Digital Signal Octave Codes (0A)

Periodic Conditions

Copyright (c) 2009 - 2017 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".
Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Based on

- M.J. Roberts, Fundamentals of Signals and Systems
- S.K. Mitra, Digital Signal Processing: a computer-based approach 2nd ed
- S.D. Stearns, Digital Signal Processing with Examples in MATLAB

Sampling and Normalized Frequency

$$\omega_0 t = 2\pi f_0 t$$

$$t = nT_s$$

T_s: sampling period

$$\omega_0 n T_s = 2\pi f_0 n T_s$$

$$f_0 = \frac{1}{T_0}$$

T_o: signal period

$$=\frac{2\pi}{T_0}nT_s$$

$$=2\pi n \frac{T_s}{T_0}$$

$$=2\pi n F_0$$

$$\frac{T_s}{T_0} = \frac{f_0}{f_s}$$

$$\boldsymbol{F}_0 = \boldsymbol{f}_0 \boldsymbol{T}_s = \frac{\boldsymbol{f}_0}{\boldsymbol{f}_s}$$

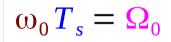
normalization

normalization

Analog and Digital Frequencies

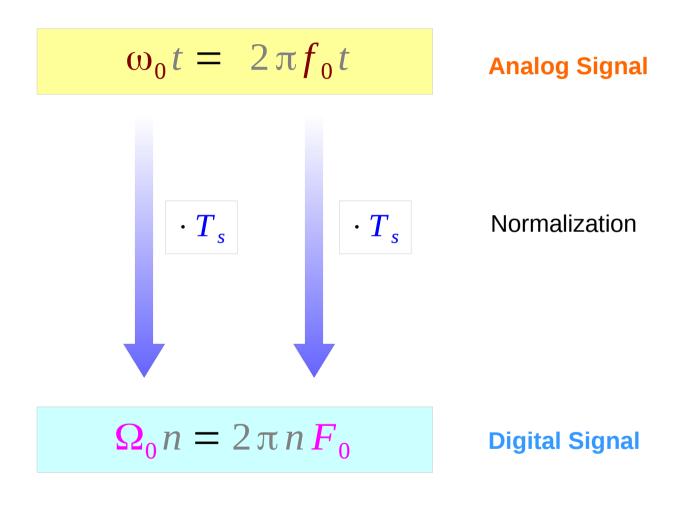
Analog Signal Frequency

$$\omega_0 t = 2\pi f_0 t$$


$$t = nT_s$$

$$t = nT_s$$

$$n\omega_0 T_s = 2\pi n f_0 T_s$$


$$f_0 T_s = F_0$$

$$\Omega_0 n = 2\pi n F_0$$

Digital Signal Frequency

5

Multiplying by T_s – Normalization

Normalization

$$F_0 = f_0 \cdot T_s \qquad f_0 \cdot T_s$$

$$= f_0 / f_s \qquad f_0 / f_s$$

$$= T_s / T_0$$

$$\Omega_0 = 2\pi F_0$$

$$F_0 = f_0 \cdot T_s$$
 $f_0 \cdot T_s$ Multiplied by T_s

$$f_0 / f_s$$
 Divided by f_s

$$f_s > 2 \cdot f_0$$

$$f_0/f_s < 0.5$$

Sampling Rate **Minimum**

Normalized Cyclic and Radian Frequencies

Normalized Cyclic Frequency

$$F_0$$
 cycles/sample = $\frac{f_0}{f_s}$ cycles/second

Normalized Radian Frequency

$$\Omega_0$$
 cycles/sample = $\frac{\omega_0}{f_s}$ cycles/second

Periodic Relation : N_o and F_o

$$e^{j(2\pi (n+N_0)F_0)} = e^{j(2\pi nF_0)}$$

$$e^{j2\pi m} = 1$$

Digital Signal Period N_o : the smallest integer

$$e^{j2\pi N_0 F_0}$$

$$e^{j2\pi m} = 1$$

Periodic Condition : integer *m*

$$2\pi \frac{N_0 F_0}{} = 2\pi m$$

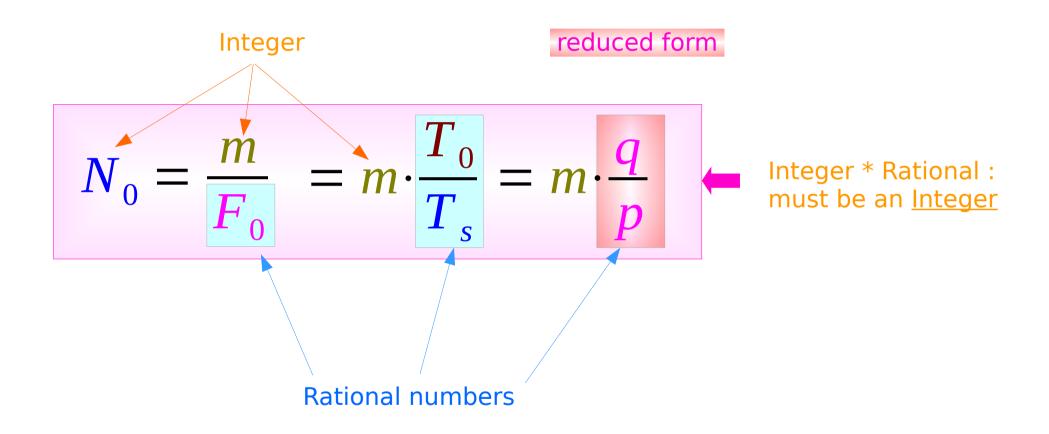
$$N_0 F_0 = m$$

Periodic Condition : N_o and F_o

$$2\pi \frac{N_0 F_0}{N_0} = 2\pi m$$

$$N_0 F_0 = m$$

$$N_0 = \frac{m}{F_0} = m \cdot \frac{T_0}{T_s}$$


Integer * Rational : must be an <u>Integer</u>

Digital Signal Period N_o : the <u>smallest</u> integer

Periodic Condition : the *smallest* integer *m*

$$m \neq T_s$$
 $m = p$
reduced form

Periodic Condition : N_o and F_o in a reduced form

N_0 and F_0 in a reduced form : Examples

reduced form

$$F_0 = \frac{p}{q}$$

$$N_0 = \frac{m}{F_0} = m \cdot \frac{q}{p}$$

integer

