
1 Young Won Lim
7/3/22

Monad P3 : Lambda Calculus (1F)

2 Young Won Lim
7/3/22

 Copyright (c) 2022 - 2016 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Lambda Calculus (1F) 3 Young Won Lim
7/3/22

Lambda Calculus

Lambda Calculus (1F) 4 Young Won Lim
7/3/22

The central concept in the lambda calculus is

an expression which we can think of as a program

that returns a result when evaluated

consisting of another lambda calculus expression.

Here is the grammar for lambda expressions:

expr → λ variable . expr | expr expr | variable | (expr) | constant

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

CFG for Lambda Calculus (1)

Lambda Calculus (1F) 5 Young Won Lim
7/3/22

expr → λ variable . expr | expr expr | variable | (expr) | constant

A variable is an identifier.

A constant is a built-in function such as addition or multiplication,

or a constant such as an integer or boolean.

all programming language constructs

can be represented as functions

with the pure lambda calculus

so these constants are unnecessary.

However, some constants may be used for notational simplicity.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

CFG for Lambda Calculus (2)

Lambda Calculus (1F) 6 Young Won Lim
7/3/22

A function abstraction, often called a lambda abstraction,

is a lambda expression that defines a function.

A function abstraction consists of four parts:

a lambda followed by a variable, a period,

and then an expression as in λx.expr.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Function Abstraction (1)

Lambda Calculus (1F) 7 Young Won Lim
7/3/22

For example, the function abstraction λx. + x 1

defines a function of x that adds x to 1.

Parentheses can be added to lambda expressions for clarity.

Thus, we could have written this function abstraction

as λx.(+ x 1) or even as (λx. (+ x 1)).

In C this function definition might be written as

 int addOne (int x) {

 return (x + 1); }

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Function Abstraction (2)

Lambda Calculus (1F) 8 Young Won Lim
7/3/22

Note that unlike C

the lambda abstraction does not give a name to the function.

The lambda expression itself is the function.

We say that λx.expr binds the variable x in expr and

that expr is the scope of the variable.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Function Abstraction (3)

Lambda Calculus (1F) 9 Young Won Lim
7/3/22

A function application λx.e f is evaluated

by substituting the argument f

for all free occurrences of the formal parameter x

in the body e of the function definition.

We will use the notation [f/x]e to indicate

that f is to be substituted for all free occurrences of x

in the expression e.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Beta reduction

λx.e f [f/x]e

x x x

f f f

e

e

expression e, formal parameter x

argument f

Lambda Calculus (1F) 10 Young Won Lim
7/3/22

A function application, often called a lambda application,

consists of an expression followed by an expression:

expr expr.

The first expression is

a function abstraction

the second expression is

the argument to which the function is applied.

All functions in lambda calculus have exactly one argument.

Multiple-argument functions are represented by currying,

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Function Application (1)

Lambda Calculus (1F) 11 Young Won Lim
7/3/22

the lambda expression λx. (+ x 1) 2

is an application of the function λx. (+ x 1) to the argument 2.

This function application λx. (+ x 1) 2 can be evaluated

by substituting the argument 2 for the formal parameter x

in the body (+ x 1).

Doing this we get (+ 2 1).

This substitution is called a beta reduction.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Function Application (2)

Lambda Calculus (1F) 12 Young Won Lim
7/3/22

Beta reductions are like macro substitutions in C.

To do beta reductions correctly

we may need to rename bound variables in lambda expressions

to avoid name clashes.

Function application associates left-to-right; thus, f g h = (f g)h.

Function application binds more tightly than λ; thus, λx. f g x = (λx. (f g)x).

Functions in the lambda calculus are first-class citizens;

that is to say, functions can be used as arguments to functions

and functions can return functions as results.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Function Application (3)

Lambda Calculus (1F) 13 Young Won Lim
7/3/22

In the function definition λx.x

the variable x in the body of the definition (the second x)

is bound because its first occurrence in the definition is λx.

A variable that is not bound in expr is said to be free in expr.

In the function (λx.xy), the variable x in the body of the function

is bound and the variable y is free.

Every variable in a lambda expression is either bound or free.

