-interrupt-controller-vic-nvic/

The flow for simple (non vectored) IRQ handling is the following:

1. An IRQ interrupt occurs.
2. Branch to the interrupt handler.
3. Read the VICs IRQ Status registers

to determine the source that generated the interrupt,
and prioritize the interrupts if there are multiple active interrupt sources.

4. Branch to the corresponding ISR.
5. Execute the ISR.
6. Clear the interrupt. If a software interrupt generated the request,

you must write to the VICx_SWINTCR register.
7. Check the IRQ Status registers of both VICs

to ensure that no other interrupt is active.
If there is an active request, go to Step 4.

8. Return from the interrupt.

STR91x

Vectored Interrupt
Programming

79 Young Won Lim
6/9/23

Vectored Interrupt Controller

https://embetronicx.com/tutorials/microcontrollers/stm32/vectored-interrupt-controller-nested-vectored-interrupt-controller-vic-nvic/

 the sequence for the vectored interrupt flow:

● VICVectAddr Register
read to branch to the ISR (interrupt service routine),
which is currently active.
write to clear the respective interrupt

● VICSoftIntClear Register
to clear the software interrupt request triggered by VICSoftInt

lpc214x

Vectored Interrupt
Programming

80 Young Won Lim
6/9/23

Vectored Interrupt Controller

https://embetronicx.com/tutorials/microcontrollers/stm32/vectored-interrupt-controller-nested-vectored-interrupt-controller-vic-nvic/

 the sequence for the vectored interrupt flow:

● When an interrupt occurs, The ARM processor branches
to either the IRQ or FIQ interrupt vector.

● If the interrupt is an IRQ, read the VICVectAddr Register and
branch to the ISR (interrupt service routine).

● Stack the workspace so that you can re-enable IRQ interrupts.
● Enable the IRQ interrupts so that a higher priority can be serviced.
● Execute the Interrupt Service Routine (ISR).
● Clear the requesting interrupt in the peripheral,

or write to the VICSoftIntClear Register
if the request was generated by a software interrupt.

● Disable the interrupts and restore the workspace.
● Write to the VICVectAddr Register.

This clears the respective interrupt in the internal interrupt priority hardware.
● Return from the interrupt. This re-enables the interrupts.

lpc214x

Vectored Interrupt
Programming

81 Young Won Lim
6/9/23

Interrupt Vector Table with Priority

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

Interrupt Source

 VicVecCntl0 VicVecAddr0

 VicVecCntl1 VicVecAddr1

 VicVecCntl2 VicVecAddr2

 VicVecCntl3 VicVecAddr3

 VicVecCntl4 VicVecAddr4

 VicVecCntl5 VicVecAddr5

 VicVecCntl6 VicVecAddr6

 VicVecCntl7 VicVecAddr7

 VicVecCntl8 VicVecAddr8

 VicVecCntl9 VicVecAddr9

 VicVecCntl10 VicVecAddr10

 VicVecCntl11 VicVecAddr11

 VicVecCntl12 VicVecAddr12

 VicVecCntl13 VicVecAddr13

 VicVecCntl14 VicVecAddr14

 VicVecCntl15 VicVecAddr15

Service Routine

IRQ source 0

IRQ source 1

IRQ source 2

IRQ source 3

IRQ source 4

IRQ source 5

IRQ source 6

IRQ source 7

IRQ source 8

IRQ source 9

IRQ source 10

IRQ source 11

IRQ source 12

IRQ source 13

IRQ source 14

IRQ source 15

ISR 0 address

ISR 1 address

ISR 2 address

ISR 3 address

ISR 4 address

ISR 5 address

ISR 6 address

ISR 7 address

ISR 8 address

ISR 9 address

ISR 10 address

ISR 11 address

ISR 12 address

ISR 13 address

ISR 14 address

ISR 15 address

Highest priority

Lowest priority

lpc214x

Vectored Interrupt
Programming

82 Young Won Lim
6/9/23

Vectored meaning (2)

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

the ‘magnitude‘ : the interrupt source ID VicVecCntl0~15

the ‘source’ of the currently pending IRQ

the ‘direction’ : the corresponding ISR VicVecAddr0~15

vectored IRQ ‘points to' its own unique ISR

Non-Vectored IRQs does not point to a unique ISR
instead, default / common ISR

In LPC214x, VICDefVectAddr register is used
The user must assign the address of the default ISR

lpc214x

Vectored Interrupt
Programming

83 Young Won Lim
6/9/23

Vectored meaning (3)

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

VIC (in ARM CPUs & MCUs), as per its design,
can take 32 interrupt request inputs
but only 16 requests can be assigned VicVecCntl0~15 VicVecAddr0~15
to Vectored IRQ interrupts
in its LCP2148 ARM7 Implementation.

We are given a set of 16 vectored IRQ slots
to which we can assign any of the 22 requests
that are available in LPC2148.

The slot numbering goes from 0 to 15
with slot no. 0 having highest priority and
slot no. 15 having lowest priority.

lpc214x

Vectored Interrupt
Programming

84 Young Won Lim
6/9/23

Vectored meaning (5)

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

Bit 0 : WDT
Bit 1 : N/A
Bit 2 : ARMC0
Bit 3 : ARMC1
Bit 4 : TIMR0
Bit 5 : TIMR1
Bit 6 : UART0
Bit 7 : UART1
Bit 8 : PWM
Bit 9 : I2C0
Bit10 : I2C0

Bit11 : SPI1/SSP
Bit12 : PLL
Bit13 : RTC
Bit14 : EINT0
Bit15 : EINT1
Bit16 : EINT2
Bit17 : EINT3
Bit18 : AD0
Bit19 : I2C1
Bit20 : BOD
Bit21 : AD1
Bit22 : USB

Interrupt Source Encoding

22 requests

lpc214x

Vectored Interrupt
Programming

85 Young Won Lim
6/9/23

Vectored meaning (4)

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

For example if you working with 2 interrupt sources
UART0 and TIMER0.

