
Laurent Series and z-Transform
- Geometric Series
Time Shift A
TITLE STITLE

20181002 Tue

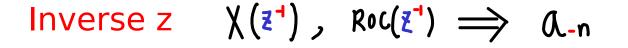
Copyright (c) 2016 - 2018 Young W. Lim.

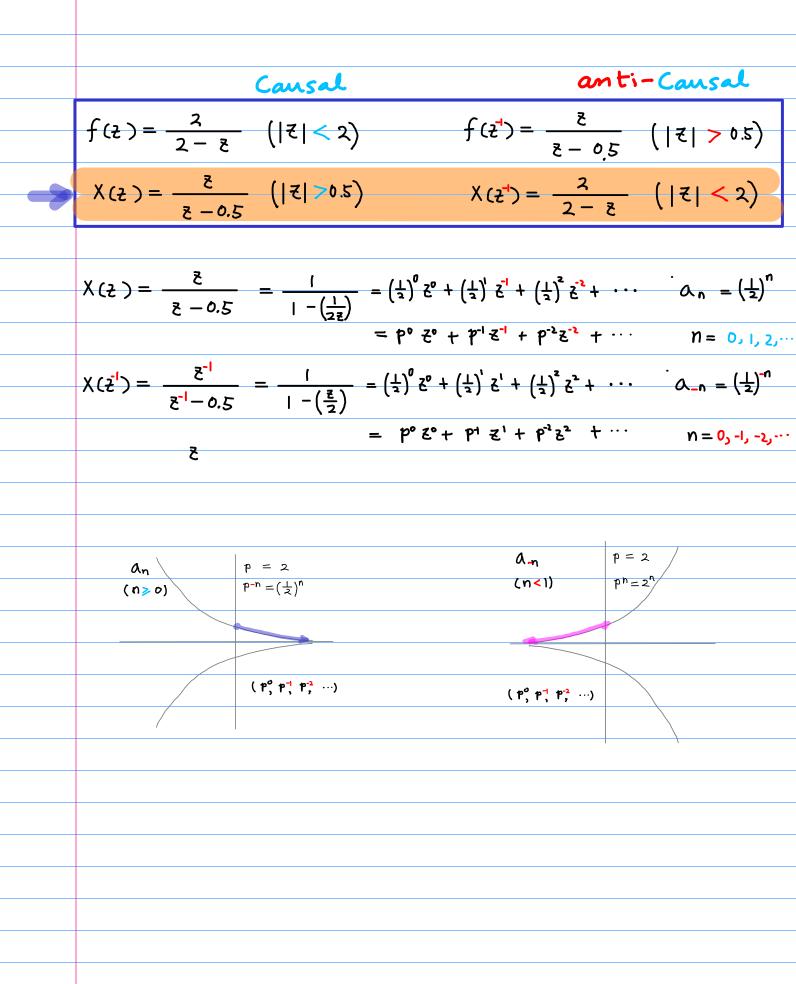
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

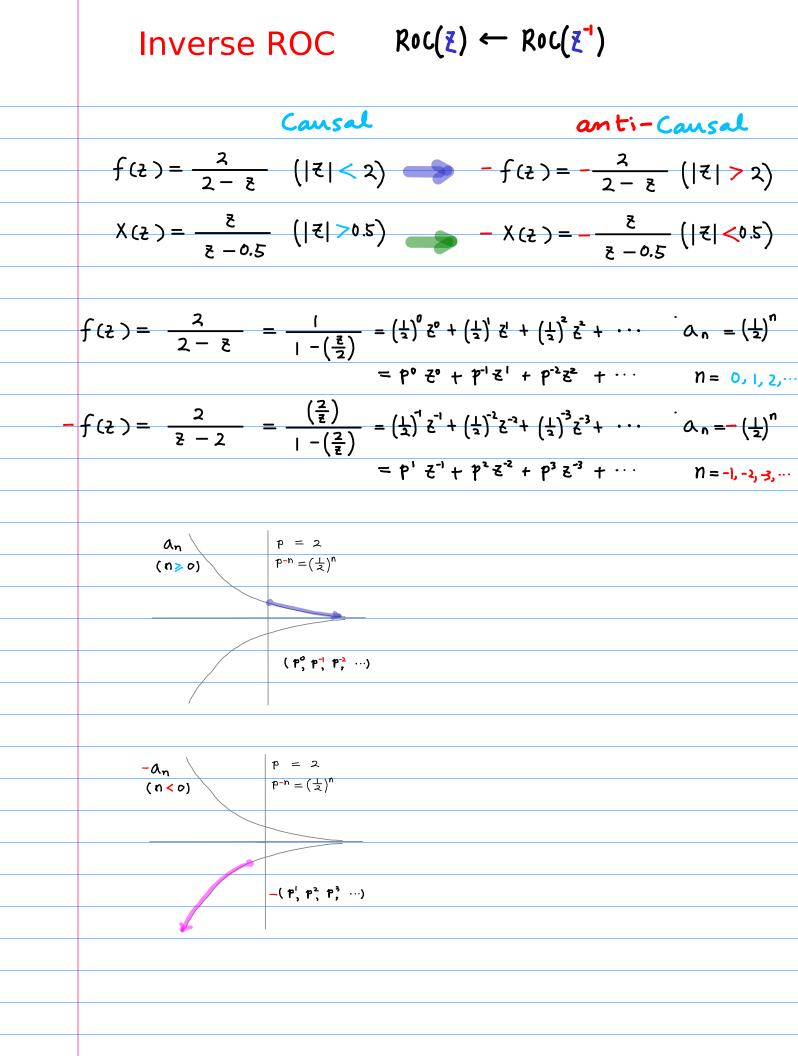
Anti-Causal Signal
$$a(n) => -f(z), -X(z)$$

 $(n < 0)$ $(|z| > P)$ $(|z| < P^{-1})$
 $\delta_n = (\frac{1}{2})^n$ $(n < 0)$
 $f_2(z) = (\frac{1}{2})^1 z^4 + (\frac{1}{2})^2 z^2 + (\frac{1}{2})^3 z^3 + \dots = \frac{(\frac{2}{3})}{1 - (\frac{2}{3})}$
 $X_3(z) = (\frac{1}{2})^1 z^4 + (\frac{1}{2})^2 z^2 + (\frac{1}{2})^3 z^3 + \dots = \frac{(2z)}{1 - (2z)}$
 $\delta_n = (\frac{1}{2})^n$ $(n < 0)$
 $f_1(z) = \frac{(\frac{2}{3})}{1 - (\frac{2}{3})} \longrightarrow \frac{2}{z - 2} = -f(z) (|z| > 2)$
 $X_3(z) = -\frac{(2z)}{1 - (\frac{2}{3})} \longrightarrow \frac{2}{05 - z} = -X(z) (|z| < 0.5)$
 $\delta_n' = -(\frac{1}{2})^n$ $(n < 0)$
 $f(z) = \frac{2}{2 - z} \longrightarrow -\frac{(\frac{2}{3})}{1 - (\frac{2}{3})} (|z| < 2)$
 $X(z) = \frac{z}{z - z} \longrightarrow -\frac{(2z)}{1 - (2z)} (|z| < 0.5)$

Inverse Z
$$\underline{z} \leftarrow \underline{z}^{1}$$
, $\operatorname{Roc}(\underline{z}) \leftarrow \operatorname{Roc}(\underline{z}^{1})$
Cansad \underline{z}^{1} anti-Cansad
 $f(\underline{z}) = \frac{2}{2-\underline{z}}$ $(|\underline{z}| < 2)$
 $\chi(\underline{z}) = \frac{2}{\underline{z} - \underline{z}}$ $(|\underline{z}| > 0.5)$
 $\chi(\underline{z}) = \frac{2}{\underline{z} - \underline{z}}$ $(|\underline{z}| > 0.5)$
 $\chi(\underline{z}^{1}) = \frac{2}{2-\underline{z}}$ $(|\underline{z}| > 0.5)$
 $\chi(\underline{z}^{1}) = \frac{2}{\underline{z} - \underline{z}}$ $(|\underline{z}| < 2)$
 $\chi(\underline{z}^{1}) = f(\underline{z})$ $\frac{2}{\underline{z} - \underline{z}}$ $(|\underline{z}| < 2)$
 $\chi(\underline{z}^{1}) = f(\underline{z})$ $\frac{2}{\underline{z} - \underline{z}}$ $(|\underline{z}| < 2)$
 $\chi(\underline{z}^{1}) = f(\underline{z})$ $\frac{2}{\underline{z} - \underline{z}}$ $(|\underline{z}| < 2)$
 $\chi(\underline{z}^{1}) = \frac{2}{\underline{z} - \underline{z}}$ $(|\underline{z}| < 2)$
 $\chi(\underline{z}^{1}) = \frac{2}{\underline{z} - \underline{z}}$ $(|\underline{z}| < 2)$
 $\chi(\underline{z}) = \frac{2}{\underline{z} - \underline{z}}$ $(|\underline{z}| > 0.5)$
 $\chi(\underline{z}) = \frac{2}{\underline{z} - \underline{z}}$ $(|\underline{z}| > 0.5)$
 $\chi(\underline{z}) = \frac{2}{\underline{z} - 0.5}$ $(|\underline{z}| > 0.5)$

