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Sampling and Normalized Frequency 

ω0 t = 2π f 0 t

ω0 nT s = 2π f 0nT s

t = nT s

f 0 =
1
T 0

=
2π
T 0

nT s

= 2π n
T s

T 0

T
0
  : signal period

T
s
  : sampling period

F 0 = f 0T s =
f 0

f s

= 2π n F0

T s

T 0

=
f 0

f s

normalization 

normalization 
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Analog and Digital Frequencies

nω0T s = 2π n f 0T s

ω0 t = 2π f 0 t

Ω0n = 2π n F0

ω0T s = Ω0 f 0T s = F0

Analog Signal Frequency

Digital Signal Frequency

t = nT st = nT s
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Multiplying by T
s
 – Normalization 

ω0 t = 2π f 0 t

Ω0n = 2π n F0

⋅T s
Normalization ⋅T s

Analog Signal

Digital Signal
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Normalization 

F0 = f 0⋅T s

= f 0 / f s

= T s / T 0

Multiplied by T
s

Ω0 = 2πF0

f 0 / f s

f 0⋅T s

Divided by f
s

f s > 2⋅f 0

f 0 / f s < 0.5

Sampling Rate 
Minimum
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Normalized Cyclic and Radian Frequencies

Normalized Cyclic Frequency

Normalized Radian Frequency

F0 cycles / sample =
f 0 cycles / second
f s samples / second

Ω0 cycles / sample =
ω0 cycles / second
f s samples / second
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Periodic Relation : N
0
 and F

0

e j(2π(n+N 0)F0) = e j(2πnF0)

Digital Signal Period N0 
: the smallest integer 

e j2πN 0 F0 e j2πm = 1

2πN 0 F0 = 2πm

Periodic Condition
: integer m

N 0 F0 = m

e j2πm = 1
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Periodic Condition : N
0
 and F

0
 

2πN 0 F0 = 2πm

N 0 =
m
F0

= m⋅
T 0

T s

Integer * Rational : 
must be an Integer 

Digital Signal Period N0 
: the smallest integer 

Periodic Condition
: the smallest integer m m ≠ T s

m = p

N 0 F0 = m

reduced form
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Periodic Condition : N
0
 and F

0
 in a reduced form 

N 0 =
m
F0

= m⋅
T 0

T s

Integer * Rational : 
must be an Integer 

Integer

Rational numbers

= m⋅
q
p

reduced form
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N
0
 and F

0
 in a reduced form : Examples

F0 =
p
q

1
F0

=
2.678
4.017

=
2⋅1.339
3⋅1.339

=
2
3

m ≠ 4.017

1
F0

=
10
15

=
2⋅5
3⋅5

=
2
3

m ≠ 15m = 3

the smallest integer m

reduced form

Rational

N 0 =
m
F0

= m⋅
q
p

N 0 → q
m → p

integer

m = 3

N0 = 2

N0 = 2

N0 ≠ 2.678

N0 ≠ 10

integers
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Periodic Relations – Analog and Digital Cases

e j(2 π(n+N0)F0) = e j (2π n F0)

N 0 =
m
F0

Digital Signal Period N0 
: the smallest integer 

= m⋅
T 0

T s

integer multiple of m
: some integers m

e j (2π f 0)(t+T 0) = e j(2π f 0)t

T 0 =
1
f 0

Analog Signal Period T0 
: the smallest real number  

all integers 

k N 0 F0 = k⋅m k T 0 f 0 = k⋅1
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Periodic Conditions – Analog and Digital Cases  

N F0 = k⋅m

N =
k⋅m
F0

T f 0 = k⋅1

T =
k⋅1
f 0

Integer N
0 Real T

0

Rational F
0 Real f

0

m = p

N0 = q

m = 1

T 0 =
1
f 0

Minimum Integer N
0

Minimum Real T
0

reduced form

F0 =
p
q

N0 =
m
p /q
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Periodic Conditions Examples 

N F0 = k⋅m

N 0 =
m
F0

T f 0 = k⋅1

T 0 =
1
f 0

f 0 =
36
19

T 0 = 1⋅
19
36

1⋅1 = 1

2T 0 = 2⋅
19
36

2⋅1 = 2

3T 0 = 3⋅
19
36

3⋅1 = 3

F 0 =
36
19

N 0 = 36⋅
19
36

1⋅m = 36

2N 0 = 72⋅
19
36

2⋅m = 72

3N 0 = 108⋅
19
36

3⋅m = 108

given given

Integer N Real T

km: multiples of 36 k: all integers 
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Periodic Condition of a Sampled Signal 