Now if you want to give TIMER0 a higher priority than UART0
then assign TIMER0 interrupt a lower number slot than UART0 .

eg. TIMER0 to slot 0 and UART0 to slot 1 or
TIMER0 to slot 4 and UART to slot 9 and so on.

The number of the slot doesn’t matter
as long TIMER0 slot is lower than UART0 slot.

lpc214x

Vectored Interrupt
Programming

86 Young Won Lim
6/9/23

Defining the ISR for Timers

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

 VicVecCntl0

 VicVecAddr0

 VicVecCntl1

 VicVecAddr1

 VicVecCntl15

 VicVecAddr15

slot0

slot1

slot15

TIMER0 Device

TIMER0 ISR

SPIO Device

SPIO ISR

UART0, PWM Device

Default ISR

 VicDefVectAddr

VIC IRQ Slots Vectored IRQs

Non-Vectored IRQs

Interrupt Source

Service Routine

Interrupt Source

Service Routine

Service Routine

lpc214x

Vectored Interrupt
Programming

87 Young Won Lim
6/9/23

Vectored meaning (5)

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

VIC has plenty of registers.

Most of the registers that are used
to configure interrupts or read status

each bit corresponds to a particular interrupt source
and this correspondence is same for all of these registers.

For example
bit 0 in these registers corresponds to Watch dog timer interrupt,
bit 4 corresponds to TIMER0 interrupt ,
bit 6 corresponds to UART0 interrupt .. and so on.

lpc214x

Vectored Interrupt
Programming

88 Young Won Lim
6/9/23

Vectored meaning (5)

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

1) VICIntSelect (R/W) : used to select an interrupt as IRQ or as FIQ
2) VICIntEnable (R/W): used to enable interrupts
3) VICIntEnClr (R/W) : used to disable interrupts
4) VICIRQStatus (R) : used for reading the current status of the enabled IRQ interrupts.
5) VICFIQStatus (R) : used for reading the current status of the enabled FIQ interrupts
6) VICSoftInt : used to generate interrupts using software i.e the program itself
7) VICSoftIntClear : used to clear the interrupt request that was triggered(forced) using VICSoftInt.
8) VICVectCntl0 ~15 : used to assign a particular interrupt source to a particular slot.
9) VICVectAddr0 ~15 : store the address of the function that must be called when an interrupt occurs
10) VICVectAddr : holds the address of the associated ISR i.e the one which is currently active.
11) VICDefVectAddr : stores the address of the “default/common” ISR for a Non-Vectored IRQ occurs

lpc214x

Vectored Interrupt
Programming

89 Young Won Lim
6/9/23

VICVectCntl Registers

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

WDT : 0
N/A : 1
ARMC0 : 2
ARMC1 : 3
TIMR0 : 4
TIMR1 : 5
UART0 : 6
UART1 : 7
PWM : 8
I2C0 : 9
I2C0 : 10

SPI1/SSP : 11
PLL : 12
RTC : 13
EINT0 : 14
EINT1 : 15
EINT2 : 16
EINT3 : 17
AD0 : 18
I2C1 : 19
BOD : 20
AD1 : 21
USB : 22

E Int source

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VICVectCntl0 - the highest priority VICVectCntl15 - the lowest priority

Bit4 ~ Bit0 contain the number of the interrupt request which is assigned to this slot.

Bit5 is used to enable the vectored IRQ slot by writing a 1

VICVectCntl0 ~ 15 : used to assign a particular interrupt source to a particular slot.

lpc214x

Vectored Interrupt
Programming

90 Young Won Lim
6/9/23

Defining the ISR for Timers

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

defining the ISR

explicitly tell the compiler that the function
is not a normal function but an ISR

a special keyword called “__irq”
: a function qualifier.

use this keyword with the function definition

an example of defining an ISR in Keil :

__irq void myISR (void)
{
 ...
}

// or equivalently

void myISR (void) __irq
{
 ...
}

lpc214x

Vectored Interrupt
Programming

91 Young Won Lim
6/9/23

Setup the interrupt for Timers

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

for ARM based microcontrollers like lpc2148.

in order to assign TIMER0 IRQ and ISR to slot X.

Assign TIMER0 Interrupt to Slot number 0

// Enable TIMER0 IRQ
// 5th bit must 1 to enable the slot
// Vectored-IRQ for TIMER0 has been configured

VICIntEnable |= (1<<4) ;
VICVectCntl0 = (1<<5) | 4 ;
VICVectAddr0 = (unsigned) myISR;

2) VICIntEnable (R/W) : used to enable interrupts
8) VICVectCntl0 ~15 : used to assign a particular interrupt source to a particular slot.
9) VICVectAddr0 ~15 : store the address of the function that must be called when an interrupt occurs

Bit 0 : WDT
Bit 1 : N/A
Bit 2 : ARMC0
Bit 3 : ARMC1
Bit 4 : TIMR0
Bit 5 : TIMR1
Bit 6 : UART0
Bit 7 : UART1
Bit 8 : PWM
Bit 9 : I2C0
Bit10 : I2C0

lpc214x

Vectored Interrupt
Programming

92 Young Won Lim
6/9/23

T0IR, U0IIR

https://www.keil.com/dd/docs/datashts/philips/user_manual_lpc214x.pdf

IR (Interrupt Register)
The IR can be written to clear interrupts.
The IR can be read to identify
which of eight possible interrupt sources are pending

T0IR (TIMER0 Interrupt Register)
4 bits for the timer match interrupts
4 bits for the timer capture interrupts

The high bit in the IR signifies that
an interrupt is generated

Writing a logic one
to the corresponding IR bit
will reset the interrupt.

Writing a zero has no effect.