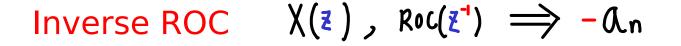


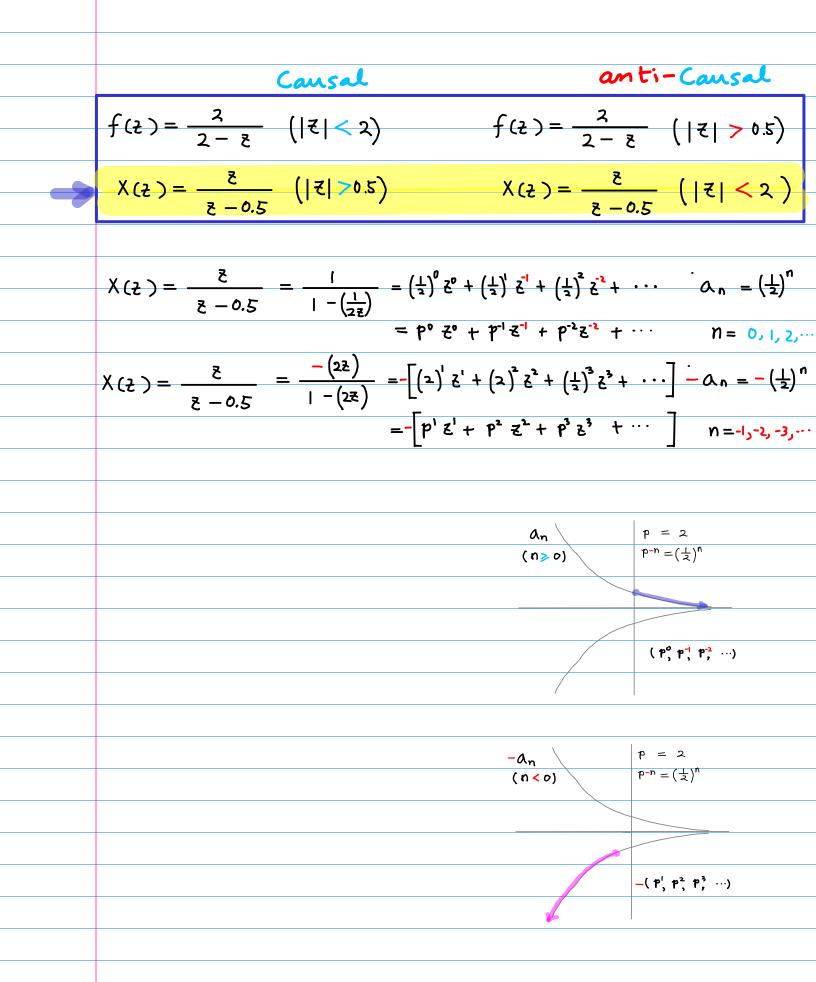


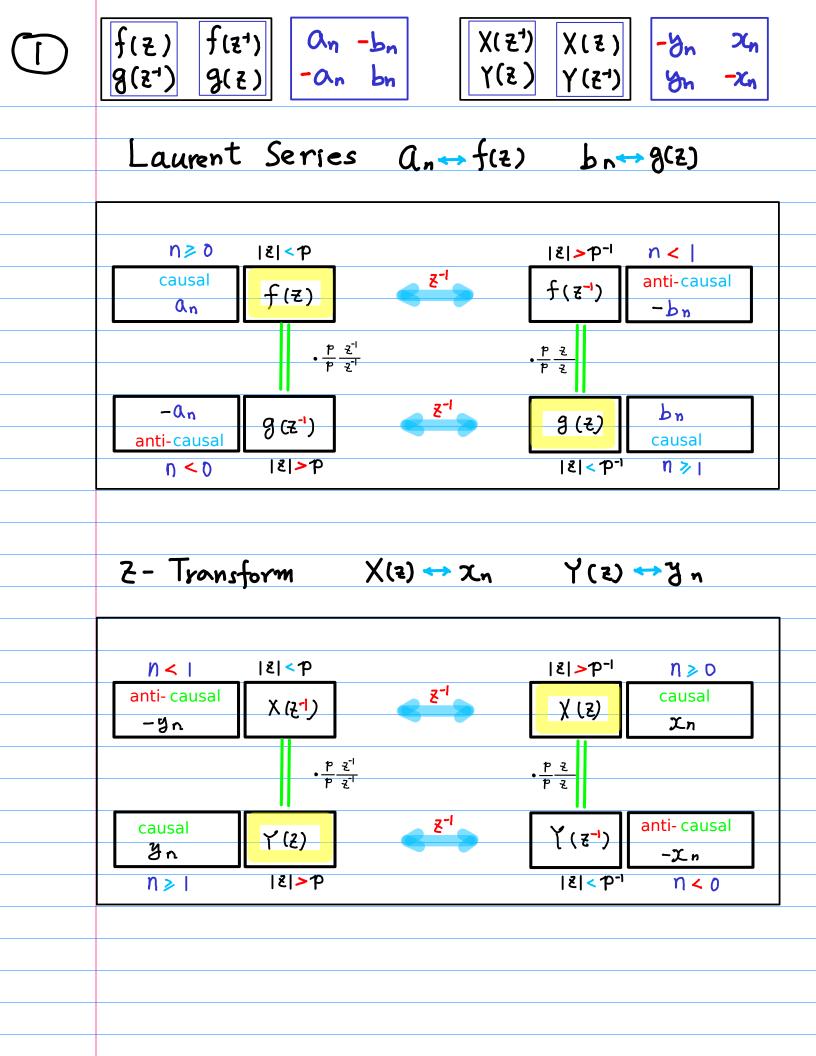

Inverse z $f(z^{-1})$, $Roc(z^{-1}) \Longrightarrow Q_{-n}$

$$\begin{array}{c}
\text{Cansel} \\
\text{f(z)} = \frac{2}{2-z} & (|z| > 2) \\
f(z) = \frac{2}{2-z} & (|z| > 0.5) \\
\chi(z) = \frac{2}{z-z} & (|z| > 0.5) \\
\chi(z) = \frac{2}{z-z} & (|z| > 0.5) \\
\chi(z) = \frac{2}{2-z} & (|z| > 0.5) \\
f(z) = \frac{2}{2-z} & (|z| < 2) \\
\end{array}$$

$$\begin{array}{c}
\text{f(z)} = \frac{2}{2-z} & (|z| > 0.5) \\
= p^{2} z^{2} + p^{3} z^{4} + p^{3} z^{4} + \cdots & n = 0, 1, 2, \cdots \\
f(z^{4}) = \frac{2}{2-z^{4}} & (1-(\frac{1}{2})) \\
= p^{2} z^{2} + p^{3} z^{4} + (\frac{1}{2})^{3} z^{4} + \cdots & n = 0, 1, 2, \cdots \\
f(z^{4}) = \frac{2}{2-z^{4}} & (1-(\frac{1}{2})) \\
= p^{2} z^{2} + p^{3} z^{4} + p^{3} z^{4} + \cdots & n = 0, 1, 2, \cdots \\
\begin{array}{c}
\text{an} & (n > 0) \\
p^{n} = (\frac{1}{2})^{n} \\
\end{array}$$

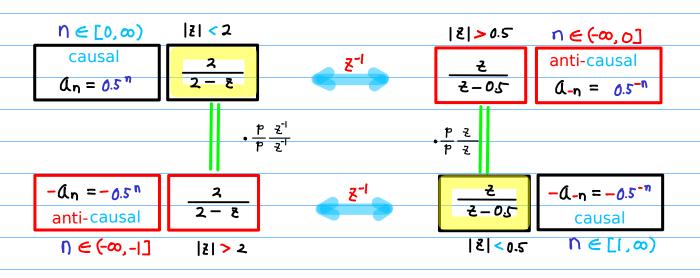



Inverse ROC f(z), $Roc(z') \implies -An$

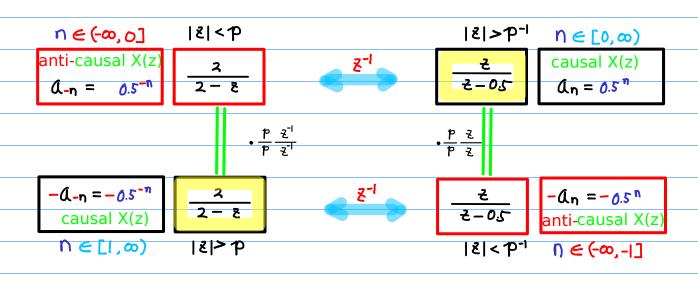

$$\int (z) = \frac{2}{2 - z} \left(||z| < 2 \right) \qquad \int (z) = \frac{2}{2 - z} \left(||z| > 0.5 \right) \\ X(z) = \frac{z}{z - z} \left(||z| > 0.5 \right) \qquad X(z) = \frac{z}{z - 0.5} \left(||z| < 2 \right) \\ f(z) = -\frac{2}{2 - z} = \frac{1}{1 - \left(\frac{z}{2}\right)} = \left(\frac{1}{2}\right)^{9} z^{2} + \left(\frac{1}{2}\right)^{3} z^{2} + \cdots \right) \qquad \alpha_{n} = \left(\frac{1}{2}\right)^{n} \\ = P^{9} z^{0} + P^{1} z^{1} + P^{2} z^{2} + \cdots \right) \qquad n = 0, 1, 2, \cdots$$

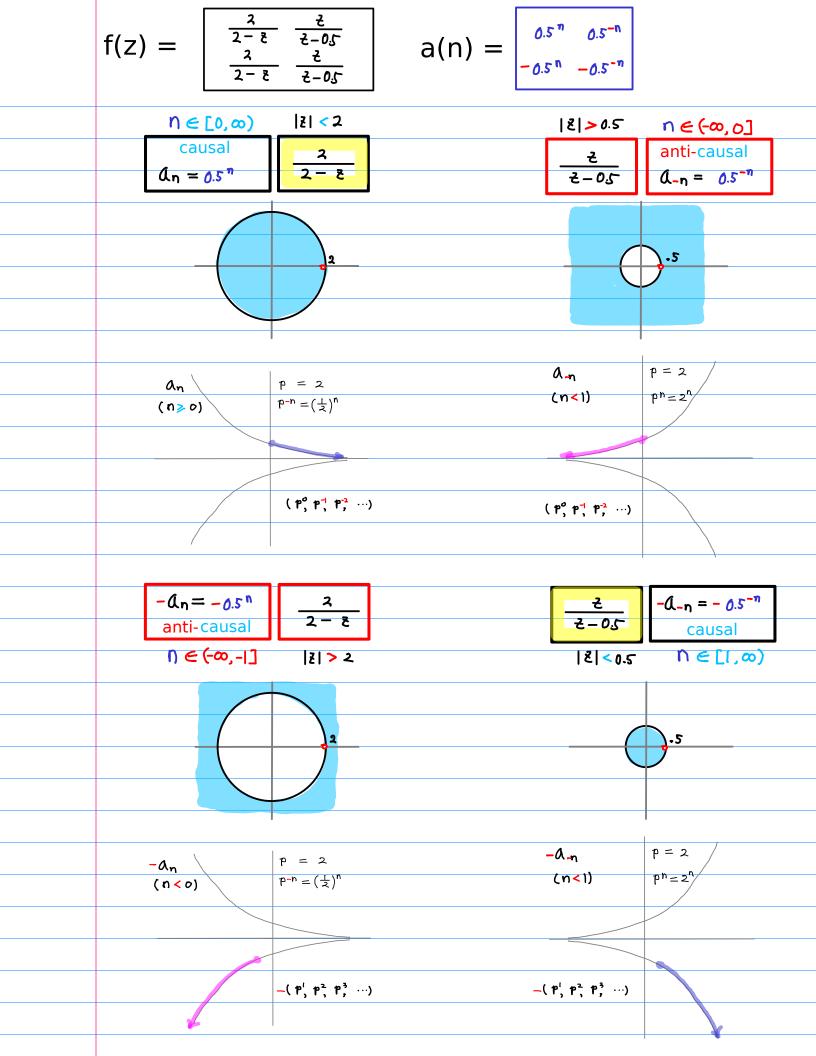
$$f(z) = -\frac{2}{2 - z} = \frac{-\left(\frac{z}{2}\right)}{1 - \left(\frac{z}{2}\right)} = -\left[\left(z^{1}\right)z^{2} + \left(z^{2}\right)^{2}z^{3} + \cdots\right] - \alpha_{n} = -\left(\frac{1}{2}\right)^{n} \\ = -\left[P^{1} z^{n} + P^{2} z^{n} + P^{2} z^{n} + P^{2} z^{n} + \cdots\right] \qquad n = -1, 2, 2, 3, \cdots$$