Bound and free variables have quite a different status in functions.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda calculus (4) – free and bound variables

Lambda Calculus (1F) 14 Young Won Lim
7/3/22

 In the expression (λx.x)(λy.yx):

 The variable x in the body of the leftmost expression is bound to the first lambda.

 The variable y in the body of the second expression is bound to the second lambda.

 The variable x in the body of the second expression is free.

 Note that x in second expression is independent of the x in the first expression.

 In the expression (λx.xy)(λy.y):

 The variable y in the body of the leftmost expression is free.

 The variable y in the body of the second expression is bound to the second lambda.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda calculus (5) – free and bound variables

Lambda Calculus (1F) 15 Young Won Lim
7/3/22

 Given an expression e, the following rules define FV(e), the set of free variables in e:

 If e is a variable x, then FV(e) = {x}.

 If e is of the form λx.y, then FV(e) = FV(y) - {x}.

 If e is of the form xy, then FV(e) = FV(x) FV(y).∪
 An expression with no free variables is said to be closed.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda calculus (5) – free and bound variables

Lambda Calculus (1F) 16 Young Won Lim
7/3/22

Examples:

 (λx.x)y → [y/x]x = y
in the express x,
substitute the parameter x with the argument x

 (λx.xzx)y → [y/x]xzx = yzy
in the express xzx,
substitute the parameter x with the argument y

 (λx.z)y → [y/x]z = z
in the express z,
substitute the parameter x with the argument y

since the formal parameter x does not appear in the body z.

This substitution in a function application is called

a beta reduction and we use a right arrow to indicate it.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda calculus (6) – beta reduction

λx.e f [f/x]e

Lambda Calculus (1F) 17 Young Won Lim
7/3/22

If expr1 → expr2, we say expr1 reduces to expr2 in one step.

In general, (λx.e)f → [f/x]e means that

applying the function (λx.e) to the argument expression f

reduces to the expression [f/x]e

where the argument expression f is substituted

for the function's formal parameter x in the function body e.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda calculus (7) – beta reduction

λx.e f [f/x]e

Lambda Calculus (1F) 18 Young Won Lim
7/3/22

A lambda calculus expression (aka a "program") is

"run" by computing a final result

by repeatly applying beta reductions.

We use →* to denote the reflexive and transitive closure of →;

that is, zero or more applications of beta reductions.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda calculus (8) – beta reduction

Lambda Calculus (1F) 19 Young Won Lim
7/3/22

Examples:

(λx.x)y → y

illustrating that λx.x is the identity function

(λx.xx)(λy.y) → (λy.y)(λy.y) → (λy.y);

thus, we can write (λx.xx)(λy.y) →* (λy.y).

we have applied a function to a function

as an argument and the result is a function.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda calculus (9) – beta reduction

λx.e f [f/x]e

(λx.xx) (λy.y) function argument

(λy.y)(λy.y)

(λy.y)(λy.y) indentity function

(λy.y)

Lambda Calculus (1F) 20 Young Won Lim
7/3/22

Examples:

(λx.x)y → y

illustrating that λx.x is the identity function

(λx.xx)(λy.y) → (λy.y)(λy.y) → (λy.y);

thus, we can write (λx.xx)(λy.y) →* (λy.y).

→* to denote the reflexive and transitive closure of →

that is, zero or more applications of beta reductions

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda calculus (10) – beta reduction

Transitive relation

x R y and y R z then x R z

Reflexive relation

x R x

Lambda Calculus (1F) 21 Young Won Lim
7/3/22

Call-by-value:

arguments are evaluated before a function is entered

Call-by-name:

arguments are passed unevaluated

Call-by-need:

arguments are passed unevaluated

but an expression is only evaluated once

and shared upon subsequent references

http://dev.stephendiehl.com/fun/005_evaluation.html

Evaluation models of a function

Lambda Calculus (1F) 22 Young Won Lim
7/3/22

Call by name is non-memoizing non-strict evaluation strategy

where the value(s) of the argument(s) need only be found

when actually used inside the function's body, each time anew:

Call by need is memoizing non-strict a.k.a. lazy evaluation strategy

where the value(s) of the argument(s) need only be found

when used inside the function's body for the first time,

and then are available for any further reference:

