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Lambda Calculus
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The central concept in the lambda calculus is 

an expression which we can think of as a program 

that returns a result  when evaluated 

consisting of another lambda calculus expression.

Here is the grammar for lambda expressions:

expr → λ variable . expr | expr expr | variable | ( expr ) | constant

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

CFG for Lambda Calculus (1) 
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expr → λ variable . expr | expr expr | variable | ( expr ) | constant

A variable is an identifier.

A constant is a built-in function such as addition or multiplication, 

or a constant such as an integer or boolean. 

all programming language constructs 

can be represented as functions 

with the pure lambda calculus 

so these constants are unnecessary. 

However, some constants may be used for notational simplicity.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

CFG for Lambda Calculus (2) 
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A function abstraction, often called a lambda abstraction, 

is a lambda expression that defines a function.

A function abstraction consists of four parts: 

a lambda followed by a variable, a period, 

and then an expression as in λx.expr.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Function Abstraction (1)
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For example, the function abstraction λx. + x 1 

defines a function of x that adds x to 1. 

Parentheses can be added to lambda expressions for clarity. 

Thus, we could have written this function abstraction 

as λx.(+ x 1) or even as (λx. (+ x 1)).

In C this function definition might be written as

        int addOne (int x) {

          return (x + 1);     }

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Function Abstraction (2)
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Note that unlike C 

the lambda abstraction does not give a name to the function. 

The lambda expression itself is the function.

We say that λx.expr binds the variable x in expr and 

that expr is the scope of the variable.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Function Abstraction (3)
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A function application λx.e f is evaluated 

by substituting the argument f 

for all free occurrences of the formal parameter x 

in the body e of the function definition.

We will use the notation [f/x]e to indicate 

that f is to be substituted for all free occurrences of x 

in the expression e.

 

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Beta reduction

λx.e f     [f/x]e

x   x       x  

f     f       f  

e

e

expression e, formal parameter x 

argument f
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A function application, often called a lambda application, 

consists of an expression followed by an expression: 

expr expr. 

The first expression is 

a function abstraction 

the second expression is 

the argument to which the function is applied. 

All functions in lambda calculus have exactly one argument. 

Multiple-argument functions are represented by currying, 

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Function Application (1)
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the lambda expression λx. (+ x 1) 2 

is an application of the function λx. (+ x 1) to the argument 2.

This function application λx. (+ x 1) 2  can be evaluated 

by substituting the argument 2 for the formal parameter x 

in the body (+ x 1). 

Doing this we get (+ 2 1). 

This substitution is called a beta reduction.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Function Application (2)



Lambda Calculus (1F) 12 Young Won Lim
7/3/22

Beta reductions are like macro substitutions in C. 

To do beta reductions correctly 

we may need to rename bound variables in lambda expressions 

to avoid name clashes.

Function application associates left-to-right; thus, f g h = (f g)h.

Function application binds more tightly than λ; thus, λx. f g x = (λx. (f g)x).

Functions in the lambda calculus are first-class citizens; 

that is to say, functions can be used as arguments to functions 

and functions can return functions as results.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Function Application (3)
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In the function definition λx.x 

the variable x in the body of the definition (the second x) 

is bound because its first occurrence in the definition is λx.

A variable that is not bound in expr is said to be free in expr. 

In the function (λx.xy), the variable x in the body of the function 

is bound and the variable y is free.

Every variable in a lambda expression is either bound or free. 

Bound and free variables have quite a different status in functions.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda calculus (4) – free and bound variables
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    In the expression (λx.x)(λy.yx):

        The variable x in the body of the leftmost expression is bound to the first lambda.

        The variable y in the body of the second expression is bound to the second lambda.

        The variable x in the body of the second expression is free.

        Note that x in second expression is independent of the x in the first expression.

    In the expression (λx.xy)(λy.y):

        The variable y in the body of the leftmost expression is free.

        The variable y in the body of the second expression is bound to the second lambda.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda calculus (5) – free and bound variables
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    Given an expression e, the following rules define FV(e), the set of free variables in e:

        If e is a variable x, then FV(e) = {x}.

        If e is of the form λx.y, then FV(e) = FV(y) - {x}.

        If e is of the form xy, then FV(e) = FV(x)  FV(y).∪
    An expression with no free variables is said to be closed.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda calculus (5) – free and bound variables
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Examples:

        (λx.x)y → [y/x]x = y
in the express x, 
substitute the parameter x with the argument x

        (λx.xzx)y → [y/x]xzx = yzy
in the express xzx, 
substitute the parameter x with the argument y

        (λx.z)y → [y/x]z = z 
in the express z, 
substitute the parameter x with the argument y

since the formal parameter x does not appear in the body z.

This substitution in a function application is called 

a beta reduction and we use a right arrow to indicate it.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda calculus (6) – beta reduction 

λx.e f     [f/x]e
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If expr1 → expr2, we say expr1 reduces to expr2 in one step.