U0IIR (UART0 Interrupt Identification Register)
The U0IIR provides a status code that denotes
the priority and source of a pending interrupt.

The interrupts are frozen during an U0IIR access.

If an interrupt occurs during an U0IIR access,
the interrupt is recorded for the next U0IIR access

lpc214x

Vectored Interrupt
Programming

93 Young Won Lim
6/9/23

T0IR (T0 Timer Interrupt Register)

https://www.keil.com/dd/docs/datashts/philips/user_manual_lpc214x.pdfhttps://www.keil.com/dd/docs/datashts/philips/user_manual_lpc214x.pdf

The IR can be read to identify which of
8 possible interrupt sources are pending.

The IR can be written to clear interrupts.

TIMER/ COUNTER0 T0IR
TIMER/ COUNTER1 T1IR

The Interrupt Register consists of
four bits for the match interrupts and
four bits for the capture interrupts.

If an interrupt is generated
then the corresponding bit in the IR will be high.
Otherwise, the bit will be low.

Writing a logic one to the corresponding IR bit
will reset the interrupt.
Writing a zero has no effect

Bit 0 : MR0 Interrupt flag for match channel 0
Bit 1 : MR1 Interrupt flag for match channel 1
Bit 2 : MR2 Interrupt flag for match channel 2
Bit 3 : MR3 Interrupt flag for match channel 3
Bit 4 : CR0 Interrupt flag for capture channel 0 event
Bit 5 : CR1 Interrupt flag for capture channel 1 event
Bit 6 : CR2 Interrupt flag for capture channel 2 event
Bit 7 : CR3 Interrupt flag for capture channel 3 event

A high bit signifies the interrupt is generated

#define MR0I_FLAG (1<<0) // 0x00000001
#define MR1I_FLAG (1<<1) // 0x00000002
#define MR2I_FLAG (1<<2) // 0x00000004

regVal = T0IR;

if(T0IR & MR0I_FLAG) {
* * * MR0 match * * *

} else if (T0IR & MR1I_FLAG) {
* * * MR1 match * * *

} else if (T0IR & MR2I_FLAG) {
* * * MR2 match * * *

}

T0IR = regval;

lpc214x

Vectored Interrupt
Programming

94 Young Won Lim
6/9/23

U0IIR (UART0 Interrupt Identification Register)

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

Note than UART0’s Interrupt Register (U0IIR)
is a lot different than TIMER0’s (T0IR).

The first Bit UART0[0] in U0IIR indicates
whether any interrupt is pending or not
and its Active LOW!

The next 3 bits UART0[3:1] give the Identification
for any of the 4 Interrupts if enabled.

lpc214x

Vectored Interrupt
Programming

95 Young Won Lim
6/9/23

U0IIR (UART0 Interrupt Identification Register)

https://www.keil.com/dd/docs/datashts/philips/user_manual_lpc214x.pdf

Bit0 Interrupt Pending
the U0IIR[0] is active low
the pending interrupt can be determined by evaluating U0IIR[3:1]

Bit3:1 Interrupt Identification
U0IIR[3:1] identifies an interrupt corresponding to the UART0 Rx FIFO
All other combinations of U0IIR[3:1] not list are reserved
(000, 100, 101, 111)

011 1 RLS (Receive Line Status)
010 2a RDA (Receive Data Available)
110 2b CTI (Character Time-Out Indicator
001 3 THRE (Transmitter Holding Register Empty)

__irq void myDefault_ISR(void)
{

U0RegVal = U0IIR; // read the current value
…
if(! (U0RegVal & 0x1)) // active low
{
}
…
VICVectAddr = 0x0; // The ISR has finished!

}

lpc214x

Vectored Interrupt
Programming

96 Young Won Lim
6/9/23

GPIO Register (1) legacy GPIO

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

IOPIN GPIO Port Pin value register.
the current state of the GPIO configured port pins can
always be read from this register, regardless of pin direction

IODIR GPIO Port Direction control register.
This register individually controls the direction of
each port pin.

IOSET GPIO Port Output Set register.
This register controls the state of output pins in
conjunction with the IOCLR register.
Writing ones produces highs at the corresponding
port pins. Writing zeroes has no effect.

IOCLR GPIO Port Output Clear register.
This register controls the state of output pins.
Writing ones produces lows at the corresponding port pins and clears the corresponding bits in the IOSET register.
Writing zeroes has no effect.

the legacy GPIO referred as "the slow" GPIO
the enhanced GPIO referred as "the fast" GPIO.

lpc214x

Vectored Interrupt
Programming

97 Young Won Lim
6/9/23

GPIO Register (2) IODIR

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P0.
31

P0.
30

P0.
29

P0.
28

P0.
27

P0.
26

P0.
25

P0.
24

P0.
23

P0.
22

P0.
21

P0.
20

P0.
19

P0.
18

P0.
17

P0.
16

P0.
15

P0.
14

P0.
13

P0.
12

P0.
11

P0.
10

P0.
9

P0.
8

P0.
7

P0.
6

P0.
5

P0.
4

P0.
3

P0.
2

P0.
1

P0.
0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P1.
31

P1.
30

P1.
29

P1.
28

P1.
27

P1.
26

P1.
25

P1.
24

P1.
23

P1.
22

P1.
21

P1.
20

P1.
19

P1.
18

P1.
17

P1.
16

IODIR0 for Port 0

IODIR1 for Port 1

1 for output / 0 for input

1 for output / 0 for input

lpc214x

Vectored Interrupt
Programming

98 Young Won Lim
6/9/23

GPIO Register (3) enhanced GPIO

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

FIODIR Fast GPIO Port Direction control register.
This register individually controls the
direction of each port pin.

