
HAL

Contents

1 Hardware abstraction 1
1.1 Overview . 1
1.2 In Operating Systems . 2

1.2.1 Microsoft Windows . 2
1.2.2 AS/400 . 2

1.3 References . 2

2 LinuxCNC 3
2.1 Purpose . 3
2.2 History . 3
2.3 Platforms . 4
2.4 Design . 4
2.5 Configuration . 4
2.6 References . 4
2.7 External links . 5
2.8 Text and image sources, contributors, and licenses . 6

2.8.1 Text . 6
2.8.2 Images . 6
2.8.3 Content license . 6

i

Chapter 1

Hardware abstraction

“Hardware Abstraction Layer” redirects here. For
the UNIX-like operating system subsystem, see HAL
(software).

Hardware abstractions are sets of routines in software
that emulate some platform-specific details, giving pro-
grams direct access to the hardware resources.
They often allow programmers to write device-
independent, high performance applications by providing
standard Operating System (OS) calls to hardware. The
process of abstracting pieces of hardware is often done
from the perspective of a CPU. Each type of CPU
has a specific instruction set architecture or ISA. The
ISA represents the primitive operations of the machine
that are available for use by assembly programmers
and compiler writers. One of the main functions of a
compiler is to allow a programmer to write an algorithm
in a high-level language without having to care about
CPU-specific instructions. Then it is the job of the com-
piler to generate a CPU-specific executable. The same
type of abstraction is made in operating systems, but
OS APIs now represent the primitive operations of the
machine, rather than an ISA. This allows a programmer
to use OS-level operations (i.e. task creation/deletion)
in their programs while still remaining portable over a
variety of different platforms.

1.1 Overview

Many early computer systems did not have any form of
hardware abstraction. This meant that anyone writing a
program for such a system would have to know how each
hardware device communicated with the rest of the sys-
tem. This was a significant challenge to software devel-
opers since they then had to know how every hardware
device in a system worked to ensure the software’s com-
patibility. With hardware abstraction, rather than the pro-
gram communicating directly with the hardware device,
it communicates to the operating system what the device
should do, which then generates a hardware-dependent
instruction to the device. This meant programmers didn't
need to know how specific devices worked, making their
programs compatible with any device.

An example of this might be a “Joystick” abstraction.
The joystick device, there are many physical implemen-
tations, is readable / writable through an API which many
joystick-like devices might share. Most joystick-devices
might report movement directions. Many joystick-
devices might have sensitivity-settings that can be con-
figured by an outside application. A Joystick abstraction
hides details (e.g., register formats, I2C address) of the
hardware so that a programmer using the abstracted API
needn't understand the details of the device’s physical in-
terface. This also allows code reuse since the same code
can process standardized messages from any kind of im-
plementation which supplies the “joystick” abstraction. A
“nudge forward” can be from a potentiometer or from a
capacitive touch sensor that recognises “swipe” gestures,
as long as they both provide a signal related to “move-
ment”.
As physical limitations (e.g. resolution of sensor, tem-
poral update frequency) may vary with hardware, an API
can do little to hide that, other than by assuming a “least
common denominator” model. Thus, certain deep archi-
tectural decisions from the implementation may become
relevant to users of a particular instantiation of an ab-
straction.
A good metaphor is the abstraction of transportation.
Both bicycling and driving a car are transportation. They
both have commonalities (e.g., you must steer) and physi-
cal differences (e.g., use of feet). One can always specify
the abstraction “drive to” and let the implementor decide
whether bicycling or driving a car is best. The “wheeled
terrestrial transport” function is abstracted and the details
of “how to drive” are encapsulated.
Examples of “abstractions” on a PC include video input,
printers, audio input and output, block devices (e.g. hard
disk drives or USB flash drive), etc.
In certain computer science domains, such as Operat-
ing Systems or Embedded Systems, the abstractions have
slightly different appearances (for instance, OSes tend to
have more standardized interfaces), but the concept of
abstraction and encapsulation of complexity are common,
and deep.
Hardware abstraction layers are of an even lower level in
computer languages than application programming inter-