In general, (λx.e)f → [f/x]e means that 

applying the function (λx.e) to the argument expression f 

reduces to the expression [f/x]e 

where the argument expression f is substituted 

for the function's formal parameter x in the function body e.

 

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda calculus (7) – beta reduction 

λx.e f     [f/x]e
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A lambda calculus expression (aka a "program") is 

"run" by computing a final result 

by repeatly applying beta reductions. 

We use →* to denote the reflexive and transitive closure of →; 

that is, zero or more applications of beta reductions.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda calculus (8) – beta reduction 
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Examples:

(λx.x)y → y 

illustrating that λx.x is the identity function

(λx.xx)(λy.y) → (λy.y)(λy.y) → (λy.y); 

thus, we can write (λx.xx)(λy.y) →* (λy.y). 

we have applied a function to a function 

as an argument and the result is a function.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda calculus (9) – beta reduction 

λx.e f     [f/x]e

(λx.xx) (λy.y) function argument

(λy.y)(λy.y)

(λy.y)(λy.y) indentity function 

(λy.y)
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Examples:

(λx.x)y → y 

illustrating that λx.x is the identity function

(λx.xx)(λy.y) → (λy.y)(λy.y) → (λy.y); 

thus, we can write (λx.xx)(λy.y) →* (λy.y). 

→* to denote the reflexive and transitive closure of →

that is, zero or more applications of beta reductions

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda calculus (10) – beta reduction 

Transitive relation

x R y and y R z then x R z

Reflexive relation 

x R x 
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Call-by-value: 

arguments are evaluated before a function is entered

Call-by-name: 

arguments are passed unevaluated

Call-by-need: 

arguments are passed unevaluated 

but an expression is only evaluated once 

and shared upon subsequent references

http://dev.stephendiehl.com/fun/005_evaluation.html

Evaluation models of a function
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Call by name is non-memoizing non-strict evaluation strategy 

where the value(s) of the argument(s) need only be found 

when actually used inside the function's body, each time anew:

Call by need is memoizing non-strict a.k.a. lazy evaluation strategy 

where the value(s) of the argument(s) need only be found 

when used inside the function's body for the first time, 

and then are available for any further reference:

Call by value is strict evaluation strategy 

where the value(s) of the argument(s) must be found 

before entering the function's body:

https://stackoverflow.com/questions/61601125/haskell-semantics-call-by-name-value

Comparisons
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https://stackoverflow.com/questions/61601125/haskell-semantics-call-by-name-value

Comparisons

Call by name non-memoizing non-strict 

Call by need memoizing non-strict

Call by value strict 
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https://stackoverflow.com/questions/61601125/haskell-semantics-call-by-name-value

Comparisons

non-memoizing non-strict Call by name the value(s) of the argument(s) need only be found 

when actually used inside the function's body, each time anew:

Call by need the value(s) of the argument(s) need only be found 

when used inside the function's body for the first time, 

and then are available for any further reference:

Call by value the value(s) of the argument(s) must be found 

before entering the function's body:

memoizing non-strict

strict 
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Memoization is a technique 

for storing values of a function 

instead of recomputing them 

each time the function is called. 

Sharing means that temporary data is physically stored, 

if it is used multiple times.

https://wiki.haskell.org/Memoization

Memoization / Sharing 
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Strict evaluation, or eager evaluation, is an evaluation strategy 

where expressions are evaluated 

as soon as they are bound to a variable. 

when x = 3 * 7 is read, 3 * 7 is immediately computed 

and 21 is bound to x. 

Conversely, with lazy evaluation 

values are only computed when they are needed. 

In the example x = 3 * 7, 3 * 7 isn't evaluated until it's needed, 

like if you needed to output the value of x. 

https://en.wikibooks.org/wiki/Haskell/Strictness https://wiki.haskell.org/Sharing

Strictness

https://en.wikibooks.org/wiki/Haskell/Strictness
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Haskell is a non-strict language, and most implementations 

use a strategy called laziness to run your program. 

Basically laziness == non-strictness + sharing.

Laziness can be a useful tool for improving performance, 

but more often than not it reduces performance 

by adding a constant overhead to everything. 

https://wiki.haskell.org/Performance/Strictness

Laziness
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Because of laziness, the compiler can't 

evaluate a function argument 

and pass the value to the function, 

it has to record the expression 

in the heap in a suspension (or thunk) 

in case it is evaluated later. 