Call by value is strict evaluation strategy

where the value(s) of the argument(s) must be found

before entering the function's body:

https://stackoverflow.com/questions/61601125/haskell-semantics-call-by-name-value

Comparisons

Lambda Calculus (1F) 23 Young Won Lim
7/3/22

https://stackoverflow.com/questions/61601125/haskell-semantics-call-by-name-value

Comparisons

Call by name non-memoizing non-strict

Call by need memoizing non-strict

Call by value strict

Lambda Calculus (1F) 24 Young Won Lim
7/3/22

https://stackoverflow.com/questions/61601125/haskell-semantics-call-by-name-value

Comparisons

non-memoizing non-strict Call by name the value(s) of the argument(s) need only be found

when actually used inside the function's body, each time anew:

Call by need the value(s) of the argument(s) need only be found

when used inside the function's body for the first time,

and then are available for any further reference:

Call by value the value(s) of the argument(s) must be found

before entering the function's body:

memoizing non-strict

strict

Lambda Calculus (1F) 25 Young Won Lim
7/3/22

Memoization is a technique

for storing values of a function

instead of recomputing them

each time the function is called.

Sharing means that temporary data is physically stored,

if it is used multiple times.

https://wiki.haskell.org/Memoization

Memoization / Sharing

Lambda Calculus (1F) 26 Young Won Lim
7/3/22

Strict evaluation, or eager evaluation, is an evaluation strategy

where expressions are evaluated

as soon as they are bound to a variable.

when x = 3 * 7 is read, 3 * 7 is immediately computed

and 21 is bound to x.

Conversely, with lazy evaluation

values are only computed when they are needed.

In the example x = 3 * 7, 3 * 7 isn't evaluated until it's needed,

like if you needed to output the value of x.

https://en.wikibooks.org/wiki/Haskell/Strictness https://wiki.haskell.org/Sharing

Strictness

https://en.wikibooks.org/wiki/Haskell/Strictness

Lambda Calculus (1F) 27 Young Won Lim
7/3/22

Haskell is a non-strict language, and most implementations

use a strategy called laziness to run your program.

Basically laziness == non-strictness + sharing.

Laziness can be a useful tool for improving performance,

but more often than not it reduces performance

by adding a constant overhead to everything.

https://wiki.haskell.org/Performance/Strictness

Laziness

Lambda Calculus (1F) 28 Young Won Lim
7/3/22

Because of laziness, the compiler can't

evaluate a function argument

and pass the value to the function,

it has to record the expression

in the heap in a suspension (or thunk)

in case it is evaluated later.

Storing and evaluating suspensions is costly, and unnecessary

if the expression was going to be evaluated anyway.

https://wiki.haskell.org/Performance/Strictness

Laziness

Lambda Calculus (1F) 29 Young Won Lim
7/3/22

h x = x : (h x)

g xs = [head xs, head xs - 1]

g (h 2) = let {xs = (h 2)} in [head xs, head xs - 1]

 = [let {xs = (h 2)} in head xs, let {xs = (h 2)} in head xs - 1]

 = [head (h 2), let {xs = (h 2)} in head xs - 1]

 = [head (let {x = 2} in x : (h x)}), let {xs = (h 2)} in head xs - 1]

 = [let {x = 2} in x, let {xs = (h 2)} in head xs - 1]

 = [2, let {xs = (h 2)} in head xs - 1]

 =

https://stackoverflow.com/questions/61601125/haskell-semantics-call-by-name-value

Call by name

Lambda Calculus (1F) 30 Young Won Lim
7/3/22

h x = x : (h x)

g xs = [head xs, head xs - 1]

g (h 2) = let {xs = (h 2)} in [head xs, head xs - 1]

 = let {xs = (2 : (h 2))} in [head xs, head xs - 1]

 = let {xs = (2 : (h 2))} in [2, head xs - 1]

 =

https://stackoverflow.com/questions/61601125/haskell-semantics-call-by-name-value

Call by need

Lambda Calculus (1F) 31 Young Won Lim
7/3/22

h x = x : (h x)

g xs = [head xs, head xs - 1]

g (h 2) = let {xs = (h 2)} in [head xs, head xs - 1]

 = let {xs = (2 : (h 2))} in [head xs, head xs - 1]

 = let {xs = (2 : (2 : (h 2)))} in [head xs, head xs - 1]