1

https://en.wikipedia.org/wiki/HAL_(software)
https://en.wikipedia.org/wiki/HAL_(software)
https://en.wikipedia.org/wiki/Computer_software
https://en.wikipedia.org/wiki/System_platform
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Operating_System
https://en.wikipedia.org/wiki/Abstraction_(computer_science)
https://en.wikipedia.org/wiki/CPU
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/High-level_language
https://en.wikipedia.org/wiki/API
https://en.wikipedia.org/wiki/Software_portability
https://en.wikipedia.org/wiki/Joystick
https://en.wikipedia.org/wiki/I2C
https://en.wikipedia.org/wiki/Code_reuse
https://en.wikipedia.org/wiki/Potentiometer
https://en.wikipedia.org/wiki/USB_flash_drive
https://en.wikipedia.org/wiki/Application_programming_interface

2 CHAPTER 1. HARDWARE ABSTRACTION

faces (API) because they interact directly with hardware
instead of a system kernel, therefore HALs require less
processing time than APIs. Higher level languages of-
ten use HALs and APIs to communicate with lower level
components.

1.2 In Operating Systems

A hardware abstraction layer (HAL) is an abstraction
layer, implemented in software, between the physical
hardware of a computer and the software that runs on that
computer. Its function is to hide differences in hardware
from most of the operating system kernel, so that most of
the kernel-mode code does not need to be changed to run
on systems with different hardware. On a PC, HAL can
basically be considered to be the driver for the mother-
board and allows instructions from higher level computer
languages to communicate with lower level components,
but prevents direct access to the hardware.
BSD, Mac OS X, Linux, CP/M, DOS, Solaris, and some
other portable operating systems also have a HAL, even
if it is not explicitly designated as such. Some operat-
ing systems, such as Linux, have the ability to insert one
while running, likeAdeos. TheNetBSD operating system
is widely known as having a clean hardware abstraction
layer which allows it to be highly portable. As part of this
system are uvm(9)/pmap(9), bus_space(9), bus_dma(9)
and other subsystems. Popular buses which are used on
more than one architecture are also abstracted, such as
ISA, EISA, PCI, PCI-E, etc., allowing drivers to also be
highly portable with a minimum of code modification.
Operating systems having a defined HAL are easily
portable across different hardware. This is especially im-
portant for embedded systems that run on dozens of dif-
ferent platforms.

1.2.1 Microsoft Windows

The Windows NT operating system has a HAL in
the kernel space between hardware and the Windows
NT executive services that are contained in the file
NTOSKRNL.EXE.[1][2] This allows portability of the
Windows NT kernel-mode code to a variety of proces-
sors, with different memory management unit architec-
tures, and a variety of systems with different I/O bus ar-
chitectures; most of that code runs without change on
those systems, when compiled for the instruction set ap-
plicable to those systems. For example, the SGI Intel
x86-based workstations were not IBM PC compatible
workstations, but due to the HAL, Windows NT was able
to run on them.
Windows Vista and later (Windows Server 2008 and later
for servers) automatically detect which hardware abstrac-
tion layer (HAL) should be used at boot time.[3]

1.2.2 AS/400

An “extreme” example of a HAL can be found in the
System/38 and AS/400 architecture. Most compilers for
those systems generate an abstract machine code; the Li-
censed Internal Code, or LIC, translates this virtual ma-
chine code into native code for the processor on which
it is running and executes the resulting native code.[4]
(The exceptions are compilers that generate the LIC it-
self; those compilers are not available outside IBM.) This
was so successful that application software and operating
system software above the LIC layer that were compiled
on the original S/38 run without modification and with-
out recompilation on the latest AS/400 systems, despite
the fact that the underlying hardware has been changed
dramatically; at least three different types of processors
have been in use.[4]

1.3 References
[1] “Windows NT Hardware Abstraction Layer (HAL)". Mi-

crosoft. October 31, 2006. Retrieved 2007-08-25.