$$\frac{1}{F_0} = \frac{2.678}{4.017} = \frac{2 \cdot 1.339}{3 \cdot 1.339} = \frac{2}{3}$$

$$\frac{1}{F_0} = \frac{10}{15} = \frac{2.5}{3.5} = \frac{2}{3}$$

$$\begin{array}{c} N_0 \rightarrow q \\ m \rightarrow p \end{array}$$

integers

the smallest integer m

$$m = 3$$
 $m \neq 4.017$
 $N_0 = 2$ $N_0 \neq 2.678$

$$m = 3$$
 $m \neq 15$

$$N_0 = 2$$
 $N_0 \neq 10$

Periodic Relations – Analog and Digital Cases

$$e^{j(2\pi(n+N_0)F_0)} = e^{j(2\pi nF_0)}$$

Digital Signal Period **N**_o: the <u>smallest integer</u>

$$N_0 = \frac{m}{F_0} = m \cdot \frac{T_0}{T_s}$$

$$k N_0 F_0 = k \cdot m$$

integer multiple of m : <u>some</u> integers m

$$e^{j(2\pi f_0)(t+T_0)} = e^{j(2\pi f_0)t}$$

Analog Signal Period **T**_o: the <u>smallest real</u> number

$$T_0 = \frac{1}{f_0}$$

$$k T_0 f_0 = k \cdot 1$$

all integers

Periodic Conditions – Analog and Digital Cases

$$NF_0 = k \cdot m$$

$$N = \frac{k \cdot m}{F_0}$$
 Integer N_o Rational F_o

Minimum Integer No

$$N_0 = q \qquad F_0 = \frac{p}{q}$$

$$m = p$$
 reduced form

$$N_0 = \frac{m}{p/q}$$

$$Tf_0 = k \cdot 1$$

$$T = \frac{k \cdot 1}{f_0} \quad \text{Real } T_o$$
Real f_o

 $\underline{Minimum}$ Real T_o

$$T_0 = \frac{1}{f_0}$$

$$m = 1$$

$$NF_0 = k \cdot m$$

$$N_0 = \frac{m}{F_0}$$
 Integer N

given

$$F_0 = \frac{36}{19}$$

km: multiples of 36

$$N_0 = 36 \cdot \frac{19}{36}$$

$$1 \cdot m = 36$$

$$2N_0 = 72 \cdot \frac{19}{36}$$

$$2 \cdot m = 72$$

$$3N_0 = 108 \cdot \frac{19}{36}$$

$$3 \cdot \mathbf{m} = 108$$

$$Tf_0 = k \cdot 1$$

$$T_0 = \frac{1}{f_0}$$
 Real T

given

$$f_0 = \frac{36}{19}$$

k: all integers

$$T_0 = 1 \cdot \frac{19}{36}$$

$$1 \cdot 1 = 1$$

$$2T_0 = 2 \cdot \frac{19}{36}$$

$$2 \cdot 1 = 2$$

$$3T_0 = 3 \cdot \frac{19}{36}$$

$$3 \cdot 1 = 3$$

Periodic Condition of a Sampled Signal

$$g(nT_s) = A\cos(2\pi f_0 T_s n + \theta)$$

$$F_0 = f_0 T_s = f_0 / f_s$$

$$\frac{2\pi F_0}{n} = 2\pi m \qquad F_0 n = m$$

$$F_0 = \frac{m}{n} \qquad \text{integers} \quad n, m$$

$$g[\mathbf{n}] = A\cos(2\pi \mathbf{F}_0 \mathbf{n} + \theta)$$

Rational Number
$$F_0 = \frac{m}{n}$$
 integers n , m

The Smallest Integer n

$$N_0 = \min(n) \qquad F_0 = \frac{m}{N_0}$$

F₀ and N₀ of a Sampled Signal

Rational Number F

$$F_0 = \frac{m}{n} = \frac{p}{q}$$
 integer n, m, p, q

$$F_0 = \frac{f_0}{f_s} = \frac{T_s}{T_0} \quad \text{real} \quad f_0, f_s, T_s, T_0$$

$$2\pi \frac{F_0}{n}$$

Integer N_o

$$N_0 F_0 = m$$

$$N_0 = \frac{m}{F_0} = m \cdot \frac{T_0}{T_s} = m \cdot \frac{f_s}{f_0} = m \cdot \frac{q}{p}$$