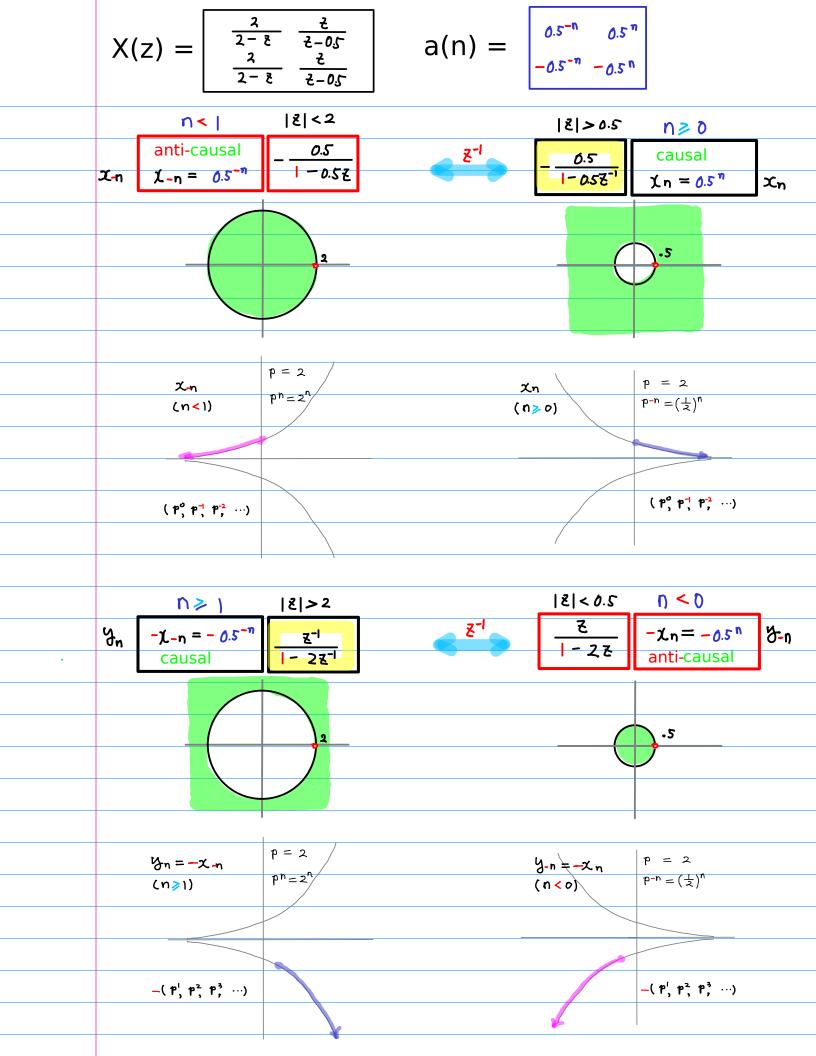
$$\alpha_{n} \qquad p = 2 \\ P^{n} = \left(\frac{1}{2}\right)^{n} \\ (n < 0) \qquad p = 2 \\ P^{n} = \left(\frac{1}{2}\right)^{n} \\ (n < 0) \qquad p = 2 \\ P^{n} = \left(\frac{1}{2}\right)^{n} \\ (n < 0) \qquad p = 2 \\ P^{n} = \left(\frac{1}{2}\right)^{n} \\ (n < 0) \qquad p = 2 \\ P^{n} = \left(\frac{1}{2}\right)^{n} \\ (n < 0) \qquad p = 2 \\ P^{n} = \left(\frac{1}{2}\right)^{n} \\ (n < 0) \qquad p = 2 \\ P^{n} = \left(\frac{1}{2}\right)^{n} \\ (n < 0) \qquad p = 2 \\ P^{n} = \left(\frac{1}{2}\right)^{n} \\ (n < 0) \qquad p = 2 \\ P^{n} = \left(\frac{1}{2}\right)^{n} \\ (n < 0) \qquad p = 2 \\ P^{n} = \left(\frac{1}{2}\right)^{n} \\ (n < 0) \qquad p = 2 \\ P^{n} = \left(\frac{1}{2}\right)^{n} \\ (n < 0) \qquad p = 2 \\ P^{n} = \left(\frac{1}{2}\right)^{n} \\ (n < 0) \qquad p = 2 \\ P^{n} = \left(\frac{1}{2}\right)^{n} \\ (n < 0) \qquad p = 2 \\ P^{n} = \left(\frac{1}{2}\right)^{n} \\ (n < 0) \qquad p = 2 \\ P^{n} = \left(\frac{1}{2}\right)^{n} \\ (n < 0) \qquad p = 2 \\ P^{n} = \left(\frac{1}{2}\right)^{n} \\ (n < 0) \qquad p = 2 \\ P^{n} = \left(\frac{1}{2}\right)^{n} \\ (n < 0) \qquad p = 2 \\ P^{n} = \left(\frac{1}{2}\right)^{n} \\ (n < 0) \qquad p = 2 \\ P^{n} = \left(\frac{1}{2}\right)^{n} \\ (n < 0) \qquad p = 2 \\ P^{n} = \left(\frac{1}{2}\right)^{n} \\ (n < 0) \qquad p = 2 \\ P^{n} = \left(\frac{1}{2}\right)^{n} \\ (n < 0) \qquad p = 2 \\ P^{n} = \left(\frac{1}{2}\right)^{n} \\ (n < 0) \qquad p = 2 \\ P^{n} = \left(\frac{1}{2}\right)^{n} \\ (n < 0) \qquad p = 2 \\ P^{n} = \left(\frac{1}{2}\right)^{n} \\ (n < 0) \qquad p = 2 \\ P^{n} = \left(\frac{1}{2}\right)^{n} \\ (n < 0) \qquad p = 2 \\ P^{n} = \left(\frac{1}{2}\right)^{n} \\ (n < 0) \qquad p = 2 \\ P^{n} = \left(\frac{1}{2}\right)^{n} \\ (n < 0) \qquad p = 2 \\ P^{n} = \left(\frac{1}{2}\right)^{n} \\ (n < 0) \qquad p = 2 \\ P^{n} = \left(\frac{1}{2}\right)^{n} \\ (n < 0) \qquad p = 2 \\ P^{n} = \left(\frac{1}{2}\right)^{n} \\ (n < 0) \qquad p = 2 \\ P^{n} = \left(\frac{1}{2}\right)^{n} \\ (n < 0) \qquad p = 2 \\ P^{n} = \left(\frac{1}{2}\right)^{n} \\ (n < 0) \qquad p = 2 \\ P^{n} = \left(\frac{1}{2}\right)^{n} \\ (n < 0) \qquad p = 2 \\ P^{n} = \left($$

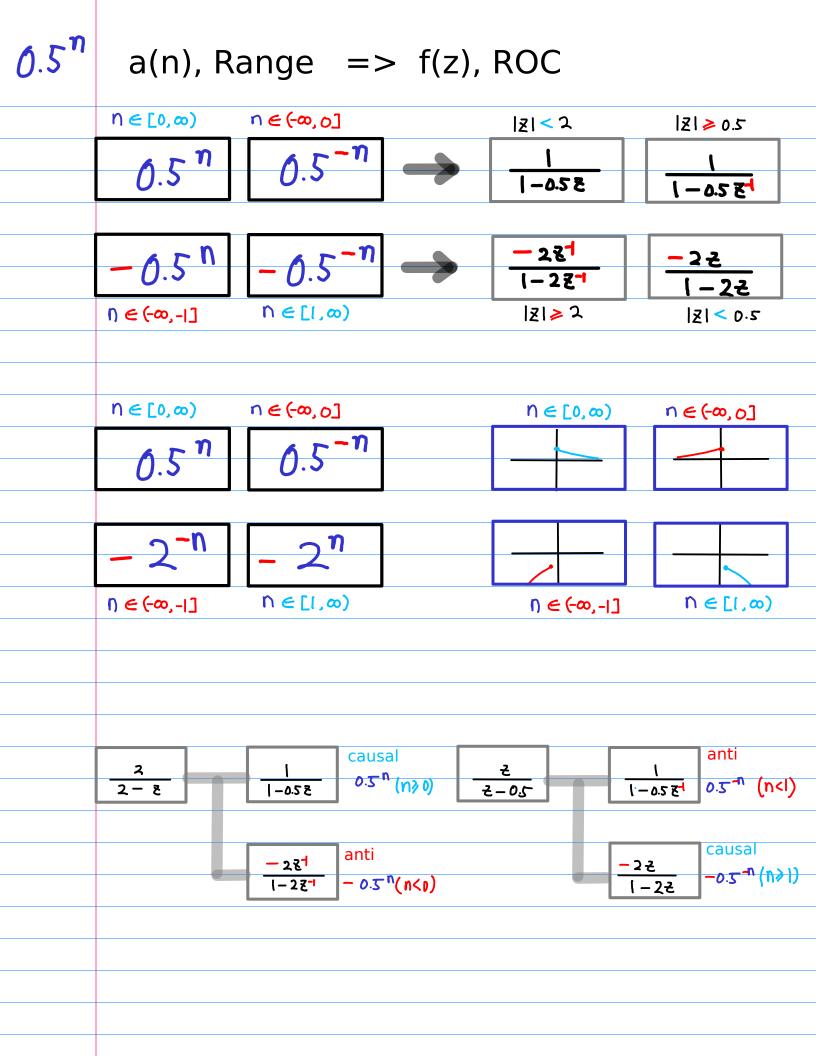


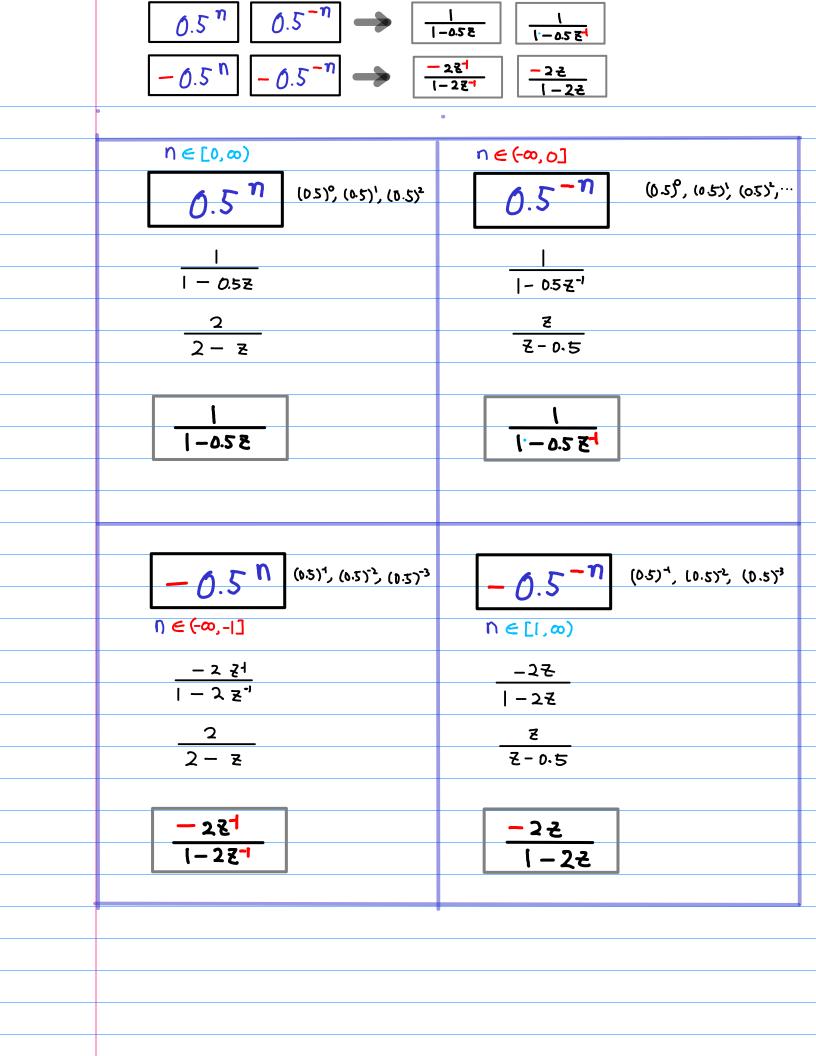
2	$ \begin{array}{c} f(z) & f(z^{1}) \\ f(z) & f(z^{1}) \\ \end{array} \begin{array}{c} a_{n} & a_{-n} \\ -a_{n} & -a_{-n} \\ \end{array} \\ \begin{array}{c} Laurent \\ \end{array} \end{array} $		
	causal Qn	Z ^{-!}	anti-causal Q_n
	-Qn anti-causal	2-1	Q-n causal
	Z-Transform X(1	e) ↔ Xn Y(Z)	→ J _n = -Z-n
	anti- causal X-n	Z ⁻¹	causal X.n
	causal X-n	2-1	anti- causal -Xn