2πF 0n = 2πm F 0n = m

F 0 =
m
n

integers n , m

Rational Numberg [n] = A cos(2π F0 n + θ)

M.J. Roberts, Fundamentals of Signals and Systems

F 0 = f 0T s = f 0/ f s

F 0 =
m
n

integers n , m

N 0 = min(n) F 0 =
m
N 0

The Smallest Integer n

g(nT s) = A cos(2π f 0T sn+θ)
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F
0
 and N

0
 of a Sampled Signal 

Rational Number F
0

M.J. Roberts, Fundamentals of Signals and Systems

F 0 =
m
n

=
p
q

N 0 =
m
F 0

= m⋅
T 0

T s

F 0 =
f 0

f s

=
T s

T 0

integer n ,m , p ,q

real f 0 , f s ,T s , T 0

N 0 F0 = m

Integer N
0

= m⋅
f s

f 0

= m⋅
q
p

2π f 0T sn2π F0n



Digital Signals  
Octave Codes (0A) 18 Young Won Lim

11/9/17

A cosine waveform example

n= [0:19]; n= [0:19];
x= cos(2*pi*1*(n/10)); x= cos(2*pi*(1/10)*n);

U of Rhode Island, ELE 436, FFT Tutorial

= 2π⋅1⋅n⋅
1
10

f 0 = 1 (T 0 = 1)

T s = 0.1

= 2π⋅
1
10

⋅n⋅1

f 0 = 0.1 (T 0=10)

T s = 1

nT s = n⋅
1
10

nT s = n⋅1

F 0 = f 0T s = 0.1 F 0 = f 0T s = 0.1

2π f 0 nT s
2π f 0 nT s

F 0 = f 0T s =
f 0

f s

=
T s

T 0

2πF 0n = 2π f 0T sn
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cos(2π f 0 t )

cos(2πF0n)

Two cases of the same F
0
 = f

0
 T

s

U of Rhode Island, ELE 436, FFT Tutorial

cos(2π f 0 t )

cos(2πF0n)

many possible F0 ' s

many possible f 0 ' s
T s specifies F0

T s specifies f 0
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The same sampled waveform examples

U of Rhode Island, ELE 436, FFT Tutorial

f 0 = 1

T s = 0.1

f 0 = 0.1

T s = 1

2π n/10 0.1 = F 0

2π f 0 nT s 0.1 = f 0T s

f 0 = 0.5

T s = 0.2

f 0 = 0.2

T s = 0.5

F 0 = 0.1 F 0 = 0.1 F 0 = 0.1 F 0 = 0.1

n= [0:19];
x= cos(2*pi*1*0.1*n);

n= [0:19];
x= cos(2*pi*0.1*1*n);2πF 0n = 2π f 0T sn

cos(0.2πn) cos(0.2πn)
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Many waveforms share the same sampled data

   1.00000
   0.80902
   0.30902
  -0.30902
  -0.80902
  -1.00000
  -0.80902
  -0.30902
   0.30902
   0.80902
   1.00000
   0.80902
   0.30902
  -0.30902
  -0.80902
  -1.00000
  -0.80902
  -0.30902
   0.30902
   0.80902
   1.00000
   0.80902
   0.30902
  -0.30902
  -0.80902
  -1.00000
  -0.80902
  -0.30902
   0.30902
   0.80902 U of Rhode Island, ELE 436, FFT Tutorial

The same sampled data

`

3

30

2π n/10

0.1 = F 0

2π n f 0T s

0.1 = f 0T s

T s = 0.1
T0 = 1

T s = 1
T0 = 10

T s = 0.1
T 0 = 1

T s = 1
T 0 = 10
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Different number of data points

x= cos(2*pi*n/10);

U of Rhode Island, ELE 436, FFT Tutorial

t = [0:19]/10;
y = cos(2*pi*t);
stem(t, y)
hold on
t2 = [0:199]/100;
y2 = cos(2*pi*t2);
plot(t2, y2)

[0:19];

[0:199];

[0,⋯,19 ] 20 data points

[0,⋯,199 ] 200 data points

size([0:19], 2) = 20

size([0:199], 2) = 200
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Normalized data points

x= cos(2*pi*n/10);

U of Rhode Island, ELE 436, FFT Tutorial

t = [0:19]/10;
y = cos(2*pi*t);
stem(t, y)
hold on
t2 = [0:199]/100;
y2 = cos(2*pi*t2);
plot(t2, y2)

coarse resolution

fine resolution

t = [0:19]/10;

t2 = [0:199]/100;

[0.0,⋯,1.90 ] 20 data points

[0.0,⋯,1.99 ] 200 data points

[0.0,⋯,1.90 ] → 2 cycles

[0.0,⋯,1.99 ] → 2 cycles

[0,⋯,4π]