FIOMASK Fast Mask register for port.
Writes, sets, clears, and reads to port
alter or return only the bits enabled
by zeros in this register.
(done via writes to FIOPIN, FIOSET, and FIOCLR,
and reads of FIOPIN)

FIOPIN Fast Port Pin value register using FIOMASK.
The current state of digital port pins can be
read from this register, regardless of pin direction
or alternate function selection
(as long as pins is not configured as an input to ADC).
The value read is masked by ANDing with FIOMASK.
Writing to this register places corresponding values
in all bits enabled by ones in FIOMASK.

FIOSET Fast Port Output Set register using FIOMASK.
This register controls the state of output pins.
Writing 1s produces highs at the corresponding port pins.
Writing 0s has no effect.
Reading this register returns the current contents
of the port output register.
Only bits enabled by ones in FIOMASK can be altered

FIOCLR Fast Port Output Clear register using FIOMASK.
This register controls the state of output pins.
Writing 1s produces lows at the corresponding port pins.
Writing 0s has no effect.
Only bits enabled by ones in FIOMASK can be altered.

lpc214x

Vectored Interrupt
Programming

99 Young Won Lim
6/9/23

GPIO Register (4) examples

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

IO0DIR = 0xFFFFFFFF; // Configure all pins on Port 0 as Output
IO0PIN = 0x0;

IO0PIN = ~IO0PIN; // Toggle all pins in Port 0

IO0PIN ^= (1<<0); // xor 2^0 Toggle GPIO0 PIN0 .. P0.0
IO0PIN ^= (1<<1); // xor 2^1 Toggle GPIO0 PIN1 .. P0.1
IO0PIN ^= (1<<2); // xor 2^2 Toggle GPIO0 PIN2 .. P0.2

IO0PIN ^= (1<<2); // Toggle 3rd Pin (PIN2) in GPIO0 .. P0.2
IO0PIN ^= (1<<3); // Toggle 4th Pin (PIN3) in GPIO0 .. P0.3

lpc214x

Vectored Interrupt
Programming

100 Young Won Lim
6/9/23

VICVectAddr

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

This must not be confused with
the set of 16 VICVecAddr0 ~15 registers.

When an interrupt is Triggered this register holds
the address of the associated ISR i.e
the one which is currently active.

Writing a value i.e dummy write to this register
indicates to the VIC that current Interrupt has finished execution.

In this tutorial the only place we’ll use this register ..
is at the end of the ISR to signal end of ISR execution.

__irq void myDefault_ISR(void)
{

U0RegVal = U0IIR; // read the current value
…
if(! (U0RegVal & 0x1)) // active low
{
}
…
VICVectAddr = 0x0; // The ISR has finished!

}

lpc214x

Vectored Interrupt
Programming

101 Young Won Lim
6/9/23

regVal = T0IR;

if(T0IR & MR0I_FLAG) {
* * * MR0 match * * *

} else if (T0IR & MR1I_FLAG) {
* * * MR1 match * * *

} else if (T0IR & MR2I_FLAG) {
* * * MR2 match * * *

}

T0IR = regval;

Case 1 & 2 overview

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

regVal = T0IR;
* * * MR0 * * *

T0IR = regval;

T0IR for TIMER0
T0's Interrupt Register

consider two simple cases for coding an ISR

Use TIMER0 for generating IRQs

Case #1)

only one ‘internal’ source of interrupt in TIMER0
i.e an MR0 match event which raises an IRQ.

Case #2)

multiple ‘internal’ source of interrupt in TIMER0
i.e. say a match event for MR0 , MR1 & MR2
which raise an IRQ.

lpc214x

Vectored Interrupt
Programming

102 Young Won Lim
6/9/23

Only one interrupt source

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

Since only one source is triggering an interrupt
we don’t need to identify it
– though its a good practice to explicitly identify it.

__irq void myISR(void)
{

long int regVal;

// read the current value in
// TIMER0's Interrupt Register
regVal = T0IR;

//... MR0 match event has occured
// .. do something here

// write back to clear the interrupt flag
T0IR = regval;

VICVectAddr = 0x0; // The ISR has finished!
}

lpc214x

Vectored Interrupt
Programming

103 Young Won Lim
6/9/23

Case 2: Multiple interrupt sources

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

Even in case #2 things are simple unless we need
to identify the ‘actual’ source of interrupt.

#define MR0I_FLAG (1<<0)
#define MR1I_FLAG (1<<1)
#define MR2I_FLAG (1<<2)

__irq void myISR(void)
{

long int regVal;

// read the current value
// in TIMER0's Interrupt Register
regVal = T0IR;

// write back to clear the interrupt flag
T0IR = regVal;

// Acknowledge that ISR has finished execution
VICVectAddr = 0x0;

}

if(T0IR & MR0I_FLAG) {
//do something for MR0 match

} else if (T0IR & MR1I_FLAG) {
//do something for MR1 match

} else if (T0IR & MR2I_FLAG) {
//do something for MR2 match

}

lpc214x

Vectored Interrupt
Programming

104 Young Won Lim
6/9/23

Only one interrupt source

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

Case #2 actually provides a general method of
using Timers as PWM generators!

You can use any one of the match registers as PWM Cycle generator
and then use other 3 match registers to generate 3 PWM signals!

Since LPC214x already has PWM generator blocks on chip
I don’t see any use of Timers being used as PWM generators.

But for MCUs which don’t have PWM generator blocks this is very useful.

lpc214x

Vectored Interrupt
Programming

105 Young Won Lim
6/9/23

Case 3 & 4 overview

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

Both of them deal with IRQs from different blocks
: TIMER0 and UART0.

Case #3)
Multiple Vectored IRQs from different devices.
Hence Priority comes into picture here.

myTimer0_ISR()
myUart0_ISR

Case #4)
Multiple Non-Vectored IRQs from different devices.

myDefault_ISR

T0IR for TIMER0
T0's Interrupt Register

U0IIR for UART0
U0's Interrupt ID Register

lpc214x

Vectored Interrupt
Programming

106 Young Won Lim
6/9/23

Multiple Vectored IRQ from different devices

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

Case #3
TIMER0 and UART0 generating interrupts
with TIMER0 having higher priority.