$$2\pi f_0 T_s n$$

A cosine waveform example

n= [0:19];
x= cos(2*pi*1*(n/10)); ==
$$2\pi F_0 n = 2\pi f_0 T_s n$$
=

$$nT_s = n \cdot \frac{1}{10}$$

$$F_0 = f_0 T_s = \frac{f_0}{f_s} = \frac{T_s}{T_0}$$

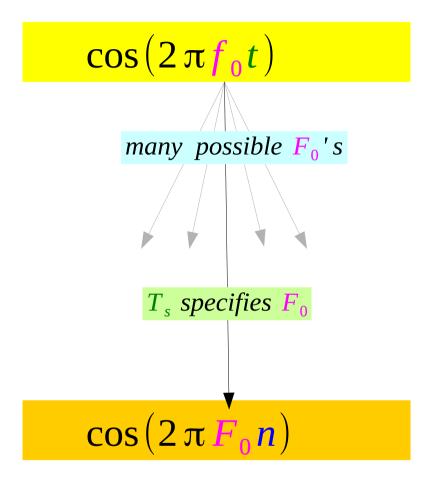
$$nT_s = n \cdot 1$$

$$2\pi f_0 n T_s$$

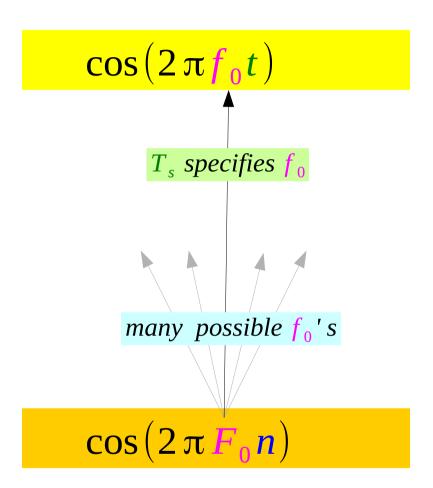
$$= 2\pi \cdot 1 \cdot n \cdot \frac{1}{10}$$