[0,⋯,4π]



Digital Signals  
Octave Codes (0A) 24 Young Won Lim

11/9/17

Different number of data points

x= cos(0.2*pi*n);

t = [0:19];
y = cos(0.2*pi*t);
stem(t, y)
hold on
t2 = [0:199]/10;
y2 = cos(0.2*pi*t2);
plot(t2, y2)

U of Rhode Island, ELE 436, FFT Tutorial

[0:19];

[0:199];

[0,⋯,19 ] 20 data points

[0,⋯,199 ] 200 data points

size([0:19], 2) = 20

size([0:199], 2) = 200
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Normalized data points

x= cos(0.2*pi*n);

t = [0:19];
y = cos(0.2*pi*t);
stem(t, y)
hold on
t2 = [0:190]/10;
y2 = cos(0.2*pi*t2);
plot(t2, y2)

U of Rhode Island, ELE 436, FFT Tutorial

coarse resolution

fine resolution

t = [0:19];

t2 = [0:199]/10;

[0.0,⋯,19.0 ] 20 data points

[0.0,⋯,19.9 ] 200 data points

[0.0,⋯,19.0 ] → 2 cycles

[0.0,⋯,19.9 ] → 2 cycles

[0,⋯,4π]

[0,⋯,4π]
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Plotting sampled cosine waves 

x= cos(2*pi*n/10);

t = [0:19]/10;
y = cos(2*pi*t);
stem(t, y)
hold on
t2 = [0:199]/100;
y2 = cos(2*pi*t2);
plot(t2, y2)

x= cos(0.2*pi*n);

t = [0:19];
y = cos(0.2*pi*t);
stem(t, y)
hold on
t2 = [0:190]/10;
y2 = cos(0.2*pi*t2);
plot(t2, y2)

U of Rhode Island, ELE 436, FFT Tutorial

coarse resolution

fine resolution

t = [0:19]/10;

t2 = [0:199]/100;

[0.0,⋯,1.9 ] 20 data points

[0.0,⋯,1.99 ] 200 data points

y = cos(2*pi*t); stem(t, y)

y = cos(2*pi*t2); plot(t2, y)

coarse resolution

fine resolution

t =  [0:19];

t2 =  [0:199]/00;

[0.0,⋯,1.9 ] 20 data points

[0.0,⋯,1.99 ] 200 data points

y = cos(0.2*pi*t); stem(t, y)

y = cos(0.2*pi*t2); plot(t2, y)
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Two waveforms with the same normalized frequency

U of Rhode Island, ELE 436, FFT Tutorial

x= cos(2*pi*n/10);

t = [0:19]/10;
y = cos(2*pi*t);
stem(t, y)
hold on
t2 = [0:199]/100;
y2 = cos(2*pi*t2);
plot(t2, y2)

x= cos(0.2*pi*n);

t = [0:19];
y = cos(0.2*pi*t);
stem(t, y)
hold on
t2 = [0:190]/10;
y2 = cos(0.2*pi*t2);
plot(t2, y2)

f 0 = 1 T 0 = 1

T s = 0.1f s = 10

f 0 = 0.1 T 0 = 10

T s = 1f s = 1

cos(2π t)

cos(0.2π t)

F0 = 0.1

F0 = 0.1

[0.0,⋯,1.9 ] → 2 cycles

[0.,⋯,19.] → 2 cycles

cos(2π⋅1⋅t)

cos(2π⋅0.1⋅t)
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Cosine Wave 1

U of Rhode Island, ELE 436, FFT Tutorial

T 0 = 1

t = [0:29]/10;
y = cos(2*pi*t);
stem(t, y)
hold on
t2 = [0:299]/100;
y2 = cos(2*pi*t2);
plot(t2, y2)

f 0 = 1

T s = 0.1

F0 = f 0T s = 0.1

f 0 = 1 T 0 = 1

T s = 0.1f s = 10

cos(2π t )x= cos(2*pi*n/10); cos(2π⋅1⋅t)
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Cosine Wave 2

U of Rhode Island, ELE 436, FFT Tutorial

t = [0:29];
y = cos(0.2*pi*t);
stem(t, y)
hold on
t2 = [0:299]/10;
y2 = cos(0.2*pi*t2);
plot(t2, y2)

f 0 = 0.1

T s = 1

F0 = f 0T s = 0.1

T 0 = 10
f 0 = 0.1 T 0 = 10

T s = 1f s = 1

cos(0.2π t )x= cos(0.2*pi*n); cos(2π⋅0.1⋅t)