[2] Helen Custer (1993), InsideWindows NT, Microsoft Press

[3] Russinovich, Mark. E.; Solomon, DavidA.; Ionescu, Alex
(2008). Windows Internals: Including Windows Server
2008 and Windows Vista. (5th ed.). Redmond, Wash.:
Microsoft Press. p. 65. ISBN 978-0-7356-2530-3.

[4] Soltis, Frank G. (1997). Inside the AS/400: Featuring the
AS/400e Series (2nd ed.). Loveland, Colo.: Duke Press.
ISBN 978-1-882419-66-1.

https://en.wikipedia.org/wiki/Kernel_(computer_science)
https://en.wikipedia.org/wiki/Abstraction_layer
https://en.wikipedia.org/wiki/Abstraction_layer
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Computer_software
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Kernel_(computer_science)
https://en.wikipedia.org/wiki/BSD
https://en.wikipedia.org/wiki/Mac_OS_X
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/CP/M
https://en.wikipedia.org/wiki/DOS
https://en.wikipedia.org/wiki/Solaris_(operating_system)
https://en.wikipedia.org/wiki/Adaptive_Domain_Environment_for_Operating_Systems
https://en.wikipedia.org/wiki/NetBSD
http://netbsd.gw.com/cgi-bin/man-cgi?uvm+9+NetBSD-current
http://netbsd.gw.com/cgi-bin/man-cgi?pmap+9+NetBSD-current
http://netbsd.gw.com/cgi-bin/man-cgi?bus_space+9+NetBSD-current
http://netbsd.gw.com/cgi-bin/man-cgi?bus_dma+9+NetBSD-current
https://en.wikipedia.org/wiki/Industry_Standard_Architecture
https://en.wikipedia.org/wiki/Extended_Industry_Standard_Architecture
https://en.wikipedia.org/wiki/Peripheral_Component_Interconnect
https://en.wikipedia.org/wiki/PCI-E
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Windows_NT
https://en.wikipedia.org/wiki/Ntoskrnl.exe
https://en.wikipedia.org/wiki/Memory_management_unit
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Silicon_Graphics
https://en.wikipedia.org/wiki/IBM_PC_compatible
https://en.wikipedia.org/wiki/Windows_Vista
https://en.wikipedia.org/wiki/Windows_Server_2008
https://en.wikipedia.org/wiki/System/38
https://en.wikipedia.org/wiki/AS/400
http://support.microsoft.com/kb/99588
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-7356-2530-3
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-1-882419-66-1

Chapter 2

LinuxCNC

LinuxCNC (formerly “Enhanced Machine Controller”
or “EMC2”) is a free, open-source GNU/Linux software
system that implements numerical control capability us-
ing general purpose computers to control CNCmachines.
Designed by various volunteer developers at linuxcnc.org,
it is typically bundled as an ISO file with a modified ver-
sion of 32-bit Ubuntu Linux which provides the required
real-time kernel.
Due to the tight real-time operating system integration, a
standard Ubuntu Linux desktop PC without the real-time
kernel will only run the package in demo mode.

2.1 Purpose

LinuxCNC is a software system for numerical control of
machines such as milling machines, lathes, plasma cut-
ters, routers, cutting machines, robots and hexapods. It
can control up to 9 axes or joints of a CNC machine us-
ing G-code (RS-274NGC) as input. It has several GUIs
suited to specific kinds of usage (touch screen, interactive
development).
Currently it is almost exclusively used on x86 PC plat-
forms, but has been ported to other architectures.. It
makes extensive use of a real time-modified kernel, and
supports both stepper- and servo-type drives.
It does not provide drawing (CAD - Computer Aided
Design) or G-code generation from the drawing (CAM
- Computer Automated Manufacturing) functions.