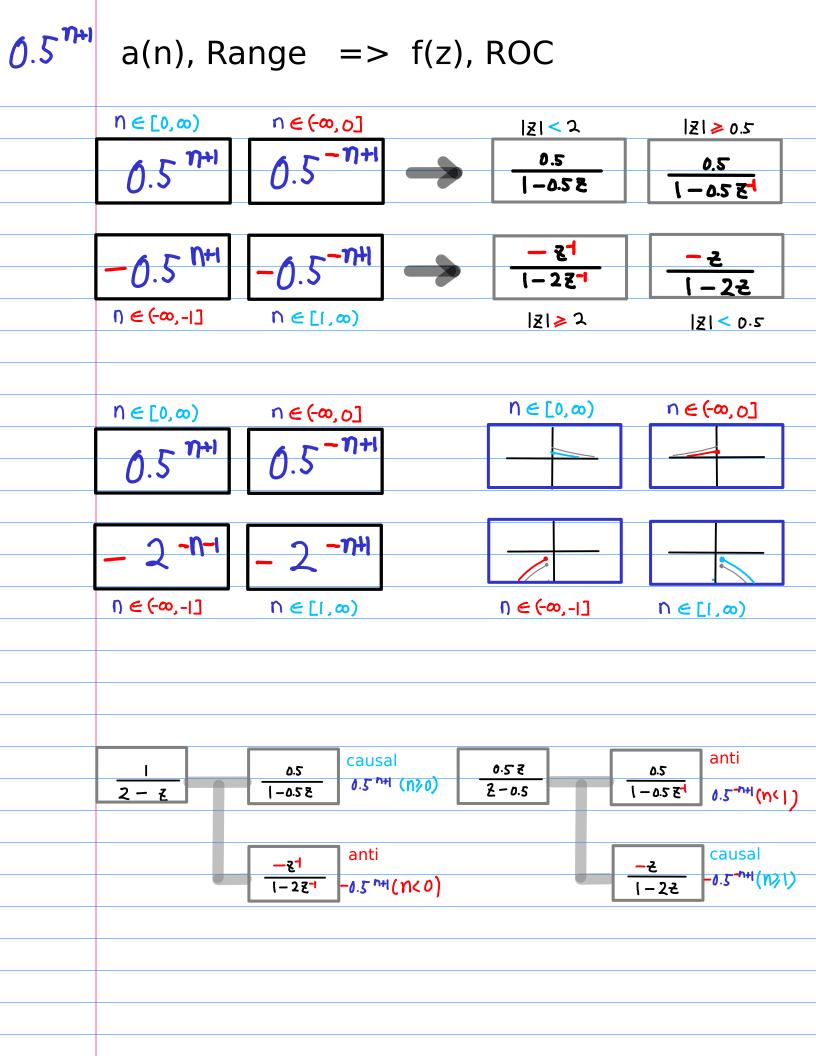

2 7		2 2	
$\frac{1}{2-\xi}$ $\frac{\xi}{\xi-05}$	0.5^{n} 0.5^{-n}	2-2 2-05	0.5 ⁻ⁿ 0.5 ⁿ
$\frac{2}{2-\frac{3}{2}}$ $\frac{2}{2-\frac{3}{2}}$	-0.5^{n} -0.5^{-n}	$\frac{2}{2}$ $\frac{2}{2}$	-0.5^{-n} -0.5^{n}
2-2 2-05		2-2 2-05	