Digital Signals  
Octave Codes (0A) 30 Young Won Lim

11/9/17

Sampled Sinusoids

M.J. Roberts, Fundamentals of Signals and Systems

g [n] = A eβn

g [n] = A zn z = eβ

g [n] = A cos(2π nm/N0 + θ)

g [n] = A cos(2π F0 n + θ)

m /N 0

g [n] = A cos(Ω0 n + θ)

F 0

Ω0/2π

2πm /N 0

2πF 0

Ω0

N 0 ≠
1
F0

N 0 =
m
F0
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Sampling Period T
s
 and Frequency f

s

g [n] = A cos(2π F0 n + θ)

f 0 ← F 0⋅f s

g (t ) = A cos(2π f 0 t+θ)

F 0 ← f 0⋅T s

T s =
1
f s

sampling period

sampling frequency
sampling rate

M.J. Roberts, Fundamentals of Signals and Systems

1
T s

= f s

T s
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f
0
 and F

0
 

g [n] = A cos(2π F0 n + θ)g (t ) = A cos(2π f 0 t+θ)

g [n] = 4 cos(72πn
19 )

= 4cos(2π⋅
36
19

⋅n)

M.J. Roberts, Fundamentals of Signals and Systems

g (t ) = 4cos(72π t
19 )

= 4cos(2π⋅
36
19

⋅t)

T s = 1

f 0 =
36
19

F 0 = f 0T s =
f 0

f s

F 0 =
36
19

F 0 = f 0

there are 
many F

0
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T
0
 and N

0
 

g [n] = 4 cos(2π⋅
36
19

⋅(n + N 0))

N 0 = 19

M.J. Roberts, Fundamentals of Signals and Systems

Fundamental Period of 

g (t ) = 4cos(2π⋅
36
19

⋅(t + T 0))

T 0 =
19
36

Fundamental Period of g [n]g(t )

g [n] = A cos(2π F0 n + θ)g (t ) = A cos(2π f 0 t+θ)

g [n] = 4 cos(72πn
19 )

= 4cos(2π⋅
36
19

⋅n)

g (t ) = 4cos(72π t
19 )

= 4cos(2π⋅
36
19

⋅t)

there is only one 
N

0
 for a given F

0
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Real T
0
 and Integer N

0
 

g [n] = 4 cos(2π⋅
36
19

⋅(n + N 0))

N 0 = 19

M.J. Roberts, Fundamentals of Signals and Systems

Fundamental period of 

g (t ) = 4cos(2π⋅
36
19

⋅(t + T 0))

T 0 =
19
36

Fundamental period of 

g [n]

g(t )

36
19

⋅(n + N 0)

36
19

⋅(t + T 0)

1
19

⋅N0

36
19

⋅T 0

integer integer

integer integer

N 0 = 19

T 0 =
19
36

integer

integer
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Cycles in N
0
 samples

M.J. Roberts, Fundamentals of Signals and Systems

F0 =
q
N 0 the smallest integer : fundamental period

the number of cycles in N
0
 samples

F0 N 0 = q

2πF0 N 0 = 2πq q cycles in N
0
 samples
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Cycles in T
0
 time duration and N

0
 samples

g [n] = 4 cos(2π⋅
36
19

⋅(n + N 0)) N 0 = 19

M.J. Roberts, Fundamentals of Signals and Systems

Fundamental Period of 

g (t ) = 4cos(2π⋅
36
19

⋅(t + T 0)) T 0 =
19
36

Fundamental Period of 

g [n]

g(t )

F0 =
36
19

=
q
N 0

q=36 cycles in N
0
=19 samples

N 0 ≠
1
F0

N 0 =
q
F0

f 0 =
36
19

=
1
T 0

q=1 cycle in T
0
=19/36 time interval



Digital Signals  
Octave Codes (0A) 37 Young Won Lim

11/9/17

Difficult to recognize a discrete-time sinusoid

M.J. Roberts, Fundamentals of Signals and Systems

F0 =
36
19

=
q
N 0 the smallest integer : fundamental period

the number of cycles in N
0
 samples

“When F
0
 is not the reciprocal of an integer (q=1), 

a discrete-time sinusoid may not be 
immediately recognizable from its graph as a sinusoid.”