$$2\pi f_0 n T_s$$

$$= 2\pi \cdot \frac{1}{10} \cdot n \cdot 1$$

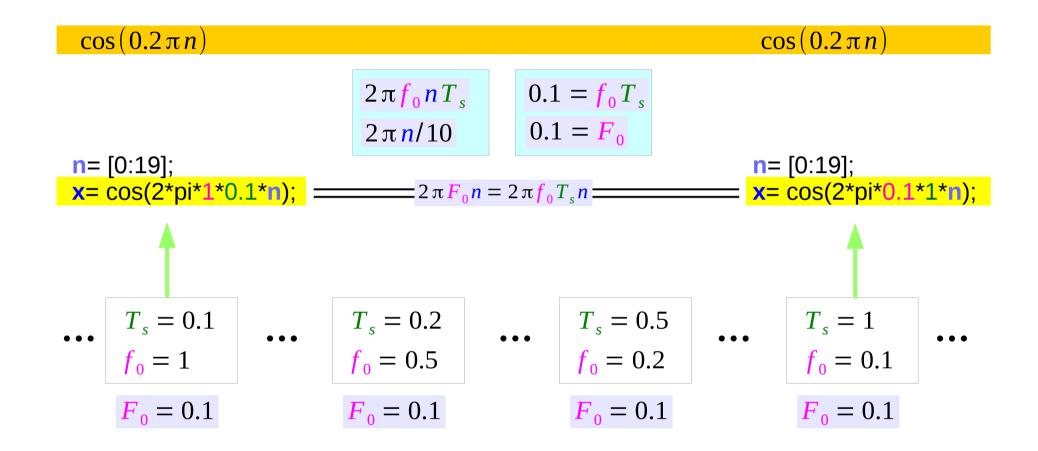

$$T_s = 0.1$$

 $f_0 = 1 \quad (T_0 = 1)$

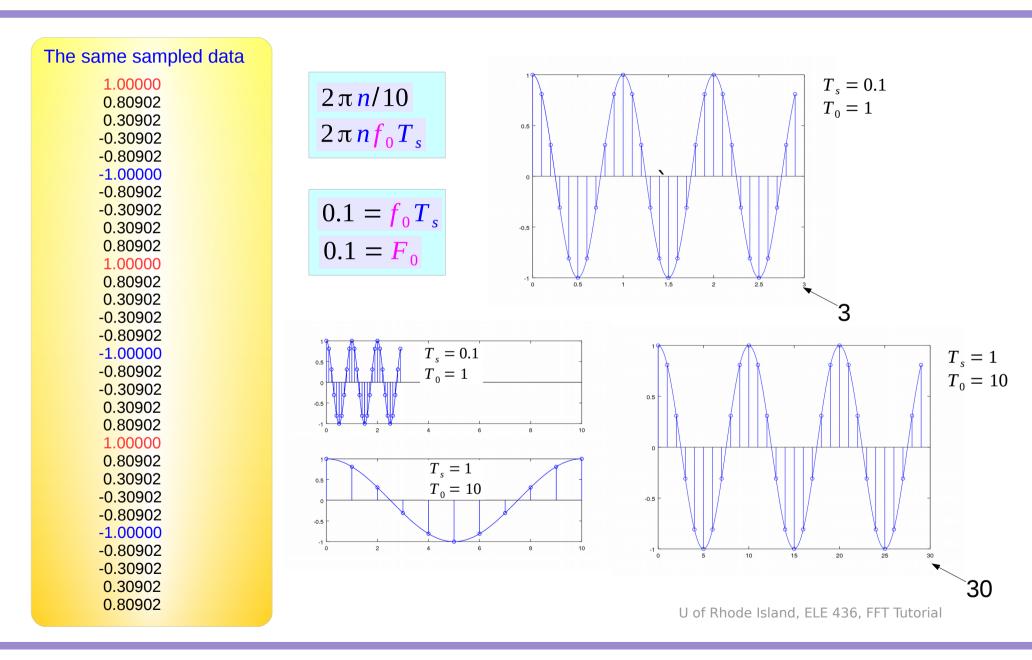

$$T_s = 1$$

 $f_0 = 0.1 \ (T_0 = 10)$

$$F_0 = f_0 T_s = 0.1$$


$$F_0 = f_0 T_s = 0.1$$

Two cases of the same $F_0 = f_0 T_s$



The same sampled waveform examples

Many waveforms share the same sampled data

Different number of data points

```
x= cos(2*pi*n/10);

t = [0:19]/10;

y = cos(2*pi*t);

stem(t, y)

hold on

t2 = [0:199]/100;

y2 = cos(2*pi*t2);

plot(t2, y2)
```

```
[0:19]; [0,···,19] 20 data points
```

size([0:19], 2) = 20

```
[0:199]; [0,···,199] 200 data points
```

size([0:199], 2) = 200

Normalized data points

```
x= cos(2*pi*n/10);

t = [0:19]/10;

y = cos(2*pi*t);

stem(t, y)

hold on

t2 = [0:199]/100;

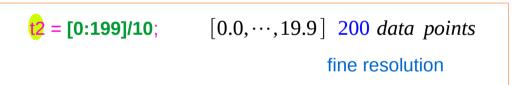
y2 = cos(2*pi*t2);

plot(t2, y2)
```

```
t = [0:19]/10; [0.0, ..., 1.90] 20 data points coarse resolution
```

$$[0.0, \cdots, 1.90] \rightarrow 2 \text{ cycles} \qquad [0, \cdots, 4\pi]$$

$$[0.0, \cdots, 1.99] \rightarrow 2 \text{ cycles} \qquad [0, \cdots, 4\pi]$$


Different number of data points

```
[0:19];
                                                                         [0, \dots, 19] 20 data points
                                                                                           size([0:19], 2) = 20
                                          \overline{\phantom{a}}
x = cos(0.2*pi*n);
                                                                         [0, \cdots, 199] 200 data points
                                                 [0:199];
t = [0:19];
y = \cos(0.2*pi*t);
stem(t, y)
hold on
t2 = [0:199]/10;
y2 = \cos(0.2*pi*t2);
                                                                                           size([0:199], 2) = 200
plot(t2, y2)
```

Normalized data points

t = [0:19]; $[0.0, \dots, 19.0]$ 20 data points coarse resolution

$$[0.0, \cdots, 19.0] \rightarrow 2 \text{ cycles} \qquad [0, \cdots, 4\pi]$$

$$[0.0, \cdots, 19.9] \rightarrow 2 \text{ cycles} \qquad [0, \cdots, 4\pi]$$

Plotting sampled cosine waves

```
x = \cos(2*pi*n/10);
t = [0:19]/10
y = cos(2*pi*t);
stem(t, y)
hold on
t2 = [0:199]/100
y2 = cos(2*pi*t2);
plot(t2, y2)
x = cos(0.2*pi*n);
t = [0:19]
y = \cos(0.2*pi*t);
stem(t, y)
hold on
t2 = [0:190]/10
y2 = \cos(0.2*pi*t2);
plot(t2, y2)
```