Storing and evaluating suspensions is costly, and unnecessary 

if the expression was going to be evaluated anyway. 

https://wiki.haskell.org/Performance/Strictness

Laziness
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h x = x : (h x)

g xs = [head xs, head xs - 1]

g (h 2) = let {xs = (h 2)} in [head xs, head xs - 1]

        = [let {xs = (h 2)} in head xs, let {xs = (h 2)} in head xs - 1]

        = [head (h 2),                  let {xs = (h 2)} in head xs - 1]

        = [head (let {x = 2} in x : (h x)}), let {xs = (h 2)} in head xs - 1]

        = [let {x = 2} in x,            let {xs = (h 2)} in head xs - 1]

        = [2,                           let {xs = (h 2)} in head xs - 1]

        = ....

https://stackoverflow.com/questions/61601125/haskell-semantics-call-by-name-value

Call by name 
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h x = x : (h x)

g xs = [head xs, head xs - 1]

g (h 2) = let {xs = (h 2)}       in [head xs, head xs - 1]

        = let {xs = (2 : (h 2))} in [head xs, head xs - 1]

        = let {xs = (2 : (h 2))} in [2,       head xs - 1]

        = ....

https://stackoverflow.com/questions/61601125/haskell-semantics-call-by-name-value

Call by need 
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h x = x : (h x)

g xs = [head xs, head xs - 1]

g (h 2) = let {xs = (h 2)} in [head xs, head xs - 1]

        = let {xs = (2 : (h 2))} in [head xs, head xs - 1]

        = let {xs = (2 : (2 : (h 2)))} in [head xs, head xs - 1]

        = let {xs = (2 : (2 : (2 : (h 2))))} in [head xs, head xs - 1]

        = ....

All the above assuming g (h 2) is entered at the GHCi prompt 

and thus needs to be printed in full by it.

https://stackoverflow.com/questions/61601125/haskell-semantics-call-by-name-value

Call by value 
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Given an expression f x

Call-by-value:    Evaluate x to v

Evaluate f to λy.e

Evaluate [y/v]e

Call-by-name: Evaluate f to λy.e

Evaluate [y/x]e

Call-by-need: Allocate a thunk v for x

Evaluate f to λy.e

Evaluate [y/v]e

http://dev.stephendiehl.com/fun/005_evaluation.html

Reductions in the expression f x 
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Call by value is an extremely common evaluation model. 

Many programming languages both imperative and functional 

use this evaluation strategy. 

The essence of call-by-value is that 

there are two categories of expressions: terms and values. 

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by value (1)
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Values are lambda expressions and other terms 

which are in normal form and cannot be reduced further. 

All arguments to a function will be reduced to normal form 

before they are bound inside the lambda and 

reduction only proceeds once the arguments are reduced.

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by value (2)
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For a simple arithmetic expression, the reduction proceeds as follows. 

Notice how the subexpression (2 + 2) is evaluated to normal form 

before being bound.

(\x. \y. y x) (2 + 2) (\x. x + 1)

=> (\x. \y. y x) 4 (\x. x + 1)

=> (\y. y 4) (\x. x + 1)

=> (\x. x + 1) 4

=> 4 + 1

=> 5

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by value (3)
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In call-by-name evaluation, 

the arguments to lambda expressions are substituted as is, 

evaluation simply proceeds from left to right 

substituting the outermost lambda or reducing a value. 

If a substituted expression is not used it is never evaluated.

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by name (1)
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For example, the same expression we looked at for call-by-value 

has the same normal form but arrives at it 

by a different sequence of reductions:

(\x. \y. y x) (2 + 2) (\x. x + 1)

=> (\y. y (2 + 2)) (\x. x + 1)

=> (\x. x + 1) (2 + 2)

=> (2 + 2) + 1

=> 4 + 1

=> 5

Call-by-name is non-strict, although very few languages use this model.

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by name (2)
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Call-by-need is a special type of non-strict evaluation 

in which unevaluated expressions are represented 

by suspensions or thunks which are passed 

into a function unevaluated and 

only evaluated when needed or forced. 

When the thunk is forced 

the representation of the thunk is updated 

with the computed value 

and is not recomputed upon further reference.

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by need (1)
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The thunks for unevaluated lambda expressions 

are allocated when evaluated, 

and the resulting computed value 

is placed in the same reference 

so that subsequent computations share the result. 

If the argument is never needed 

it is never computed, 

which results in a trade-off 

between space and time.

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by need (2)
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Since the evaluation of subexpression 

does not follow any pre-defined order, 

any impure functions with side-effects 

will be evaluated in an unspecified order. 

As a result call-by-need can only effectively 

be implemented in a purely functional setting.

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by need (3)
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For a simple arithmetic expression, 

the reduction proceeds as follows. 

Notice how the subexpression (2 + 2) is evaluated 

to normal form before being bound.

(\x. \y. y x) (2 + 2) (\x. x + 1)

=> (\x. \y. y x) 4 (\x. x + 1)

=> (\y. y 4) (\x. x + 1)

=> (\x. x + 1) 4

=> 4 + 1

=> 5

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by value (3)
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