2 different Vectored ISRs
– one for TIMER0 and one for UART0.

myTimer0_ISR()
myUart0_ISR

assume only 1 internal source inside
both TIMER0 and UART0

__irq void myTimer0_ISR(void)
{

long int regVal;

regVal = T0IR; // read the current value

T0IR = regval; // write back to clear
// the interrupt flag

VICVectAddr = 0x0;

}

__irq void myUart0_ISR(void)
{

long int regVal;

regVal = U0IIR; // read the current value

//Something inside UART0 has raised an IRQ

VICVectAddr = 0x0;
}

lpc214x

Vectored Interrupt
Programming

107 Young Won Lim
6/9/23

Multiple Non-Vectored IRQ from different devices

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

Case #4
TIMER0 and UART0 generating interrupts

But here both of them are Non-Vectored
and hence will be serviced
by a common Non-Vectored ISR.

Hence, here we will need to check
the actual source i.e device
which triggered the interrupt and
proceed accordingly.

This is quite similar to Case #2.

T0's Interrupt Register
U0's(Uart 0) Interrupt Identification Register

__irq void myDefault_ISR(void)
{

long int T0RegVal , U0RegVal;

T0RegVal = T0IR; // read the current value
U0RegVal = U0IIR; // read the current value

if(T0RegVal)
{

//do something for TIMER0 Interrupt

T0IR = T0RegVal; // write back to clear
// the interrupt flag

}

if(! (U0RegVal & 0x1)) // active low
{

// do something for UART0 Interrupt
// No need to write back to U0IIR
// since reading it clears it

}

VICVectAddr = 0x0; // The ISR has finished!

}

lpc214x

Vectored Interrupt
Programming

108 Young Won Lim
6/9/23

Fast Interrupt Request

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

Well , you can think FIQ as a promoted version of a Vectored IRQ.

To promote or covert a Vectored IRQ to FIQ
just make the bit for corresponding IRQ
in VICIntSelect register to 1
and it will be become an FIQ.

Also Note that its recommended
that you only have one FIQ in your system.

FIQs have low latency than VIRQs
and usually used in System Critical Interrupt Handling.

lpc214x

Vectored Interrupt
Programming

109 Young Won Lim
6/9/23

Code snippets of lpc214x.h for Keil tools (1)

https://www.keil.com/dd/docs/arm/philips/lpc214x.h

/***/
/* This file is part of the uVision/ARM development tools */
/* Copyright KEIL ELEKTRONIK GmbH 2002-2005 */
/***/
/* */
/* LPC214X.H: Header file for Philips LPC2141/42/44/46/48 */
/* */
/***/

/* Vectored Interrupt Controller (VIC) */
#define VICIRQStatus (*((volatile unsigned long *) 0xFFFFF000))
#define VICFIQStatus (*((volatile unsigned long *) 0xFFFFF004))
#define VICRawIntr (*((volatile unsigned long *) 0xFFFFF008))
#define VICIntSelect (*((volatile unsigned long *) 0xFFFFF00C))
#define VICIntEnable (*((volatile unsigned long *) 0xFFFFF010))
#define VICIntEnClr (*((volatile unsigned long *) 0xFFFFF014))
#define VICSoftInt (*((volatile unsigned long *) 0xFFFFF018))
#define VICSoftIntClr (*((volatile unsigned long *) 0xFFFFF01C))
#define VICProtection (*((volatile unsigned long *) 0xFFFFF020))
#define VICVectAddr (*((volatile unsigned long *) 0xFFFFF030))
#define VICDefVectAddr (*((volatile unsigned long *) 0xFFFFF034))

lpc214x

Vectored Interrupt
Programming

110 Young Won Lim
6/9/23

Code snippets of lpc214x.h for Keil tools (2)

https://www.keil.com/dd/docs/arm/philips/lpc214x.h

#define VICVectAddr0 (*((volatile unsigned long *) 0xFFFFF100))
#define VICVectAddr1 (*((volatile unsigned long *) 0xFFFFF104))

… … …
#define VICVectAddr15 (*((volatile unsigned long *) 0xFFFFF13C))

#define VICVectCntl0 (*((volatile unsigned long *) 0xFFFFF200))
#define VICVectCntl1 (*((volatile unsigned long *) 0xFFFFF204))

… … …
#define VICVectCntl15 (*((volatile unsigned long *) 0xFFFFF23C))

lpc214x

Vectored Interrupt
Programming

111 Young Won Lim
6/9/23

Code snippets of lpc214x.h for Keil tools (3)

https://www.keil.com/dd/docs/arm/philips/lpc214x.h

/* Timer 0 */
#define T0IR (*((volatile unsigned long *) 0xE0004000))
#define T0TCR (*((volatile unsigned long *) 0xE0004004))
#define T0TC (*((volatile unsigned long *) 0xE0004008))
#define T0PR (*((volatile unsigned long *) 0xE000400C))
#define T0PC (*((volatile unsigned long *) 0xE0004010))
#define T0MCR (*((volatile unsigned long *) 0xE0004014))
#define T0MR0 (*((volatile unsigned long *) 0xE0004018))
#define T0MR1 (*((volatile unsigned long *) 0xE000401C))
#define T0MR2 (*((volatile unsigned long *) 0xE0004020))
#define T0MR3 (*((volatile unsigned long *) 0xE0004024))
#define T0CCR (*((volatile unsigned long *) 0xE0004028))
#define T0CR0 (*((volatile unsigned long *) 0xE000402C))
#define T0CR1 (*((volatile unsigned long *) 0xE0004030))
#define T0CR2 (*((volatile unsigned long *) 0xE0004034))
#define T0CR3 (*((volatile unsigned long *) 0xE0004038))
#define T0EMR (*((volatile unsigned long *) 0xE000403C))
#define T0CTCR (*((volatile unsigned long *) 0xE0004070))