F '0 =
1
19

=
1
N 0
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Periodic Condition Examples

g [n] = 4 cos(2π⋅
36
19

⋅n)

M.J. Roberts, Fundamentals of Signals and Systems

g [n] = 4 cos(2π⋅
1
19

⋅n)

g [n] = 4 cos(2π⋅
2
19

⋅n)

g [n] = 4 cos(2π⋅
3
19

⋅n)

clf 
n = [0:36]; t = [0:3600]/100;
y1 = 4*cos(2*pi*(1/19)*n);
y2 = 4*cos(2*pi*(2/19)*n);
y3 = 4*cos(2*pi*(3/19)*n);
y4 = 4*cos(2*pi*(36/19)*n);
yt1 = 4*cos(2*pi*(1/19)*t);
yt2 = 4*cos(2*pi*(2/19)*t);
yt3 = 4*cos(2*pi*(3/19)*t);
yt4 = 4*cos(2*pi*(36/19)*t);

subplot(4,1,1);
stem(n, y1); hold on;
plot(t, yt1);
subplot(4,1,2);
stem(n, y2); hold on;
plot(t, yt2);
subplot(4,1,3);
stem(n, y3); hold on;
plot(t, yt3);
subplot(4,1,4);
stem(n, y4); hold on;
plot(t, yt4);

1 cycles in N
0
=19 samples

2 cycles in N
0
=19 samples

3 cycles in N
0
=19 samples

36 cycles in N
0
=19 samples
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Periodic Condition Examples

N0 = 19

g [n] = 4 cos(2π⋅
36
19

⋅n)

g [n] = 4 cos(2π⋅
1
19

⋅n)

g [n] = 4 cos(2π⋅
2
19

⋅n)

g [n] = 4 cos(2π⋅
3
19

⋅n)

1 cycle

2 cycles

3 cycles

36 cycles

T s = 1
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Periodic Condition Examples

g [n] = A cos(2π F0 n + θ)g (t ) = A cos(2π f 0 t+θ)

M.J. Roberts, Fundamentals of Signals and Systems

f 0⋅nT s

= 1⋅f 0⋅nT s⋅
1
1

= 2⋅f 0⋅nT s⋅
1
2

= 3⋅f 0⋅nT s⋅
1
3

k f 0⋅nT s
1
k
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Periodic Condition Examples

g [n] = A cos(2π F0 n + θ)g (t ) = A cos(2π f 0 t+θ)

M.J. Roberts, Fundamentals of Signals and Systems

g1(t ) = 4cos (2π⋅1⋅t )

g2(t ) = 4cos (2π⋅2⋅t )

g3(t) = 4 cos (2π⋅3⋅t )

t ← nT1

t ← nT 2

t ← nT 3

g1[n] = 4 cos (2π⋅1⋅nT 1 )
g2[n ] = 4 cos (2π⋅2⋅nT 2 )
g3 [n] = 4cos (2π⋅3⋅nT 3 )

T 1 =
1
10

T 2 = 1
20

T 3 = 1
30

n = 0, 1, 2, 3,⋯

n = 0, 1, 2, 3,⋯

n = 0, 1, 2, 3,⋯

1⋅nT 1 = 0, 0.1, 0.2, 0.3,⋯ = 1⋅t

2⋅nT 2 = 0, 0.1, 0.2, 0.3,⋯ = 2⋅t

3⋅nT 3 = 0, 0.1, 0.2, 0.3,⋯ = 3⋅t

{ g1[n] }≡ { g2[n ] }≡ { g2 [n] }
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clf 
n = [0:10]; t = [0:1000]/1000;
y1 = 4*cos(2*pi*1*n/10);
y2 = 4*cos(2*pi*2*n/20);
y3 = 4*cos(2*pi*3*n/30);
yt1 = 4*cos(2*pi*t);
yt2 = 4*cos(2*pi*2*t);
yt3 = 4*cos(2*pi*3*t);

subplot(3,1,1);
stem(n, y1); hold on;
plot(t, yt1);
subplot(3,1,2);
stem(n/20, y2); hold on;
plot(t, yt2);
subplot(3,1,3);
stem(n/30, y3); hold on;
plot(t, yt3);

T 1 =
1
10

T 2 =
1
20

T 3 =
1
30

ω = 2π⋅1

ω = 2π⋅2

ω = 2π⋅3
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cos (ω1 t1 ) = cos (ω1nT 1 )

cos (ω2 t 2) = cos (ω2nT 2 )

cos (ωn1T 1 )

cos (ωn2T 2)

ω1 t1 = ω2 t 2

ω1

n1T 1 = n2T 2ω1T 1 = ω2T 2

ω t1 = ω t2

2ω1

ω1 ω

ω

ω

T 2

2T 2

n2

2n2

T 1

2T 1
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4 cos (ω t1 )

4 cos (2ω t 2)

4 cos (ωn1 )

4 cos (ω2n2 )

t1 = 2 t 2

n1⋅1

n2⋅2

T s = 1

T s = 2

n1 = 2n2
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