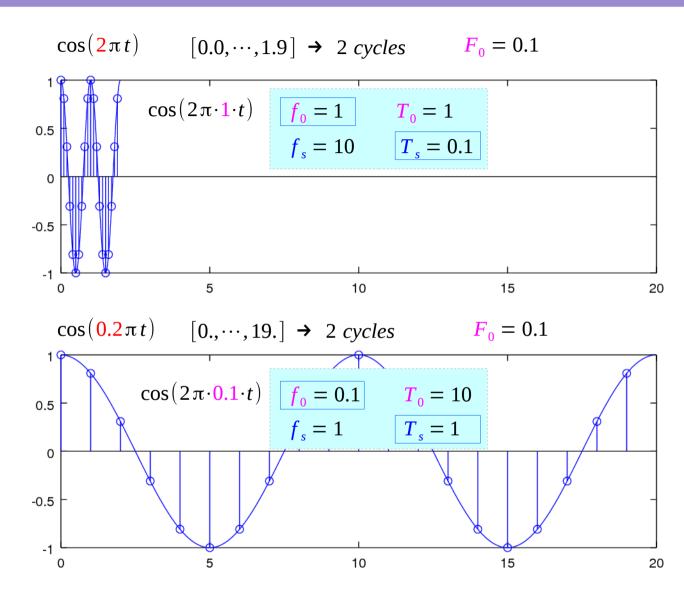
```
      t = [0:19]/10;
      [0.0, \dots, 1.9]
      20 data points

      y = \cos(2*pi*t);
      stem(t, y)
      coarse\ resolution

      t2 = [0:199]/100;
      [0.0, \dots, 1.99]
      200 data points

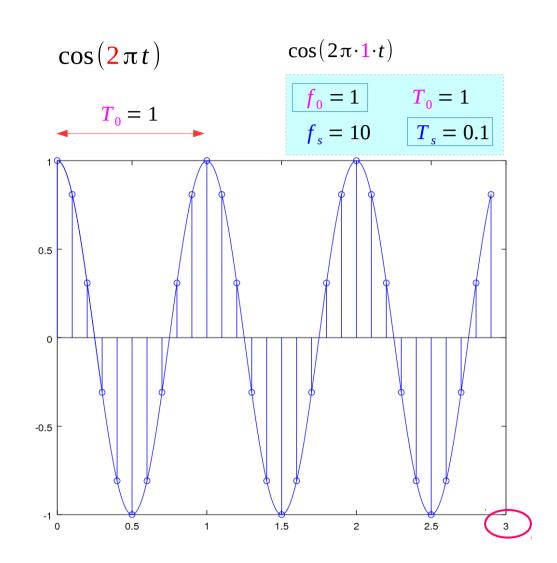
      y = \cos(2*pi*t2);
      plot(t2, y)
      fine resolution
```

```
      t = [0:19];
      [0.0, \dots, 1.9]
      20 \text{ data points}

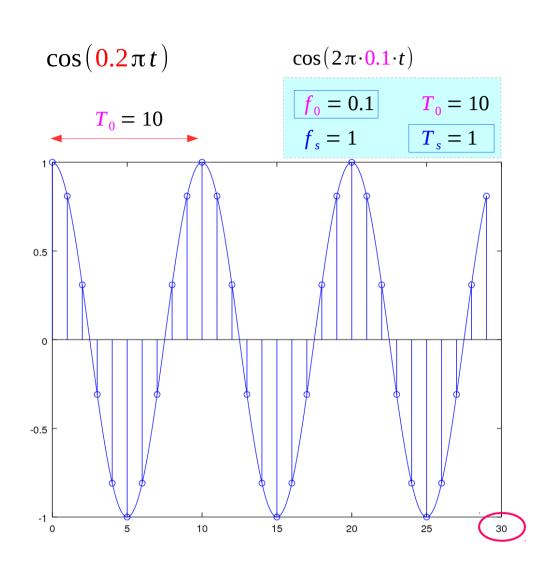

      y = \cos(0.2*pi*t);
      stem(t, y)
      coarse resolution

      t2 = [0:199]/00;
      [0.0, \dots, 1.99]
      200 \text{ data points}

      y = \cos(0.2*pi*t2);
      plot(t2, y)
      fine resolution
```


Two waveforms with the same normalized frequency

```
x = cos(2*pi*n/10);
t = [0:19]/10:
y = cos(2*pi*t);
stem(t, y)
hold on
t2 = [0:199]/100
y2 = \cos(2*pi*t2);
plot(t2, y2)
x = cos(0.2*pi*n);
t = [0:19];
y = \cos(0.2*pi*t);
stem(t, y)
hold on
t2 = [0:190]/10;
y2 = \cos(0.2*pi*t2);
plot(t2, y2)
```



Cosine Wave 1

```
x = cos(2*pi*n/10);
 t = [0:29]/10;
 y = \cos(2*pi*t);
 stem(t, y)
 hold on
 t2 = [0:299]/100;
 y2 = \cos(2*pi*t2);
 plot(t2, y2)
 f_0 = 1
 T_{s} = 0.1
 F_0 = f_0 T_s = 0.1
```


Cosine Wave 2

```
x = cos(0.2*pi*n);
t = [0:291:
y = \cos(0.2*pi*t);
stem(t, y)
hold on
t2 = [0:299]/10;
y2 = cos(0.2*pi*t2);
plot(t2, y2)
f_0 = 0.1
T_s = 1
F_0 = f_0 T_s = 0.1
```