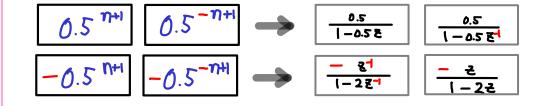

f(z) Laurent Series

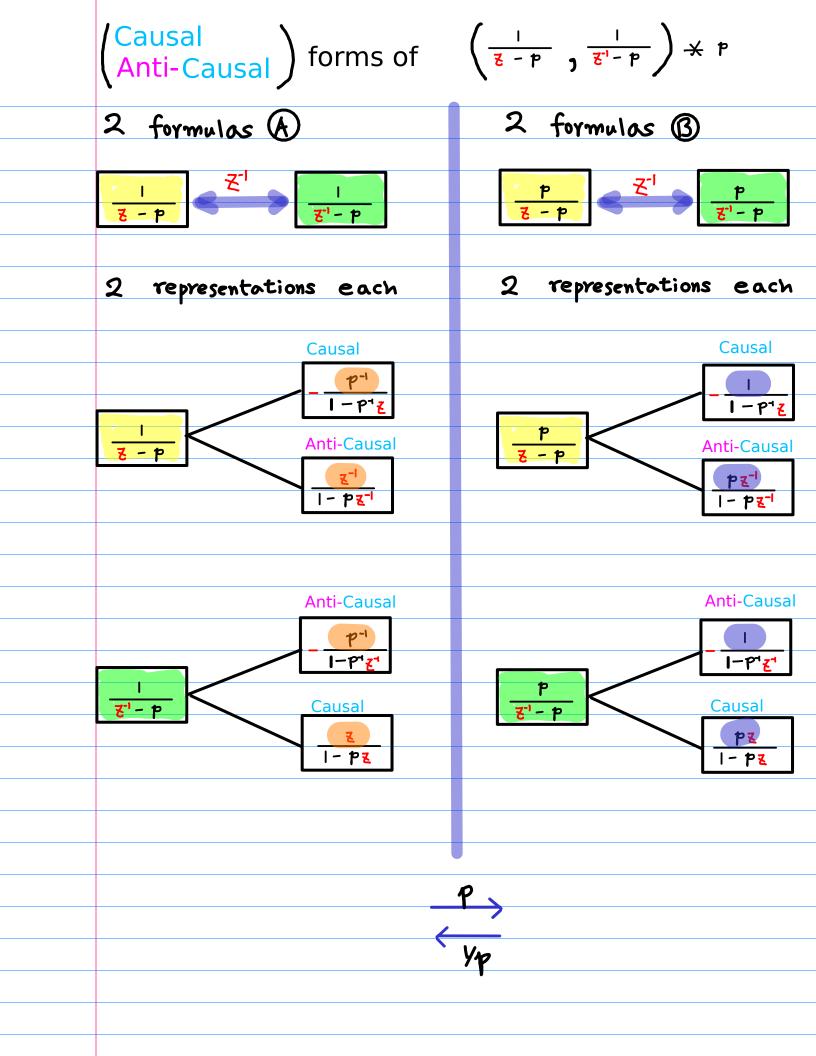


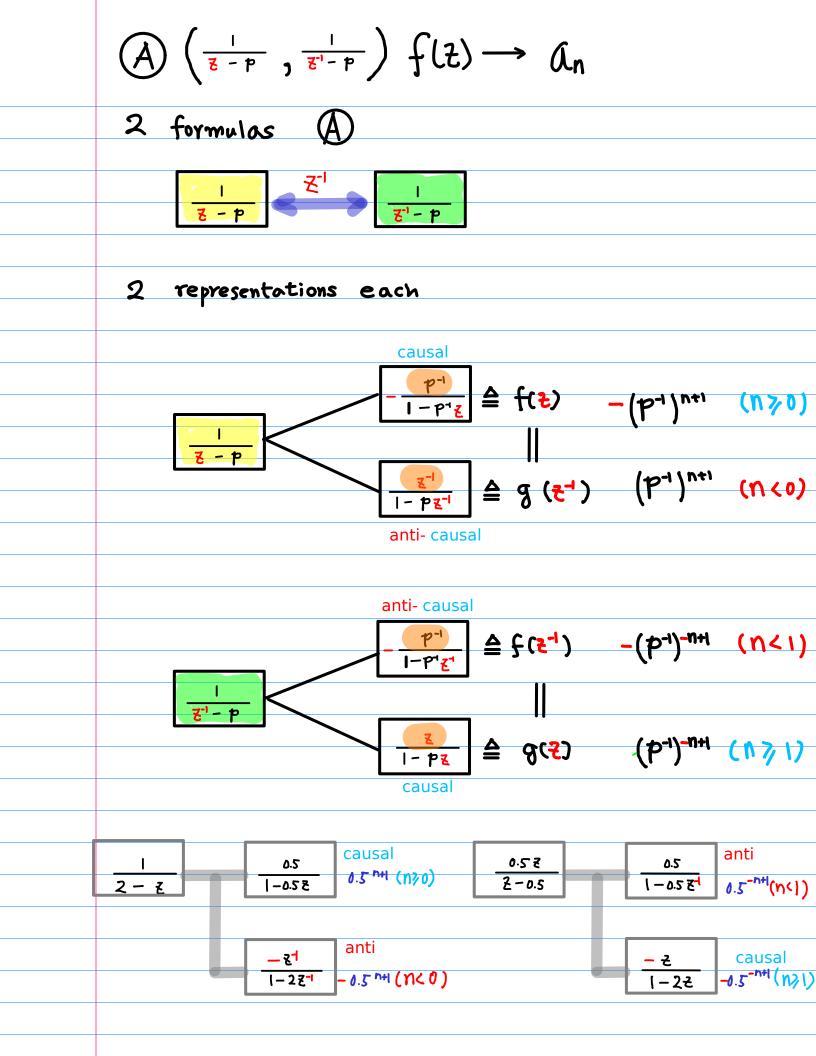

X(z) z-Transform

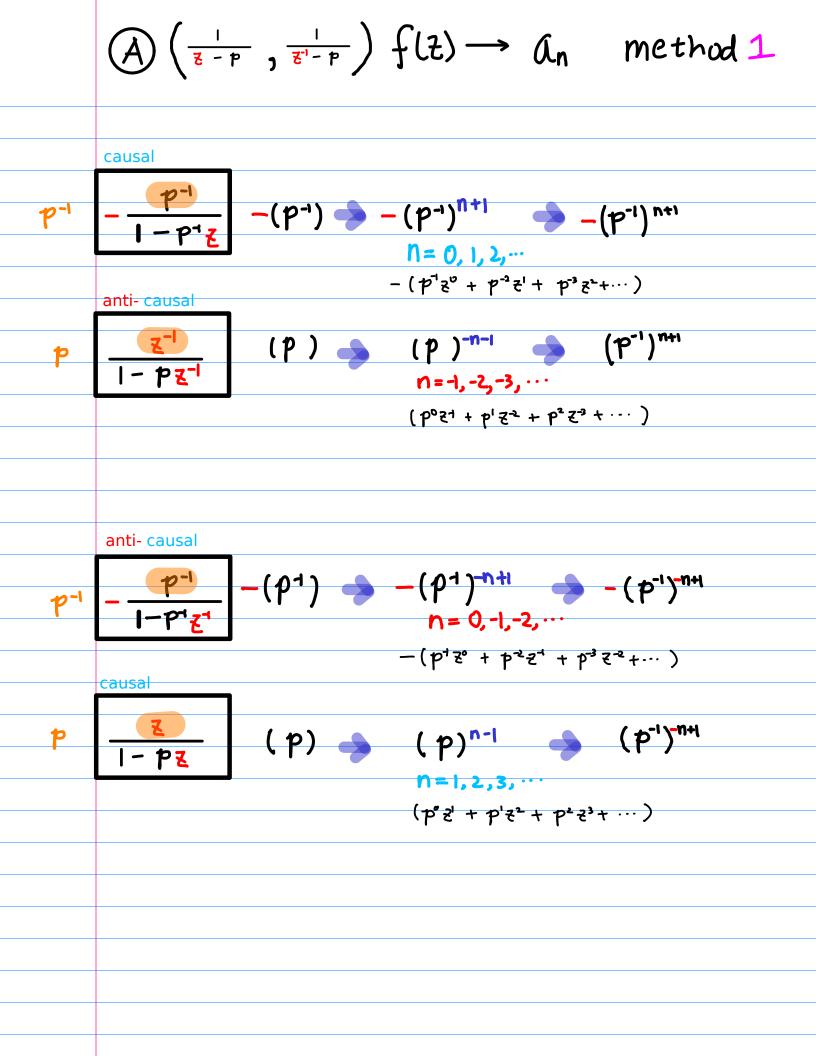

•

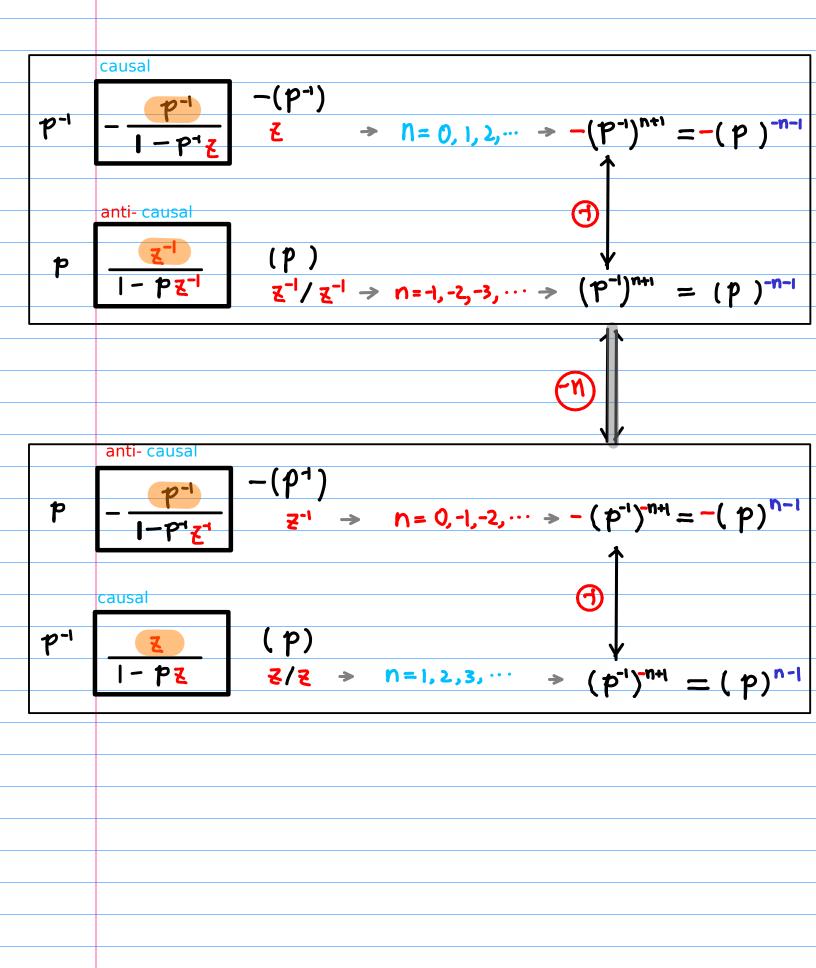


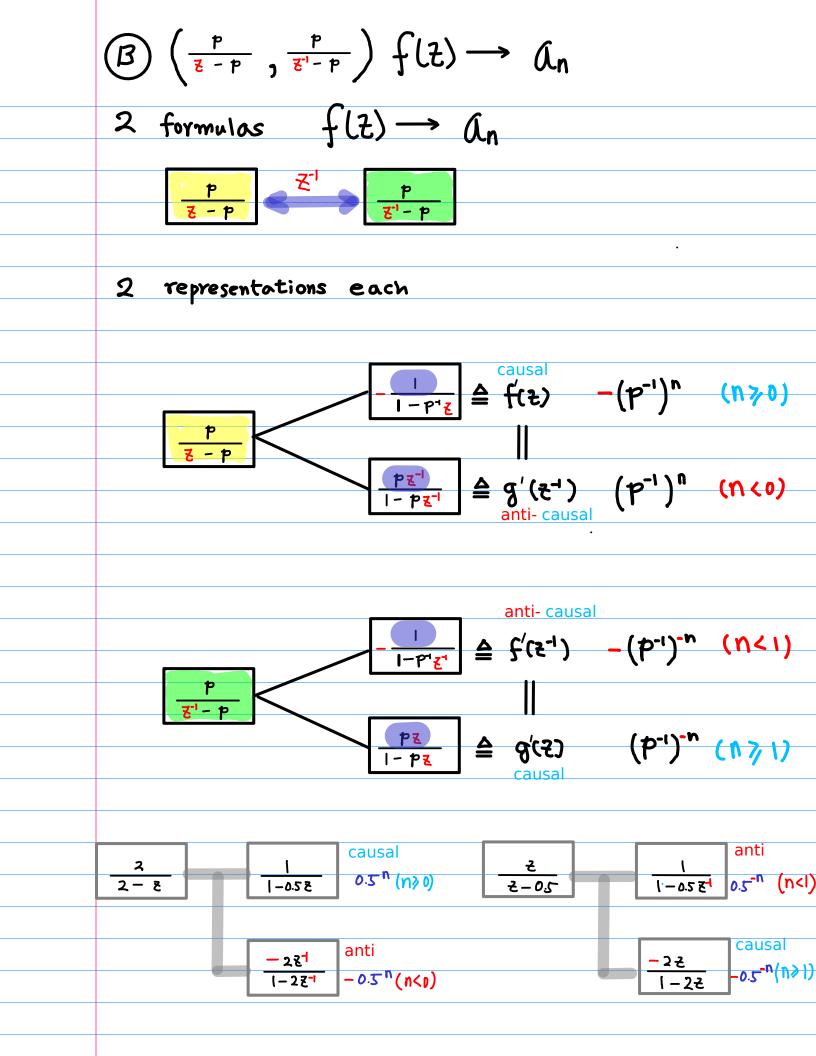


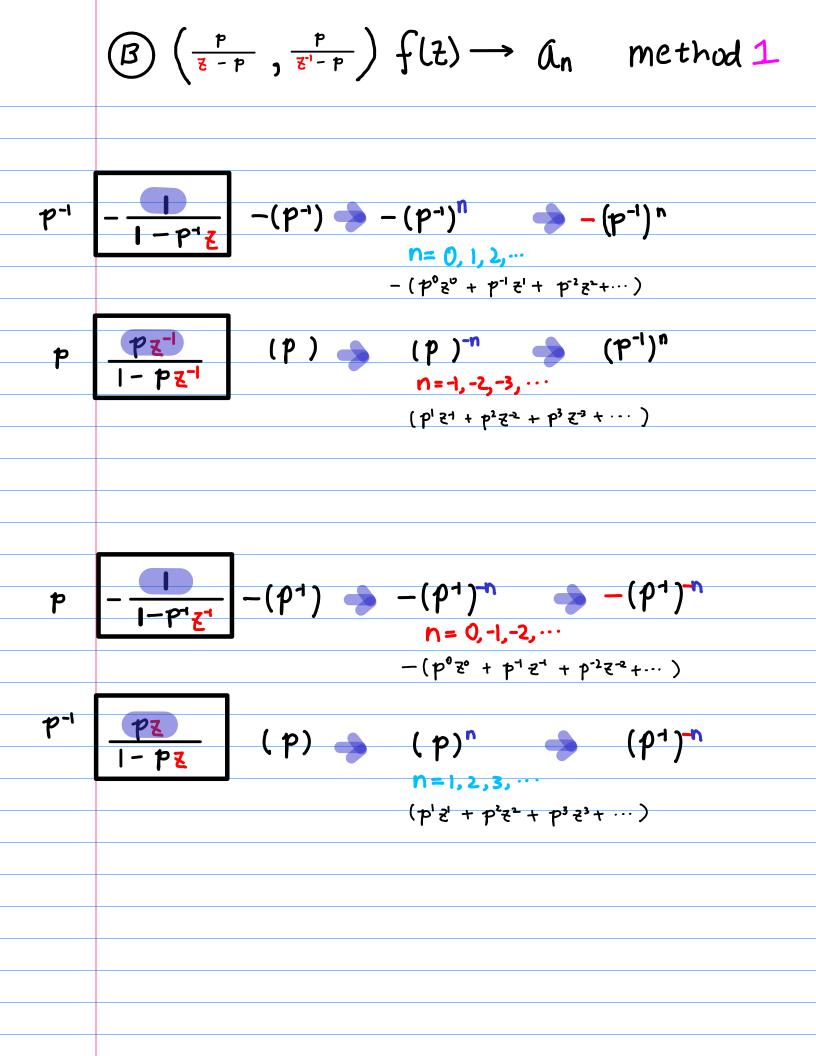


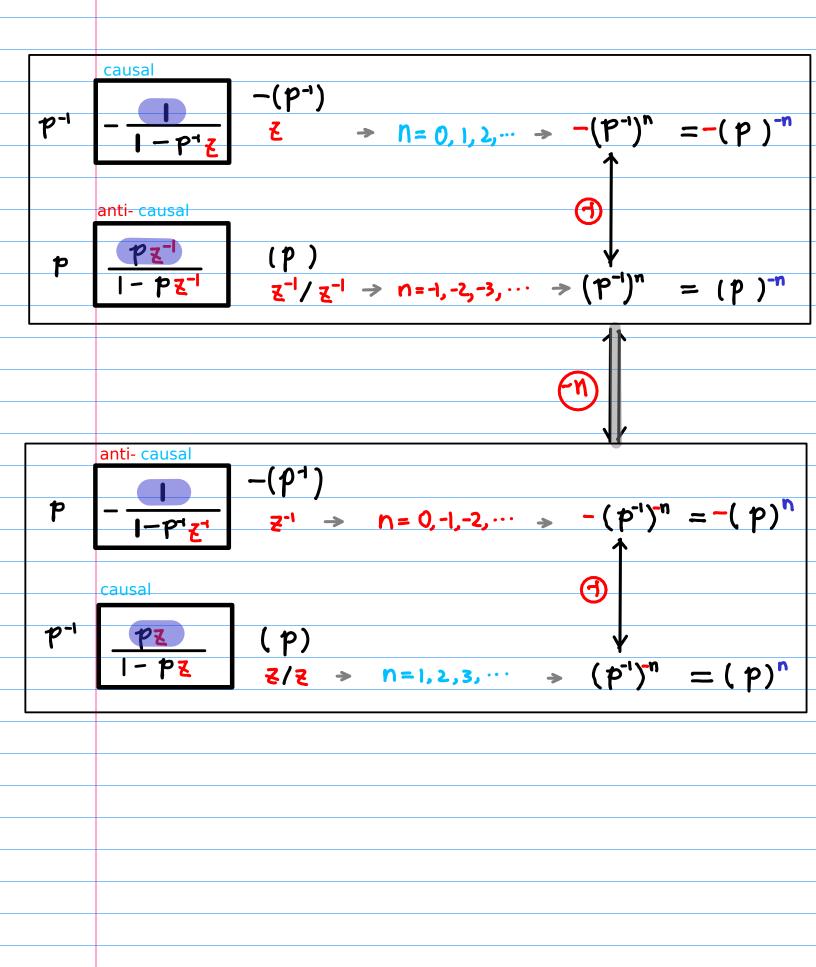


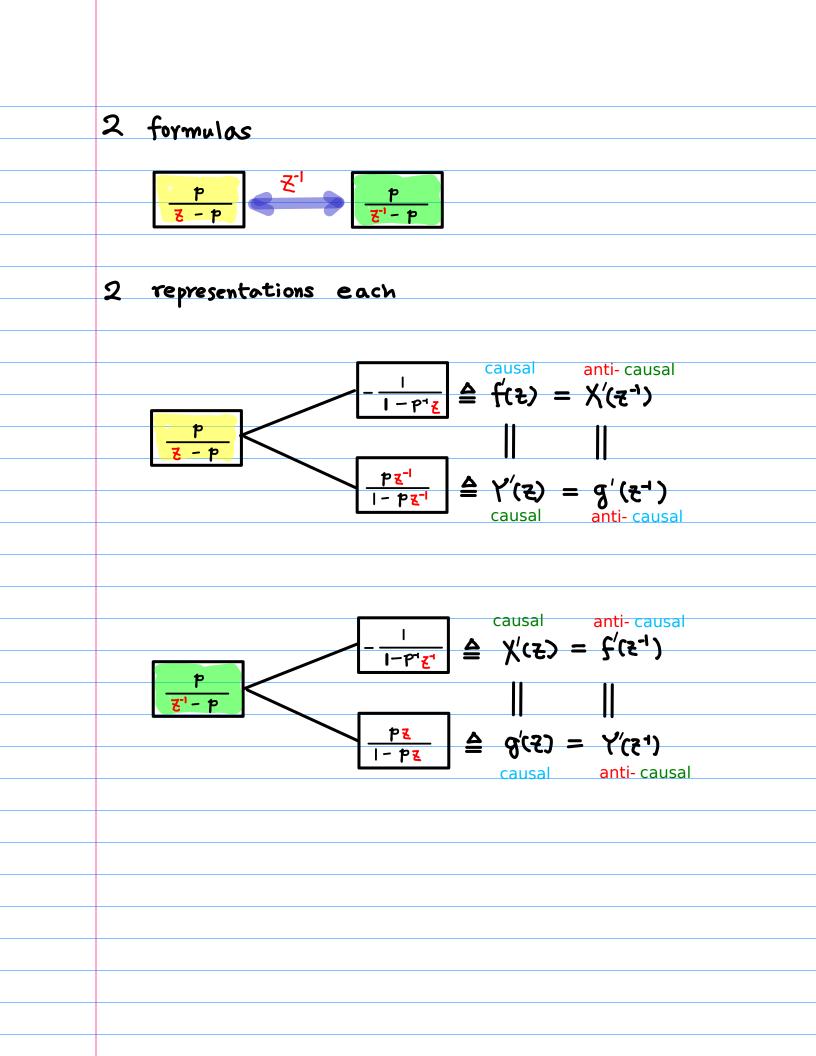



N∈[0,∞)	$n \in (-\infty, 0]$
$\int \sum n+1$ (0.5) ² , (0.5) ³	$(05)', (05)^2, (0.5)^3$
0.0	
0.5	0.5
— 0.5Z	- 0.52-1
l	0.5 Z
2- 2	2-0.5
0.5	0.5
-0.5 Z	<u>ا – ۵.5 ک</u>
-0.5 N+1 (0.5)°, (0.5) ¹ , (0.5) ²	$(0.5)^{\circ}$, $(0.5)^{4}$, $(0.5)^{-2}$
-0.5	-0.5
Ŋ ∈ (-∞, -]	$h \in [1,\infty)$
	- 2
<u>- そ</u> - ス	-22
I	052
2-z	2-0.5
<u> </u>	<u>– – 2</u>
<u> -2</u> <u>Z</u> ⁻¹	1-22






$$\left(\frac{1}{\overline{\epsilon} - p}, \frac{1}{\overline{\epsilon}' - p} \right) f(z) \rightarrow a_n \quad \text{method } 2$$



$$\mathbb{B}\left(\frac{p}{\overline{\epsilon}-p},\frac{p}{\overline{\epsilon}^{\prime}-p}\right)f(z) \rightarrow a_{n} \mod 2$$