 = let {xs = (2 : (2 : (2 : (h 2))))} in [head xs, head xs - 1]

 =

All the above assuming g (h 2) is entered at the GHCi prompt

and thus needs to be printed in full by it.

https://stackoverflow.com/questions/61601125/haskell-semantics-call-by-name-value

Call by value

Lambda Calculus (1F) 32 Young Won Lim
7/3/22

Given an expression f x

Call-by-value: Evaluate x to v

Evaluate f to λy.e

Evaluate [y/v]e

Call-by-name: Evaluate f to λy.e

Evaluate [y/x]e

Call-by-need: Allocate a thunk v for x

Evaluate f to λy.e

Evaluate [y/v]e

http://dev.stephendiehl.com/fun/005_evaluation.html

Reductions in the expression f x

Lambda Calculus (1F) 33 Young Won Lim
7/3/22

Call by value is an extremely common evaluation model.

Many programming languages both imperative and functional

use this evaluation strategy.

The essence of call-by-value is that

there are two categories of expressions: terms and values.

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by value (1)

Lambda Calculus (1F) 34 Young Won Lim
7/3/22

Values are lambda expressions and other terms

which are in normal form and cannot be reduced further.

All arguments to a function will be reduced to normal form

before they are bound inside the lambda and

reduction only proceeds once the arguments are reduced.

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by value (2)

Lambda Calculus (1F) 35 Young Won Lim
7/3/22

For a simple arithmetic expression, the reduction proceeds as follows.

Notice how the subexpression (2 + 2) is evaluated to normal form

before being bound.

(\x. \y. y x) (2 + 2) (\x. x + 1)

=> (\x. \y. y x) 4 (\x. x + 1)

=> (\y. y 4) (\x. x + 1)

=> (\x. x + 1) 4

=> 4 + 1

=> 5

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by value (3)

Lambda Calculus (1F) 36 Young Won Lim
7/3/22

In call-by-name evaluation,

the arguments to lambda expressions are substituted as is,

evaluation simply proceeds from left to right

substituting the outermost lambda or reducing a value.

If a substituted expression is not used it is never evaluated.

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by name (1)

Lambda Calculus (1F) 37 Young Won Lim
7/3/22

For example, the same expression we looked at for call-by-value

has the same normal form but arrives at it

by a different sequence of reductions:

(\x. \y. y x) (2 + 2) (\x. x + 1)

=> (\y. y (2 + 2)) (\x. x + 1)

=> (\x. x + 1) (2 + 2)

=> (2 + 2) + 1

=> 4 + 1

=> 5

Call-by-name is non-strict, although very few languages use this model.

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by name (2)

Lambda Calculus (1F) 38 Young Won Lim
7/3/22

Call-by-need is a special type of non-strict evaluation

in which unevaluated expressions are represented

by suspensions or thunks which are passed

into a function unevaluated and

only evaluated when needed or forced.

When the thunk is forced

the representation of the thunk is updated

with the computed value

and is not recomputed upon further reference.

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by need (1)

Lambda Calculus (1F) 39 Young Won Lim
7/3/22

The thunks for unevaluated lambda expressions

are allocated when evaluated,

and the resulting computed value

is placed in the same reference

so that subsequent computations share the result.

If the argument is never needed

it is never computed,

which results in a trade-off

between space and time.

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by need (2)

Lambda Calculus (1F) 40 Young Won Lim
7/3/22

Since the evaluation of subexpression

does not follow any pre-defined order,

any impure functions with side-effects

will be evaluated in an unspecified order.

As a result call-by-need can only effectively

be implemented in a purely functional setting.

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by need (3)

Lambda Calculus (1F) 41 Young Won Lim
7/3/22

For a simple arithmetic expression,

the reduction proceeds as follows.

Notice how the subexpression (2 + 2) is evaluated

to normal form before being bound.

(\x. \y. y x) (2 + 2) (\x. x + 1)

=> (\x. \y. y x) 4 (\x. x + 1)

=> (\y. y 4) (\x. x + 1)

=> (\x. x + 1) 4

=> 4 + 1

=> 5

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by value (3)

Lambda Calculus (1F) 42 Young Won Lim
7/3/22

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