Sampled Sinusoids

$$g[n] = A\cos(2\pi \frac{F_0}{n} + \theta)$$

$$g[n] = A\cos(2\pi \frac{n}{n} m/N_0 + \theta)$$

$$g[n] = A\cos(\Omega_0 n + \theta)$$

$$F_0$$

$$m/N_0$$

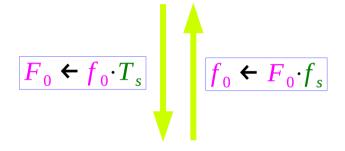
$$\Omega_0/2\pi$$

$$2\pi F_0$$

$$2\pi m/N_0$$

$$\Omega_0$$

$$N_0 = \frac{m}{F_0}$$

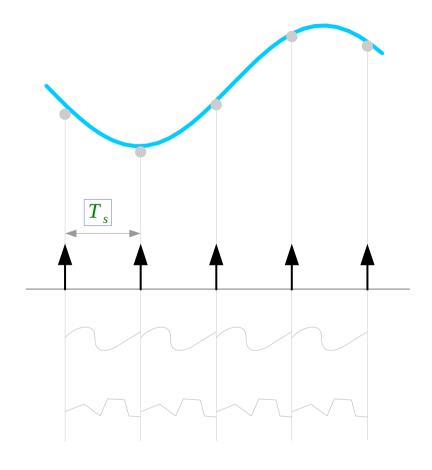

$$N_0 \neq \frac{1}{F_0}$$

$$g[\mathbf{n}] = A e^{\beta \mathbf{n}}$$

$$q[n] = Az^n$$
 $z = e^{\beta}$

Sampling Period T_s and Frequency f_s

$$g(t) = A\cos(2\pi f_0 t + \theta)$$


$$g[n] = A\cos(2\pi F_0 n + \theta)$$

$$T_s = \frac{1}{f_s}$$

sampling period

$$\frac{1}{T_s} = f_s$$

sampling frequency sampling rate

$$g(t) = A\cos(2\pi f_0 t + \theta)$$

$$g(t) = 4\cos\left(\frac{72\pi t}{19}\right)$$
$$= 4\cos\left(2\pi \cdot \frac{36}{19} \cdot t\right)$$

$$f_0 = \frac{36}{19}$$

$$g[n] = A\cos(2\pi F_0 n + \theta)$$

$$g[n] = 4\cos\left(\frac{72\pi n}{19}\right)$$
$$= 4\cos\left(2\pi \cdot \frac{36}{19} \cdot n\right)$$

there are many
$$F_0 = f_0 T_s = \frac{f_0}{f_s}$$

$$T_s = 1$$
 \longrightarrow $F_0 = f_0$

$$F_0 = \frac{36}{19}$$

T_o and N_o

$$g(t) = A\cos(2\pi f_0 t + \theta)$$

$$g(t) = 4\cos\left(\frac{72\pi t}{19}\right)$$
$$= 4\cos\left(2\pi \cdot \frac{36}{19} \cdot t\right)$$

$$g(t) = 4\cos\left(2\pi \cdot \frac{36}{19} \cdot (t + T_0)\right)$$

$$T_0 = \frac{19}{36}$$

Fundamental Period of g(t)

$$g[n] = A\cos(2\pi F_0 n + \theta)$$

$$g[n] = 4\cos\left(\frac{72\pi n}{19}\right)$$
$$= 4\cos\left(2\pi \cdot \frac{36}{19} \cdot n\right)$$

$$g[n] = 4\cos\left(2\pi \cdot \frac{36}{19} \cdot (n + N_0)\right)$$

there is only one N_0 for a given F_0

$$N_0 = 19$$

Fundamental Period of g[n]

Real T and Integer N

$$g[n] = 4\cos\left(2\pi \cdot \frac{36}{19} \cdot (n + N_0)\right)$$

$$\frac{36}{19} \cdot (n + N_0)$$

$$\frac{1}{19} \cdot N_0$$

$$N_0 = 19$$

integer

integer

integer

$$N_0 = 19$$
 Fundamental period of $g[n]$

$$g(t) = 4\cos\left(2\pi \cdot \frac{36}{19} \cdot (t + T_0)\right)$$

$$\frac{36}{19} \cdot (t + T_0)$$

integer

 $\frac{36}{19} \cdot T_0$ integer

integer

$$T_0 = \frac{19}{36}$$
 Fundamental period of $g(t)$

Cycles in N_0 samples

$$F_0 = \frac{q}{N_0}$$
 the number of cycles in N_0 samples the smallest integer : fundamental period

$$F_0 N_0 = q$$

$$2\pi F_0 N_0 = 2\pi q$$
 q cycles in N_0 samples

Cycles in T_o time duration and N_o samples

$$g(t) = 4\cos\left(2\pi \cdot \frac{36}{19} \cdot (t + T_0)\right)$$

$$T_0 = \frac{19}{36}$$
 Fundamental Period of $g(t)$

$$f_0 = \frac{36}{19} = \frac{1}{T_0}$$

q=1 cycle in $T_0=19/36$ time interval

$$g[n] = 4\cos\left(2\pi \cdot \frac{36}{19} \cdot (n + N_0)\right)$$

 $N_0 = 19$ Fundamental Period of g[n]

$$F_0 = \frac{36}{19} = \frac{q}{N_0}$$

q=36 cycles in $N_0=19$ samples

$$N_0 \neq \frac{1}{F_0} \longrightarrow N_0 = \frac{q}{F_0}$$

Difficult to recognize a discrete-time sinusoid

$$F_0 = \frac{36}{19} = \frac{q}{N_0}$$
 the number of cycles in N₀ samples the smallest integer: fundamental period

"When F_0 is not the reciprocal of an integer (q=1), a discrete-time sinusoid may not be immediately recognizable from its graph as a sinusoid."