// Interrupt Register (IR)
// Timer Control Register (TCR)
// Timer Counter (TC)
// Prescale Register (PR)
// Prescale Counter Register (PC)
// Match Control Register (MCR)
// Match Register 0 (MR0)
// Match Register 1 (MR1)
// Match Register 2 (MR2)
// Match Register 3 (MR3)
// Capture Control Register (CCR)
// Capture Register 1 (CR1)
// Capture Register 2 (CR2)
// Capture Register 3 (CR3)
// Capture Register 4 (CR4)
// External Match Register (EMR)
// Counter Control Register (CTCR)

lpc214x

Vectored Interrupt
Programming

112 Young Won Lim
6/9/23

Code snippets of lpc214x.h for Keil tools (4)

https://www.keil.com/dd/docs/arm/philips/lpc214x.h

/* Universal Asynchronous Receiver Transmitter 0 (UART0) */
#define U0RBR (*((volatile unsigned char *) 0xE000C000))
#define U0THR (*((volatile unsigned char *) 0xE000C000))
#define U0IER (*((volatile unsigned long *) 0xE000C004))
#define U0IIR (*((volatile unsigned long *) 0xE000C008))
#define U0FCR (*((volatile unsigned char *) 0xE000C008))
#define U0LCR (*((volatile unsigned char *) 0xE000C00C))
#define U0MCR (*((volatile unsigned char *) 0xE000C010))
#define U0LSR (*((volatile unsigned char *) 0xE000C014))
#define U0MSR (*((volatile unsigned char *) 0xE000C018))
#define U0SCR (*((volatile unsigned char *) 0xE000C01C))
#define U0DLL (*((volatile unsigned char *) 0xE000C000))
#define U0DLM (*((volatile unsigned char *) 0xE000C004))
#define U0ACR (*((volatile unsigned long *) 0xE000C020))
#define U0FDR (*((volatile unsigned long *) 0xE000C028))
#define U0TER (*((volatile unsigned char *) 0xE000C030))

// Receiver Buffer Register (RBR)
// Transmit Holding Register (THR)
// Interrupt Enable Register (IER)
// Interrupt Identification Register (IIR)
// FIFO Control Register (FCR)
// Line Control Register (LCR)
// Modem Control Register (U1MCR)
// Line Status Register (LSR)
// Modem Status Register (U1MSR)
// Scratch Pad Register (SCR)
// Divisor Latch LSB Register (DLL)
// Divisor Latch MSB Register (DLM)
// Auto-baud Control Register (ACR)
// Fraction Divisor Register (FDR)
// Transmit Enable Register (TER)

lpc214x

Vectored Interrupt
Programming

113 Young Won Lim
6/9/23

Code snippets of lpc214x.h for Keil tools (4)

https://www.keil.com/dd/docs/arm/philips/lpc214x.h

/* General Purpose Input/Output (GPIO) */
#define IOPIN0 (*((volatile unsigned long *) 0xE0028000))
#define IOSET0 (*((volatile unsigned long *) 0xE0028004))
#define IODIR0 (*((volatile unsigned long *) 0xE0028008))
#define IOCLR0 (*((volatile unsigned long *) 0xE002800C))
#define IOPIN1 (*((volatile unsigned long *) 0xE0028010))
#define IOSET1 (*((volatile unsigned long *) 0xE0028014))
#define IODIR1 (*((volatile unsigned long *) 0xE0028018))
#define IOCLR1 (*((volatile unsigned long *) 0xE002801C))
#define IO0PIN (*((volatile unsigned long *) 0xE0028000)) // alias
#define IO0SET (*((volatile unsigned long *) 0xE0028004)) // alias
#define IO0DIR (*((volatile unsigned long *) 0xE0028008)) // alias
#define IO0CLR (*((volatile unsigned long *) 0xE002800C)) // alias
#define IO1PIN (*((volatile unsigned long *) 0xE0028010)) // alias
#define IO1SET (*((volatile unsigned long *) 0xE0028014)) // alias
#define IO1DIR (*((volatile unsigned long *) 0xE0028018)) // alias
#define IO1CLR (*((volatile unsigned long *) 0xE002801C)) // alias
#define FIO0DIR (*((volatile unsigned long *) 0x3FFFC000))
#define FIO0MASK (*((volatile unsigned long *) 0x3FFFC010))
#define FIO0PIN (*((volatile unsigned long *) 0x3FFFC014))
#define FIO0SET (*((volatile unsigned long *) 0x3FFFC018))
#define FIO0CLR (*((volatile unsigned long *) 0x3FFFC01C))
#define FIO1DIR (*((volatile unsigned long *) 0x3FFFC020))
#define FIO1MASK (*((volatile unsigned long *) 0x3FFFC030))
#define FIO1PIN (*((volatile unsigned long *) 0x3FFFC034))
#define FIO1SET (*((volatile unsigned long *) 0x3FFFC038))
#define FIO1CLR (*((volatile unsigned long *) 0x3FFFC03C))

lpc214x

Vectored Interrupt
Programming

114 Young Won Lim
6/9/23

Case 1 Example code (1)

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

/*
(C) Umang Gajera | Power_user_EX - www.ocfreaks.com 2011-13.
More Embedded tutorials @ www.ocfreaks.com/cat/embedded

Soruce for Interrupt Tutorial Case #1.
License : GPL.
*/

#include <lpc214x.h>

#define MR0I (1<<0) // Interrupt When TC matches MR0
#define MR0R (1<<1) // Reset TC when TC matches MR0