$$\begin{pmatrix} \frac{p}{p-g}, \frac{p}{p-g^{*}} \end{pmatrix} = \begin{pmatrix} \frac{p}{p-g}, \frac{g}{g-p^{*}} \end{pmatrix}$$

$$\frac{\frac{a}{2-g}}{\frac{2}{2-g}}, \frac{\frac{g}{g^{*}}}{\frac{2}{2-g^{*}}}, \frac{\frac{a}{2-g^{*}}}{\frac{g}{2-g^{*}}}, \frac{\frac{g}{g^{*}}}{\frac{g}{2-g^{*}}}, \frac{$$

$$\frac{1}{p}\left(\frac{p}{p-g},\frac{g}{g-p^{*}}\right) = \left(\frac{1}{p-g},\frac{p^{*}g}{g-p^{*}}\right)$$

$$\frac{2}{2-g}\left(\frac{1}{1-agg},\frac{g}{g-p^{*}}\right) = \left(\frac{1}{p-g},\frac{p^{*}g}{g-p^{*}}\right)$$

$$\frac{2}{2-g}\left(\frac{1}{1-agg},\frac{g}{g-p^{*}}\right)$$

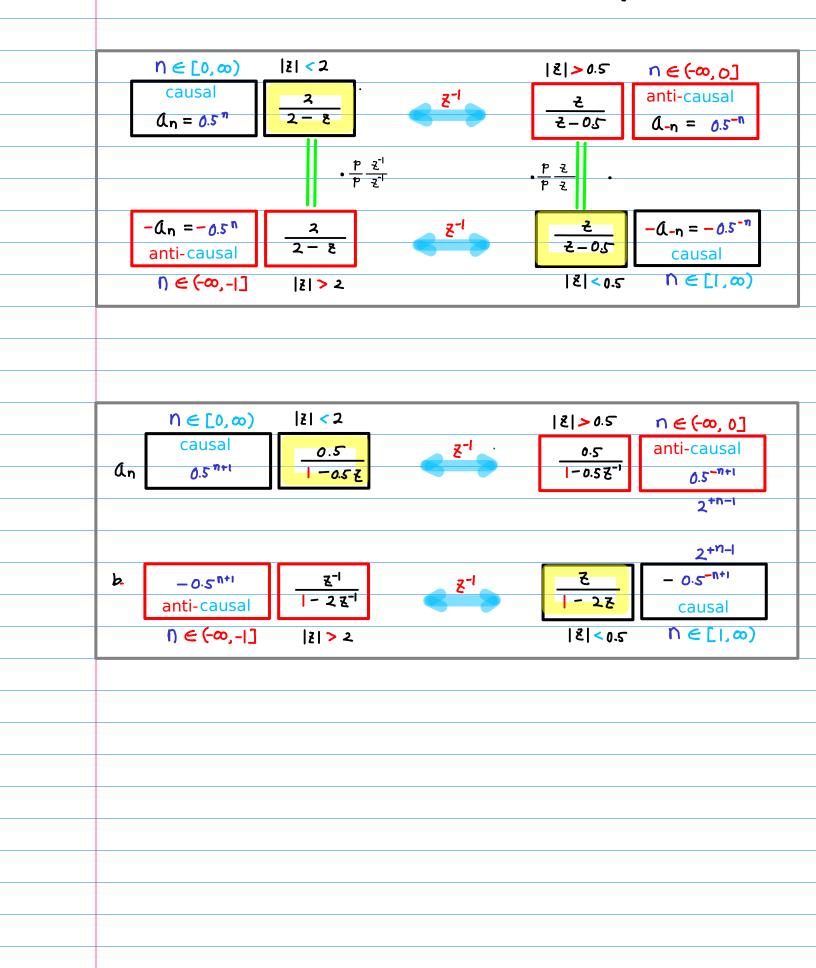
$$\frac{2}{1-2g}\left(\frac{1}{1-2g^{*}},\frac{g}{g-p^{*}}\right)$$

$$\frac{1}{1-2g}\left(\frac{1}{1-2g^{*}},\frac{g}{g-p^{*}}\right)$$

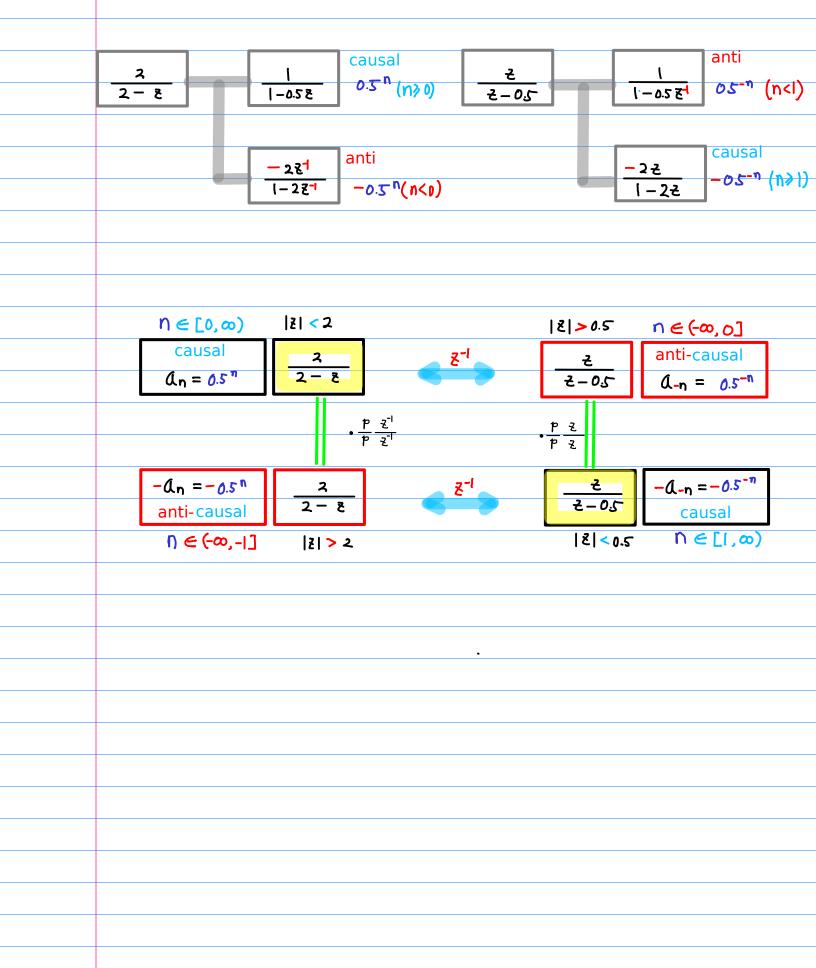
$$\frac{1}{1-2g}\left(\frac{1}{1-2g^{*}},\frac{g}{g-p^{*}}\right)$$

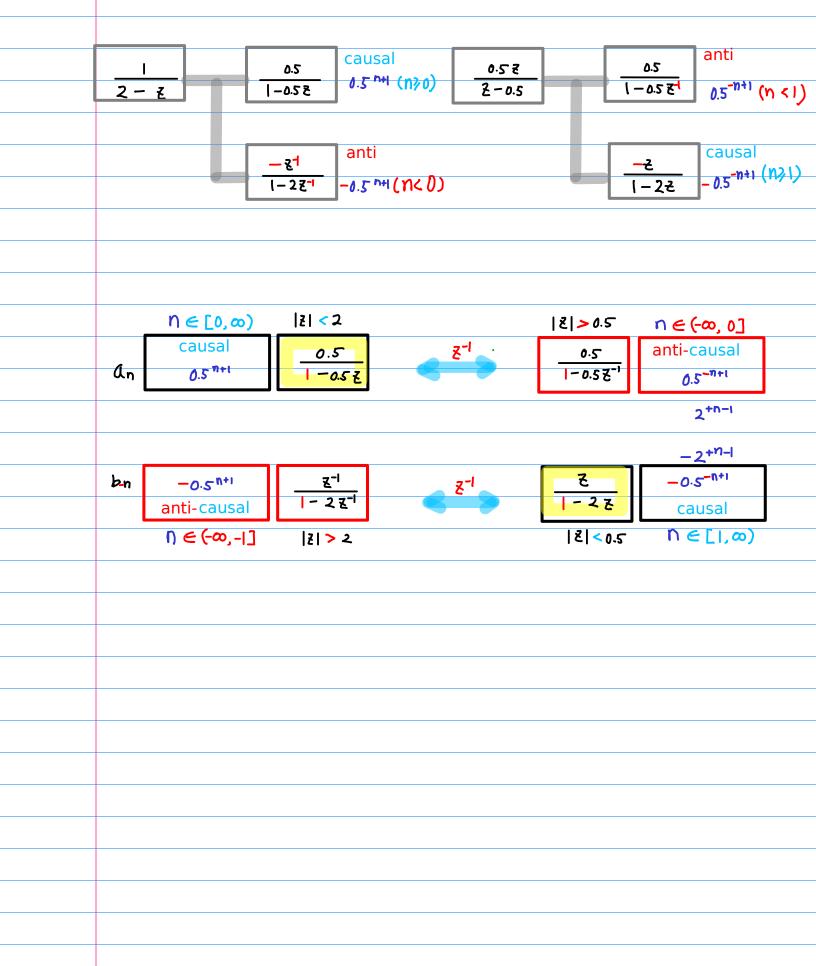
$$\frac{1}{1-2g}\left(\frac{1}{1-2g^{*}},\frac{g}{g-p^{*}}\right)$$