$$F'_0 = \frac{1}{19} = \frac{1}{N_0}$$

$$g[n] = 4\cos\left(2\pi \cdot \frac{1}{19} \cdot n\right)$$

$$g[n] = 4\cos\left(2\pi \cdot \frac{2}{19} \cdot n\right)$$

$$g[n] = 4\cos\left(2\pi \cdot \frac{3}{19} \cdot n\right)$$

$$g[n] = 4\cos\left(2\pi \cdot \frac{36}{19} \cdot n\right)$$

1 cycles in
$$N_o$$
=19 samples

2 cycles in
$$N_o$$
=19 samples

3 cycles in
$$N_o$$
=19 samples

36 cycles in
$$N_0$$
=19 samples

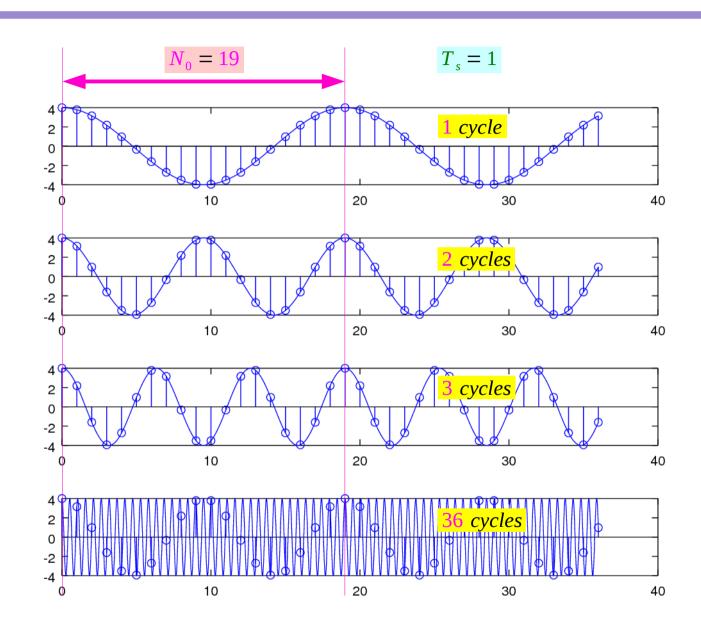
38

```
clf
n = [0:36]; t = [0:3600]/100;
v1 = 4*\cos(2*pi*(1/19)*n);
y2 = 4*\cos(2*pi*(2/19)*n);
y3 = 4*\cos(2*pi*(3/19)*n);
y4 = 4*\cos(2*pi*(36/19)*n);
yt1 = 4*cos(2*pi*(1/19)*t);
yt2 = 4*cos(2*pi*(2/19)*t);
yt3 = 4*\cos(2*pi*(3/19)*t);
yt4 = 4*cos(2*pi*(36/19)*t);
subplot(4,1,1);
stem(n, y1); hold on;
plot(t, yt1);
subplot(4,1,2);
stem(n, y2); hold on;
plot(t, yt2);
subplot(4,1,3);
stem(n, y3); hold on;
plot(t, yt3);
```

M.J. Roberts, Fundamentals of Signals and Systems

subplot(4,1,4);

plot(t, vt4);


stem(n, y4); hold on;

$$g[n] = 4\cos\left(2\pi \cdot \frac{1}{19} \cdot n\right)$$

$$g[n] = 4\cos\left(2\pi \cdot \frac{2}{19} \cdot n\right)$$

$$g[n] = 4\cos\left(2\pi \cdot \frac{3}{19} \cdot n\right)$$

$$g[n] = 4\cos\left(2\pi \cdot \frac{36}{19} \cdot n\right)$$

$$g(t) = A\cos(2\pi f_0 t + \theta)$$

$$g[n] = A\cos(2\pi F_0 n + \theta)$$

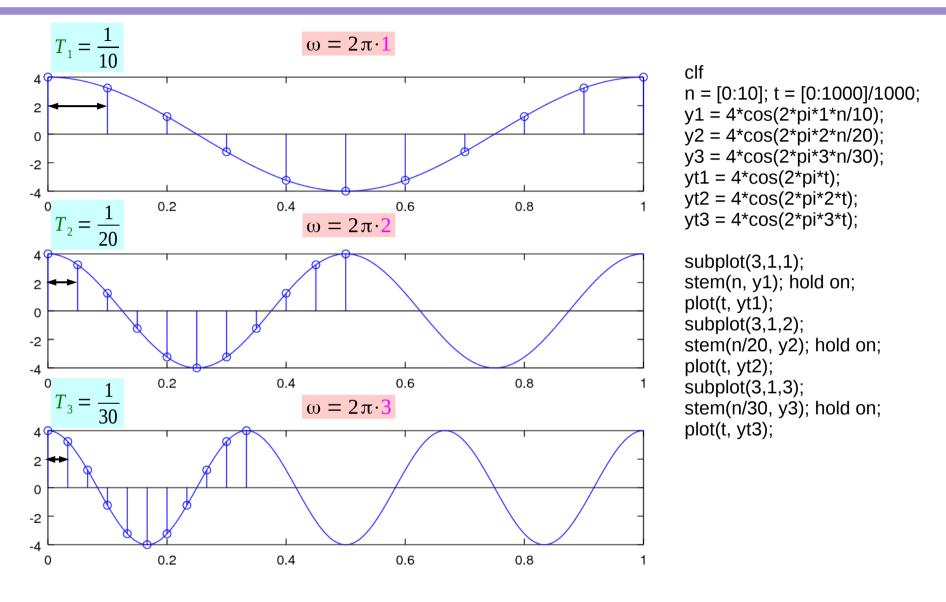
$$k f_0 \cdot n T_s \frac{1}{k}$$

$$f_0 \cdot nT_s$$

$$= 1 \cdot f_0 \cdot nT_s \cdot \frac{1}{1}$$

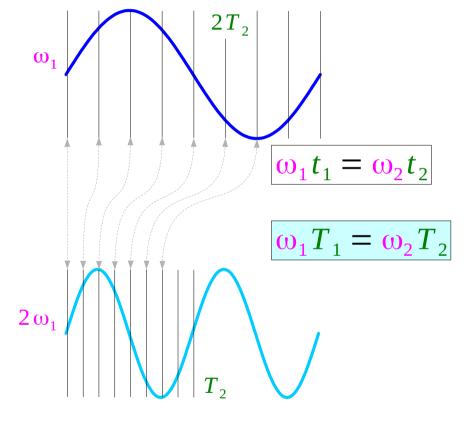
$$= 2 \cdot f_0 \cdot nT_s \cdot \frac{1}{2}$$