#define DELAY_MS 500 // 0.5 Second(s) Delay
#define PRESCALE 60000 // 60000 PCLK clock cycles to increment TC by 1

void initClocks(void);
void initTimer0(void);
__irq void T0ISR(void);
void initClocks(void);

lpc214x

Vectored Interrupt
Programming

115 Young Won Lim
6/9/23

Case 1 Example code (2)

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

int main(void)
{

initClocks(); //Initialize CPU and Peripheral Clocks @ 60Mhz
initTimer0(); //Initialize Timer0
IO0DIR = 0xFFFFFFFF; //Configure all pins on Port 0 as Output
IO0PIN = 0x0;

T0TCR = 0x01; //Enable timer

while(1); //Infinite Idle Loop

//return 0; //normally this wont execute ever :P
}

lpc214x

Vectored Interrupt
Programming

116 Young Won Lim
6/9/23

Case 1 Example code (3)

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

void initTimer0(void)
{

/*Assuming that PLL0 has been setup with CCLK = 60Mhz and PCLK also = 60Mhz.*/

//----------Configure Timer0-------------
T0CTCR = 0x0;

T0PR = PRESCALE-1; //(Value in Decimal!) - Increment T0TC at every 60000 clock cycles
 //Count begins from zero hence subtracting 1
 //60000 clock cycles @60Mhz = 1 mS

T0MR0 = DELAY_MS-1; //(Value in Decimal!) Zero Indexed Count - hence subtracting 1

T0MCR = MR0I | MR0R; //Set bit0 & bit1 to High which is to : Interrupt & Reset TC on MR0

//----------Setup Timer0 Interrupt-------------
VICVectAddr4 = (unsigned)T0ISR; //Pointer Interrupt Function (ISR)

VICVectCntl4 = 0x20 | 4; //0x20 (i.e bit5 = 1) -> to enable Vectored IRQ slot
 //0x4 (bit[4:0]) -> this the source number - here its timer0 which has VIC channel mask # as 4
 //You can get the VIC Channel number from Lpc214x manual R2 - pg 58 / sec 5.5

VICIntEnable = 0x10; //Enable timer0 int

T0TCR = 0x02; //Reset Timer
}

lpc214x

Vectored Interrupt
Programming

117 Young Won Lim
6/9/23

Case 1 Example code (4)

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

__irq void T0ISR(void)
{

long int regVal;
regVal = T0IR; // Read current IR value

IO0PIN = ~IO0PIN; // Toggle all pins in Port 0

T0IR = regVal; // Write back to IR to clear Interrupt Flag
VICVectAddr = 0x0; // This is to signal end of interrupt execution

}

void initClocks(void)
{
 // This function is used to config PPL0 and setup both
 // CPU and Peripheral clock @ 60Mhz
 // You can find its definition in the attached files or case #2 source
}

lpc214x

Vectored Interrupt
Programming

118 Young Won Lim
6/9/23

Case 2 Example code (1)

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

/*
(C) Umang Gajera | Power_user_EX - www.ocfreaks.com 2011-13.
More Embedded tutorials @ www.ocfreaks.com/cat/embedded

LPC2148 Interrupt Example.
License : GPL.
*/

#include <lpc214x.h>

#define PLOCK 0x00000400
#define MR0I (1<<0) // Interrupt When TC matches MR0
#define MR1I (1<<3) // Interrupt When TC matches MR1
#define MR2I (1<<6) // Interrupt When TC matches MR2
#define MR2R (1<<7) // Reset TC when TC matches MR2

#define MR0I_FLAG (1<<0) // Interrupt Flag for MR0
#define MR1I_FLAG (1<<1) // Interrupt Flag for MR1
#define MR2I_FLAG (1<<2) // Interrupt Flag for MR2

#define MR0_DELAY_MS 500 // 0.5 Second(s) Delay
#define MR1_DELAY_MS 1000 // 1 Second Delay
#define MR2_DELAY_MS 1500 // 1.5 Second(s) Delay
#define PRESCALE 60000 // 60000 PCLK clock cycles to increment TC by 1

lpc214x

Vectored Interrupt
Programming

119 Young Won Lim
6/9/23

Case 2 Example code (2)

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

void delayMS(unsigned int milliseconds);
void initClocks(void);
void initTimer0(void);
__irq void myTimer0_ISR(void);

void setupPLL0(void);
void feedSeq(void);
void connectPLL0(void);

int main(void)
{

initClocks(); // Initialize CPU and Peripheral Clocks @ 60Mhz
initTimer0(); // Initialize Timer0
IO0DIR = 0xFFFFFFFF; // Configure all pins on Port 0 as Output
IO0PIN = 0x0;

T0TCR = 0x01; // Enable timer

while(1); // Infinite Idle Loop

//return 0; // normally this wont execute ever :P
}

lpc214x

Vectored Interrupt
Programming

120 Young Won Lim
6/9/23

Case 2 Example code (3)

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

void initTimer0(void)
{

/*Assuming that PLL0 has been setup with CCLK = 60Mhz and PCLK also = 60Mhz.*/

//----------Configure Timer0-------------
T0CTCR = 0x0;
T0PR = PRESCALE-1; // 60000 clock cycles @60Mhz = 1 mS
T0MR0 = MR0_DELAY_MS-1; // 0.5sec (Value in Decimal!) Zero Indexed Count - hence subtracting 1
T0MR1 = MR1_DELAY_MS-1; // 1sec
T0MR2 = MR2_DELAY_MS-1; // 1.5secs
T0MCR = MR0I | MR1I | MR2I | MR2R; // Set the Match control register

//----------Setup Timer0 Interrupt------------- // I've just randomly picked-up slot 4
VICVectAddr4 = (unsigned) myTimer0_ISR; // Pointer Interrupt Function (ISR)
VICVectCntl4 = 0x20 | 4;
VICIntEnable = 0x10; // Enable timer0 int
T0TCR = 0x02; // Reset Timer