$$\frac{1}{1-2g}\left(\frac{1}{1-2g^{*}},\frac{g}{g-p^{*}}\right)$$


$$\frac{1}{1-2g}\left(\frac{1}{1-2g^{*}},\frac{g}{g-p^{*}}\right)$$

$$\frac{1}{1-2g}\left(\frac{1}{1-2g^{*}},\frac{g}{g-p^{*}}\right)$$


$$\frac{1}{1-2g}\left(\frac{1}{1-2g^{*}},\frac{g}{g-p^{*}}\right)$$


$$\frac{1}{2}\left(\frac{2}{2-\epsilon},\frac{2}{\epsilon-0}\right) = \left(\frac{0.5}{1-0\epsilon\epsilon},\frac{2}{1-2\epsilon}\right)$$

$$\left(\frac{\frac{p}{1-\frac{p}{2}}}{\frac{p}{2}-\frac{p}{2}}\right)$$

$$\left(\frac{1}{1+\frac{1}{2}},\frac{1}{2},\frac{1}{2}\right)$$

	Time Shift	1 = 2
	-	$f(z) = \frac{2}{2-z} \qquad \chi(z) = \frac{z}{z-0.5}$
3		$f(z) = -\frac{2}{2-z}$ $\chi(z) = -\frac{z}{z-0.5}$
(5)		$f(z) = -\frac{2z}{2-z} \qquad \chi(z) = -\frac{1}{z-0.2}$ $f(z) = -\frac{2z}{2-z} \qquad \chi(z) = -\frac{1}{z-0.2}$
9	$(N \ge -1)$ $(I_{n+1} = (\frac{1}{2})^{n+1}$	$f(z) = \frac{2}{(2-\frac{2}{2})\frac{2}{2}} \qquad \chi(z) = \frac{z^2}{\frac{2}{2}-0.5}$
	$\left(n < -1 \right) \left(l_{n+1} = \left(\frac{1}{2} \right)^{n+1} \right)$	$f(z) = -\frac{2}{(2-z)z} \qquad \chi(z) = -\frac{z^2}{z-0.5}$

	Time Shift	1 =
2	$(n \ge 0)$ $(l_n = (2)^n$ $(n < 0)$ $(l_n = (2)^n$	
6		$f(z) = \frac{0.5z}{0.5-z} \qquad \chi(z) = \frac{1}{z-2}$ $f(z) = -\frac{0.5z}{0.5-z} \qquad \chi(z) = -\frac{1}{z-2}$
	$(n \ge -1)$ $(l_{n+1} = (2)^{n+1}$ $(n < -1)$ $(l_{n+1} = (2)^{n+1}$, -

 $2 \leftrightarrow \frac{1}{2}$ **Time Shift** $f(t) = \frac{2}{2-t}$ (n >> 0) $(l_n = (\frac{1}{2})^n$ $\chi(s) = \frac{5}{5} - 0.2$ (1) $(n \ge 0) \quad a_n = (2)^n$ $f(z) = \frac{5}{5-2} = (z) \chi \qquad \chi(z) = \frac{5}{5-2} f(z) f(z)$ (2) (n < 0) $(l_n = (\frac{1}{2})^n$ $f(z) = -\frac{2}{2-z}$ $\chi(z) = -\frac{2}{z-0.5}$ 3 $(n < 0) \quad (l_n = (2)^n)$ $f(z) = -\frac{0.5}{0.5-z}$ $\chi(z) = -\frac{z}{z-z}$ (4) $f(z) = \frac{2z}{2-z} \qquad \chi(z) = \frac{1}{z-0.5}$ (5) $(N \ge I)$ $(I_{n-1} = (\frac{I}{2})^{n-1}$ $(n \ge 1) \quad (l_{n-1} = (2)^{n-1})$ $f(z) = \frac{0.5z}{0.5-z}$ $\chi(z) = \frac{1}{z-2}$ 6 (n < 1) $(l_{n-1} = \left(\frac{1}{2}\right)^{n-1}$ $f(z) = -\frac{2z}{2-z}$ $\chi(z) = -\frac{1}{z-0.5}$ $(n < 1) \quad (l_{n-1} = (2)^{n-1})$ 8 $f(z) = -\frac{0.5z}{0.5-z}$ $\chi(z) = -\frac{1}{z-z}$ $\left(\hat{J}_{n+1} = \left(\frac{1}{2}\right)^{n+1}\right)$ $\chi(s) = \frac{\frac{5}{5} - 0.2}{\frac{5}{5}}$ (9) (n≥-I) $f(t) = \frac{2}{(2-t)t}$ $(n \ge -1) \quad (l_{n+1} = (2)^{n+1})$ $\chi(z) = \frac{z^2}{z^2-2}$ $f(z) = \frac{0.5}{(5-2.0)^2}$ (10) (n < -1) $(l_{n+1} = (\frac{1}{2})^{n+1}$ $f(z) = -\frac{z}{(2-z)z}$ $\chi(z) = -\frac{z^2}{z-0.5}$ (I) $\left(l_{n+1} = (2)^{n+1} \right)$ (n<-1) (12) $f(z) = -\frac{0.5}{(0.5-z)^2}$ $\chi(z) = -\frac{z^2}{z-z}$

Shift to the right
$$\rightarrow$$
 sg sg^{4}
 $Jutet = A_{0}$
() $(n \ge 0) \quad A_{n} = \left(\frac{1}{2}\right)^{n} \quad f(s) = \frac{2}{\lambda - \varepsilon} \quad \chi(s) = \frac{\varepsilon}{\varepsilon - s.5}$
(s) $(n \ge 1) \quad A_{n-1} = \left(\frac{1}{2}\right)^{n-1} \quad f(s) = \frac{2\varepsilon}{\lambda - \varepsilon} \quad \chi(s) = \frac{1}{\varepsilon - s.5}$
(2) $(n \ge 0) \quad A_{n} = (2)^{n} \quad f(s) = \frac{\delta.5}{\delta.5 - 2} \quad \chi(s) = \frac{1}{\varepsilon - 2}$
(6) $(n \ge 1) \quad A_{n-1} = (2)^{n-1} \quad f(s) = \frac{\delta.5}{\delta.5 - 2} \quad \chi(s) = \frac{1}{\varepsilon - 2}$
(3) $(n < 0) \quad A_{n} = \left(\frac{1}{2}\right)^{n} \quad f(s) = -\frac{2\varepsilon}{\lambda - 2} \quad \chi(s) = -\frac{1}{\varepsilon - 2}$
(4) $(n < 1) \quad A_{n-1} = (2)^{n-1} \quad f(s) = -\frac{\delta.5}{\delta.5 - 1} \quad \chi(s) = -\frac{1}{\varepsilon - 1}$
(5) $(n < 1) \quad A_{n-1} = (2)^{n} \quad f(s) = -\frac{\delta.5}{\delta.5 - 1} \quad \chi(s) = -\frac{1}{\varepsilon - 1}$
(6) $(n < 1) \quad A_{n-1} = (2)^{n-1} \quad f(s) = -\frac{\delta.5}{\delta.5 - 1} \quad \chi(s) = -\frac{1}{\varepsilon - 1}$

Shift to the left
Shift to the left
$$\leftarrow$$
 $*g^{-1}$ $*\overline{g}$
dutate Δ_{0}
($n \ge 0$) $\Delta_{n} = (\frac{1}{2})^{n}$ $f(z) = \frac{2}{2 - z}$ $X(z) = \frac{2}{z - bS}$
($n \ge 0$) $\Delta_{n} = (\frac{1}{2})^{n+1}$ $f(z) = \frac{2}{(2 - z)\overline{z}}$ $X(z) = \frac{z}{z - bS}$
($n \ge 0$) $\Delta_{n} = (2)^{n}$ $f(z) = \frac{0.5}{0.5 - \overline{z}}$ $X(z) = \frac{z}{z - 2}$
($n \ge 0$) $\Delta_{n} = (2)^{n+1}$ $f(z) = \frac{0.5}{(2 - 2)\overline{z}}$ $X(z) = \frac{z}{z - 2}$
($n \ge -1$) $\Delta_{n+1} = (2)^{n+1}$ $f(z) = -\frac{2}{2 - 2}$ $X(z) = -\frac{z}{z - 2}$
($n < 0$) $\Delta_{n} = (\frac{1}{2})^{n}$ $f(z) = -\frac{2}{2 - 2}$ $X(z) = -\frac{z}{z - 2}$
($n < 0$) $\Delta_{n} = (\frac{1}{2})^{n+1}$ $f(z) = -\frac{2}{(2 - \overline{z})\overline{z}}$ $X(z) = -\frac{z}{z - 2}$
($n < 0$) $\Delta_{n} = (\frac{1}{2})^{n+1}$ $f(z) = -\frac{2}{(2 - \overline{z})\overline{z}}$ $X(z) = -\frac{z}{z - b\overline{z}}$
($n < 0$) $\Delta_{n} = (2)^{n}$ $f(z) = -\frac{0.5}{-b\overline{z}-\overline{z}}$ $X(z) = -\frac{z}{z - 2}$
($n < -1$) $\Delta_{n+1} = (2)^{n+1}$ $f(z) = -\frac{0.5}{(b\overline{z}-\overline{z})\overline{z}}$ $X(z) = -\frac{z}{z - 1}$

n= -4	n=-3	N=-7	N=-1	n=0	n=1	n=2		
3 و	b²	Ъ'	b°	b'	b	Ь		
6n+1	⁾	-3,-4,		b ⁿ⁺¹	n = -j	•••• ا رەر		
			_	-				
	n=-3	N=-5	Ŋ=-1	n= 0	n=1	n=2	N=3	
	p3	b	6	b°	b'	b	6	
	61	n=-1,-	۰۰ ر۲. ر۲		Ь"	n = 0,	, <u>], 2</u> , · · -	
	,							
	n=-3	N=-7	Ŋ=-1	n= 0	n=I	n=2	N=3	
		p3	b²	Ъ	b°	b'	b	6
	Ł) ⁿ⁻¹ n=	0, ٦, -٢,		br	n =	۰۰۰ ر3، ۲٫۵ = ۱٫	