$$= 3 \cdot f_0 \cdot nT_s \cdot \frac{1}{3}$$

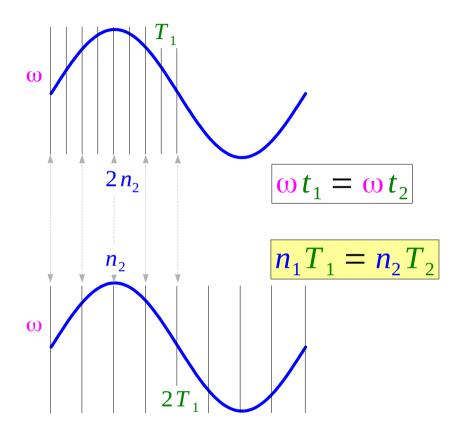

$$g(t) = A\cos(2\pi f_0 t + \theta)$$

$$g[\mathbf{n}] = A\cos(2\pi \mathbf{F}_0 \mathbf{n} + \theta)$$

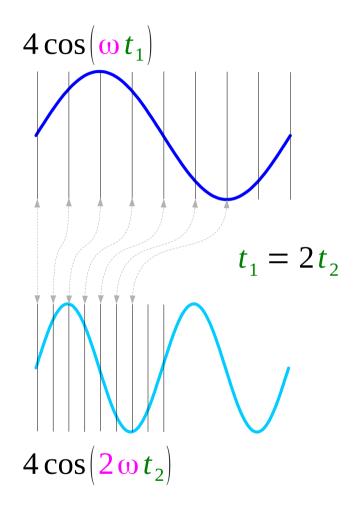
$$\begin{aligned} g_1(t) &= 4\cos(2\pi \cdot 1 \cdot t) & t \leftarrow nT_1 & g_1[n] &= 4\cos(2\pi \cdot 1 \cdot nT_1) \\ g_2(t) &= 4\cos(2\pi \cdot 2 \cdot t) & t \leftarrow nT_2 & g_2[n] &= 4\cos(2\pi \cdot 2 \cdot nT_2) \\ g_3(t) &= 4\cos(2\pi \cdot 3 \cdot t) & t \leftarrow nT_3 & g_3[n] &= 4\cos(2\pi \cdot 3 \cdot nT_3) \end{aligned}$$

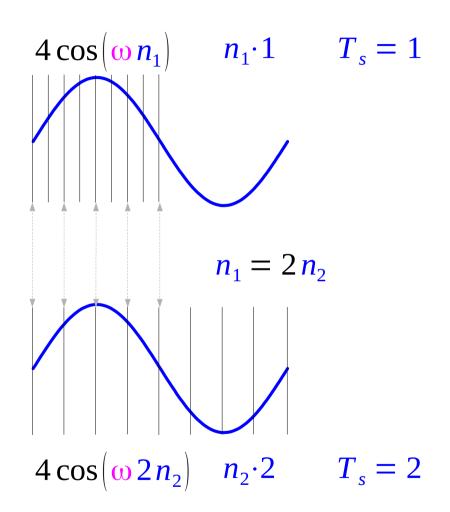

$$T_1 = \frac{1}{10}$$
 $n = 0, 1, 2, 3, \dots$ \rightarrow $1 \cdot n T_1 = 0, 0.1, 0.2, 0.3, \dots = 1 \cdot t$
 $T_2 = \frac{1}{20}$ $n = 0, 1, 2, 3, \dots$ \rightarrow $2 \cdot n T_2 = 0, 0.1, 0.2, 0.3, \dots = 2 \cdot t$
 $T_3 = \frac{1}{30}$ $n = 0, 1, 2, 3, \dots$ \rightarrow $3 \cdot n T_3 = 0, 0.1, 0.2, 0.3, \dots = 3 \cdot t$

$$\{g_1[\mathbf{n}]\} \equiv \{g_2[\mathbf{n}]\} \equiv \{g_2[\mathbf{n}]\}$$


M.J. Roberts, Fundamentals of Signals and Systems

$$\cos\left(\mathbf{\omega_1}t_1\right) = \cos\left(\mathbf{\omega_1}n\,T_1\right)$$




$$\cos\left(\mathbf{\omega_2}t_2\right) = \cos\left(\mathbf{\omega_2}n\,T_2\right)$$

$$\cos\left(\omega n_1 T_1\right)$$

$$\cos\left(\omega n_2 T_2\right)$$

References

- [1] http://en.wikipedia.org/
- [2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
- [3] M.J. Roberts, Fundamentals of Signals and Systems
- [4] S.J. Orfanidis, Introduction to Signal Processing
- [5] K. Shin, et al., Fundamentals of Signal Processing for Sound and Vibration Engineerings
- [6] A "graphical interpretation" of the DFT and FFT, by Steve Mann