}

lpc214x

Vectored Interrupt
Programming

121 Young Won Lim
6/9/23

Case 2 Example code (4)

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

__irq void myTimer0_ISR(void)
{

long int regVal;
regVal = T0IR; // read the current value in T0's Interrupt Register

if(T0IR & MR0I_FLAG) {
//do something for MR0 match

IO0PIN ^= (1<<0); // Toggle GPIO0 PIN0 .. P0.0
}
else if (T0IR & MR1I_FLAG) {

//do something for MR1 match

IO0PIN ^= (1<<1); // Toggle GPIO0 PIN1 .. P0.1
}
else if (T0IR & MR2I_FLAG) {

//do something for MR0 match

IO0PIN ^= (1<<2); // Toggle GPIO0 PIN2 .. P0.2
}

T0IR = regVal; // write back to clear the interrupt flag
VICVectAddr = 0x0; // Acknowledge that ISR has finished execution

}

lpc214x

Vectored Interrupt
Programming

122 Young Won Lim
6/9/23

Case 2 Example code (5)

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

void initClocks(void)
{

setupPLL0();
feedSeq(); // sequence for locking PLL to desired freq.
connectPLL0();
feedSeq(); // sequence for connecting the PLL as system clock

// SysClock is now ticking @ 60Mhz!

VPBDIV = 0x01; // PCLK is same as CCLK i.e 60Mhz

// PLL0 Now configured!
}

lpc214x

Vectored Interrupt
Programming

123 Young Won Lim
6/9/23

Case 2 Example code (6)

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

//---------PLL Related Functions :---------------

// Using PLL settings as shown in : http://www.ocfreaks.com/lpc214x-pll-tutorial-for-cpu-and-peripheral-clock/

void setupPLL0(void)
{

// Note : Assuming 12Mhz Xtal is connected to LPC2148.

PLL0CON = 0x01;
PLL0CFG = 0x24;

}

void feedSeq(void)
{

PLL0FEED = 0xAA;
PLL0FEED = 0x55;

}

void connectPLL0(void)
{

while(!(PLL0STAT & PLOCK));
PLL0CON = 0x03;

}

lpc214x

Vectored Interrupt
Programming

124 Young Won Lim
6/9/23

Case 3 Example code (1)

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

//----------Setup TIMER0 Interrupt------------- // Using Slot 0 for TIMER0
VICVectAddr0 = (unsigned) myTimer0_ISR; // Pointer Interrupt Function (ISR)

VICVectCntl0 = 0x20 | 4;

VICIntEnable |= (1<<4); // Enable timer0 int , 4th bit=1

//----------Setup UART0 Interrupt------------- / /Any Slot with Lower Priority than TIMER0's slot will suffice
VICVectAddr1 = (unsigned) myUart0_ISR; // Pointer Interrupt Function (ISR)

VICVectCntl1 = 0x20 | 6;

VICIntEnable |= (1<<6); //Enable Uart0 interrupt , 6th bit=1

lpc214x

Vectored Interrupt
Programming

125 Young Won Lim
6/9/23

Case 3 Example code (2)

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

__irq void myTimer0_ISR(void)
{

long int regVal;
regVal = T0IR; // read the current value in T0's Interrupt Register

IO0PIN ^= (1<<2); // Toggle 3rd Pin in GPIO0 .. P0.2

T0IR = regVal; // write back to clear the interrupt flag
VICVectAddr = 0x0; // Acknowledge that ISR has finished execution

}

__irq void myUart0_ISR(void)
{

long int regVal;
regVal = U0IIR; // Reading U0IIR also clears it!

//Recieve Data Available Interrupt has occured
regVal = U0RBR; // dummy read
IO0PIN ^= (1<<3); // Toggle 4th Pin in GPIO0 .. P0.3

VICVectAddr = 0x0; // Acknowledge that ISR has finished execution
}

lpc214x

Vectored Interrupt
Programming

126 Young Won Lim
6/9/23

Case 4 Example code (1)

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

VICDefVectAddr = (unsigned) myDefault_ISR; // Pointer to Default ISR

//----------Enable (Non-Vectored) TIMER0 Interrupt-------------
VICIntEnable |= (1<<4); // Enable timer0 int , 4th bit=1

//----------Enable (Non-Vectored) UART0 Interrupt-------------
VICIntEnable |= (1<<6); // Enable Uart0 interrupt , 6th bit=1

lpc214x

Vectored Interrupt
Programming

127 Young Won Lim
6/9/23

Case 4 Example code (2)

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

__irq void myDefault_ISR(void)
{

long int T0RegVal , U0RegVal;
T0RegVal = T0IR; // read the current value in T0's Interrupt Register
U0RegVal = U0IIR;

if(T0IR)
{

IO0PIN ^= (1<<2); // Toggle 3rd Pin in GPIO0 .. P0.2
T0IR = T0RegVal; // write back to clear the interrupt flag

}

if(!(U0RegVal & 0x1))
{

//Recieve Data Available Interrupt has occured
U0RegVal = U0RBR; // dummy read
IO0PIN ^= (1<<3); // Toggle 4th Pin in GPIO0 .. P0.3

}

VICVectAddr = 0x0; // Acknowledge that ISR has finished execution
}

lpc214x

Vectored Interrupt
Programming

128 Young Won Lim
6/9/23

Example code 1 (Case 1)

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

lpc214x

Vectored Interrupt
Programming

129 Young Won Lim
6/9/23

References

[1] http://wiki.osdev.org/ARM_RaspberryPi_Tutorial_C
[2] http://blog.bobuhiro11.net/2014/01-13-baremetal.html
[3] http://www.valvers.com/open-software/raspberry-pi/
[4] https://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/os/downloads.html

http://wiki.osdev.org/ARM_RaspberryPi_Tutorial_C

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129