$$I \longleftrightarrow \frac{1}{1}$$
(1) $(n \ge 0)$ $\mathcal{A}_{n} = (1)^{n}$ $f^{(2)} = \frac{1}{1-2}$ $X^{(2)} = \frac{2}{z-1}$
(2) $(n \ge 0)$ $\mathcal{A}_{n} = (1^{n})^{n}$ $f^{(2)} = \frac{1}{1-2}$ $X^{(2)} = \frac{2}{z-1}$
(3) $(n < 0)$ $\mathcal{A}_{n} = (1^{n})^{n}$ $f^{(2)} = -\frac{1}{1-z}$ $X^{(2)} = -\frac{2}{z-1}$
(4) $(n < 0)$ $\mathcal{A}_{n} = (1^{n})^{n}$ $f^{(2)} = -\frac{1}{1-z}$ $X^{(2)} = -\frac{2}{z-1}$
(5) $(n < 0)$ $\mathcal{A}_{n} = (1^{n})^{n-1}$ $f^{(2)} = -\frac{2}{1-2}$ $X^{(2)} = -\frac{2}{z-1}$
(6) $(n < 1)$ $\mathcal{A}_{n-1} = (1^{n})^{n-1}$ $f^{(2)} = -\frac{2}{1-2}$ $X^{(2)} = \frac{1}{z-1}$
(7) $(n < 1)$ $\mathcal{A}_{n-1} = (1^{n})^{n-1}$ $f^{(2)} = -\frac{2}{1-z}$ $X^{(2)} = -\frac{1}{z-1}$
(8) $(n < 1)$ $\mathcal{A}_{n-1} = (1^{n})^{n-1}$ $f^{(2)} = -\frac{2}{1-z}$ $X^{(2)} = -\frac{1}{z-1}$
(9) $(n < 1)$ $\mathcal{A}_{n-1} = (1^{n})^{n-1}$ $f^{(2)} = -\frac{1}{1-z}$ $X^{(2)} = -\frac{1}{z-1}$
(9) $(n < 1)$ $\mathcal{A}_{n-1} = (1^{n})^{n-1}$ $f^{(2)} = -\frac{1}{1-z}$ $X^{(2)} = -\frac{1}{z-1}$
(9) $(n < 1)$ $\mathcal{A}_{n-1} = (1^{n})^{n+1}$ $f^{(2)} = -\frac{1}{(1-2)z}$ $X^{(2)} = \frac{z}{z-1}$
(10) $(n > 1)$ $\mathcal{A}_{n+1} = (1^{n})^{n+1}$ $f^{(2)} = -\frac{1}{(1-2)z}$ $X^{(2)} = -\frac{z}{z-1}$
(11) $(n < 1)$ $\mathcal{A}_{n+1} = (1^{n})^{n+1}$ $f^{(2)} = -\frac{1}{(1-2)z}$ $X^{(2)} = -\frac{z}{z-1}$
(12) $(n < 1)$ $\mathcal{A}_{n+1} = (1^{n})^{n+1}$ $f^{(2)} = -\frac{1}{(1-2)z}$ $X^{(2)} = -\frac{z}{z-1}$
(13) $(n < 1)$ $\mathcal{A}_{n+1} = (1^{n})^{n+1}$ $f^{(2)} = -\frac{1}{(1-2)z}$ $X^{(2)} = -\frac{z}{z-1}$
(14) $(n < -1)$ $\mathcal{A}_{n+1} = (1^{n})^{n+1}$ $f^{(2)} = -\frac{1}{(1-2)z}$ $X^{(2)} = -\frac{z}{z-1}$
(15) $(n < -1)$ $\mathcal{A}_{n+1} = (1^{n})^{n+1}$ $f^{(2)} = -\frac{1}{(1-2)z}$ $X^{(2)} = -\frac{z}{z-1}$
(16) $(n < -1)$ $\mathcal{A}_{n+1} = (1^{n})^{n+1}$ $f^{(2)} = -\frac{1}{(1-2)z}$ $X^{(2)} = -\frac{z}{z-1}$
(17) $\mathcal{A}_{n+1} = (1^{n})^{n+1}$ $f^{(2)} = -\frac{1}{(1-2)z}$ $X^{(2)} = -\frac{z}{z-1}$
(18) $(n < -1)$ $\mathcal{A}_{n+1} = (1^{n})^{n+1}$ $f^{(2)} = -\frac{1}{(1-2)z}$ $X^{(2)} = -\frac{z}{z-1}$

(i)
$$(n \ge 0)$$
 $\mathcal{A}_{n} = (1)^{n}$ $f(z) = \frac{1}{1-z}$ $X(z) = \frac{z}{z-1}$
(2) $(n \ge 0)$ $\mathcal{A}_{n} = (1^{n})^{n}$ $f(z) = \frac{1}{1-z}$ $X(z) = \frac{z}{z-1}$
Shift to the right \rightarrow $z = \frac{z}{1-z}$ $X(z) = \frac{z}{z-1}$
(5) $(n \ge 1)$ $\mathcal{A}_{n+} = (1)^{n-1}$ $f(z) = -\frac{z}{1-z}$ $X(z) = \frac{1}{z-1}$
(6) $(n \ge 1)$ $\mathcal{A}_{n+} = (1^{n})^{n-1}$ $f(z) = -\frac{z}{1-z}$ $X(z) = -\frac{z}{z-1}$
(3) $(n < 0)$ $\mathcal{A}_{n} = (1^{n})^{n}$ $f(z) = -\frac{1}{1-z}$ $X(z) = -\frac{z}{z-1}$
(4) $(n < 0)$ $\mathcal{A}_{n} = (1^{n})^{n}$ $f(z) = -\frac{1}{1-z}$ $X(z) = -\frac{z}{z-1}$
(5) $(n < 1)$ $\mathcal{A}_{n+} = (1^{n})^{n-1}$ $f(z) = -\frac{1}{1-z}$ $X(z) = -\frac{z}{z-1}$
(6) $(n < 1)$ $\mathcal{A}_{n+} = (1^{n})^{n-1}$ $f(z) = -\frac{1}{1-z}$ $X(z) = -\frac{z}{z-1}$
(7) $(n < 1)$ $\mathcal{A}_{n+} = (1^{n})^{n-1}$ $f(z) = -\frac{z}{1-z}$ $X(z) = -\frac{1}{z-1}$
(8) $(n < 1)$ $\mathcal{A}_{n+1} = (1^{n})^{n-1}$ $f(z) = -\frac{z}{1-z}$ $X(z) = -\frac{1}{z-1}$
(9) $(n < 1)$ $\mathcal{A}_{n+1} = (1^{n})^{n-1}$ $f(z) = -\frac{z}{1-z}$ $X(z) = -\frac{1}{z-1}$

Causality

f(z) (|z| < p) \leftrightarrow A_n ($n \ge 0$) $-(p^n, p^n, p^n, \cdots)$ $\chi(z^{-1}) (|z| < P) \iff \chi_{-n} (n < |) - (p^{-1}, p^{-2}, p^{-3}, \cdots)$ $f(\mathcal{E}^{\mathsf{I}})(|\mathcal{E}| > p^{\mathsf{I}}) \iff \mathcal{A}_{-n}(n < |) - (p^{\mathsf{I}}, p^{\mathsf{I}}, p^{\mathsf{I}}, p^{\mathsf{I}}, \cdots)$ $X(\mathcal{E})(|\mathcal{E}| > p^{\mathsf{I}}) \iff \mathcal{X}_{n}(n \ge 0) - (p^{\mathsf{I}}, p^{\mathsf{I}}, p^{\mathsf{I}}, \cdots)$ $f(z)(|z|>p) \leftrightarrow -\alpha_n (n < 0) (p^0, p^1, p^2, ...)$ X(z') (|z| > P) $\leftrightarrow -z_n$ ($n \ge 1$) (p^0, p', p^2, \cdots) $f(z^{-1})(|z| < p^{-1}) \leftrightarrow -A_{-n}(n \ge 1) (p^{\circ}, p^{\circ}, p^{\circ}, \cdots)$ X(z)(|z| < p^{-1}) \leftrightarrow -r_n(n < 0) (p^{\circ}, p^{\circ}, p^{\circ}, \cdots)

f(Z) f(Z) g(Z) g(Z)	$\begin{array}{c c} X(z^{1}) & X(z) \\ Y(z) & Y(z^{-1}) \end{array} & \begin{array}{c} a_{n} & a_{-n} \\ b_{-n} & b_{n} \end{array} & \begin{array}{c} x_{-n} & x_{n} \\ y_{n} & y_{-n} \end{array}$
f(z) f(z') f(z) f(z')	X(そ ¹) X (そ) X(そ ¹) X (そ)
$-(p^{4}, p^{2}, p^{3},) - (p^{4}, p^{2}, p^{3},)$ $(p^{9}, p^{1}, p^{2},) (p^{9}, p^{1}, p^{2},)$	$-(p^{i}, p^{2}, p^{3},) - (p^{i}, p^{2}, p^{3},)$ $(p^{0}, p^{1}, p^{2},) (p^{0}, p^{1}, p^{2},)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

f(z) g(z) Y(z) X(z)	An An	Xn Xr
f(z) g(z) Y(z) X(z)	-an-a-n	-X-n -Xr
8 <1P 8 >1P ⁻¹ 8 <1P 8 >1P ⁻¹		
& >P & <p<sup>-1 & >P & <p<sup>-1</p<sup></p<sup>		
[0, \omega) (-\omega, 0] [0, \omega)		
$(-\infty, -] [1, \infty) [1, \infty) (-\infty, -]$		
_ (40 ⁻¹ 40 ⁻² 40 ⁻³)		
$-(p_{1}^{e_{1}}, p_{2}^{e_{1}}, p_{3}^{e_{3}}, \cdots) -(p_{1}^{e_{1}}, p_{2}^{e_{1}}, p_{3}^{e_{1}}, \cdots) -(p_{2}^{e_{1}}, p_{3}^{e_{1}}, p_{3}^{e_{2}}, \cdots) -(p_{2}^{e_{1}}, p_{3}^{e_{2}}, \cdots) -(p_{2}^{e_{1}}, p_{3}^{e_{1}}, p_{3}^{e_{1}}, p_{3}^{e_{2}}, \cdots) -(p_{2}^{e_{1}}, p_{3}^{e_{1}}, p_{3}^{e_{1}}, p_{3}^{e_{1}}, p_{3}^{e_{1}}, \cdots) -(p_{2}^{e_{1}}, p_{3}^{e_{1}}, p_{3}^{e_{1}}, \cdots) -(p_{2}^{e_{1}}, p_{3}^{e_{1}}, p_{3}^{e_{1}}, \cdots) -(p_{2}^{e_{1}$		

[(an an	$2^n 2^n \qquad \alpha_n = -2^n$
	Δn-Δ-n	$2^{n} 2^{n} \qquad A_{n} = -2^{n}$ $-2^{n} - 2^{n}$
	Xn Xn Xn-Xn	$2^{n} 2^{n} \chi_{n} = -2^{n}$ $-2^{n} -2^{n}$
	$(p^{1}, p^{2}, p^{3},) - (p^{1}, p^{2}, p^{3},)$	-(-2, -2, -2,) -(-2, -2, -2,)
	$(p^{0}, p^{1}, p^{2}, \cdots) (p^{0}, p^{1}, p^{2}, \cdots)$	$(2^{\circ}, 2^{\circ}, 2^{\circ}, \cdots)$ $(2^{\circ}, 2^{\circ}, 2^{\circ}, \cdots)$
	$-\frac{p^{-1}}{1-p^{-1}z} - \frac{p^{-1}}{1-p^{-1}z^{-1}}$	$ \frac{2^{-1}}{1-2^{-1}z} \qquad \frac{2^{-1}}{1-2^{-1}z^{-1}} \qquad \frac{\frac{1}{2}}{1-\frac{z}{2}} \qquad \frac{\frac{1}{2}}{1-\frac{z}{2}} \\ -\frac{z^{-1}}{1-2z^{-1}} \qquad -\frac{z}{1-2z} \qquad -\frac{\frac{1}{2}}{1-\frac{z}{2}} \qquad -\frac{z}{1-\frac{z}{2}} $
	$ \frac{p^{-1}}{1-p^{-1}z^{-1}} - \frac{p^{-1}}{1-p^{-1}z^{-1}} - \frac{z^{-1}}{1-p^{-1}z^{-1}} -$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	१ <1P १ >1P ⁻¹	ἕ <2 ἕ >2 ⁻¹
	٤ > ٦ ٤ <٦ ⁻¹	ē > 2 ē < 2 ⁻¹
	[0,∞) (-∞,0]	[0,∞) (-∞, 0]
	(-∞,-] [<u> </u> ,∞)	(-∞,-] [,∞)