2.2 History

The EMC Public Domain software system was originally
developed by NIST, as the next step beyond the National
Center for Manufacturing Sciences / Air Force sponsored
Next Generation Controller Program[NGC 1989] /Spec-
ification for an Open Systems Architecture[SOSAS]. It
was called the EMC [Enhanced Machine Controller Ar-
chitecture 1993]. Government sponsored Public Domain
software systems for the control of milling machines were
among the very first projects developed with the digital
computer in the 1950s. It was to be a “vendor-neutral”

reference implementation of the industry standard lan-
guage for numerical control of machining operations, RS-
274D (G-code).
The software included the RS274 interpreter driving
the motion trajectory planner, real-time motor/actuator
drivers and a user interface. It demonstrated the feasi-
bility of an advanced numerical control system using off
the shelf PC hardware running FreeBSD or Linux, inter-
facing to various hardware motion control systems. Addi-
tional development continues using current and additional
architectures (i.e. ARM architecture devices).
The demonstration project was very successful and cre-
ated a community of users and volunteer contributors.
Around June 2000, NIST relocated the source code to
sourceforge.net under the Public Domain license in order
to allow external contributors to make changes. In 2003,
the community rewrote some parts of it, reorganized and
simplified other parts, then gave it the new name, EMC2.
EMC2 is still being actively developed. Licensing is now
under the GNU General Public License.
The adoption of the new name EMC2 was prompted by
several major changes. Primarily, a new layer known
as HAL (Hardware Abstraction layer) was introduced to
interconnect functions easily without altering C code or
recompiling. This split trajectory and motion planning
from motion hardware, making it easier to generate con-
trol programs to support gantry machine, lathe thread-
ing and rigid tapping, SCARA robot arms and a variety
of other adaptations. HAL comes with some interactive
tools to examine signals and connect and remove links. It
also includes a virtual oscilloscope to examine signals in
real time. Another change with EMC2 is Classic Ladder,
(an open-source ladder logic implementation) adapted for
the real time environment to configure complex auxiliary
devices like automatic tool changers.
Around 2011, the name was changed officially from
EMC2 to LinuxCNC. This was done at the insistence
of EMC Corporation and the agreement of the project
leadership. Internally some refer to LinuxCNC by EMC
or EMC2 as it was historically known. EMC Corpora-
tion proposed that the LinuxCNC project, as previously
named, would be confusing for customers or potential
customers with their (mainly) storage related products.

3

https://en.wikipedia.org/wiki/Numerical_control
https://en.wikipedia.org/wiki/CNC
https://en.wikipedia.org/wiki/ISO_file
https://en.wikipedia.org/wiki/Ubuntu_Linux
https://en.wikipedia.org/wiki/Real-time_computing
https://en.wikipedia.org/wiki/Real-time_operating_system
https://en.wikipedia.org/wiki/Numerical_control
https://en.wikipedia.org/wiki/Milling_machine
https://en.wikipedia.org/wiki/Lathe
https://en.wikipedia.org/wiki/Plasma_cutting
https://en.wikipedia.org/wiki/Plasma_cutting
https://en.wikipedia.org/wiki/Router_(woodworking)
https://en.wikipedia.org/wiki/Punch_press
https://en.wikipedia.org/wiki/Industrial_robot
https://en.wikipedia.org/wiki/Stewart_platform
https://en.wikipedia.org/wiki/G-code
https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Real-time_operating_system
https://en.wikipedia.org/wiki/Stepper_motor
https://en.wikipedia.org/wiki/Servomechanism
https://en.wikipedia.org/wiki/Public_Domain
https://en.wikipedia.org/wiki/NIST
https://en.wikipedia.org/wiki/National_Center_for_Manufacturing_Sciences
https://en.wikipedia.org/wiki/National_Center_for_Manufacturing_Sciences
https://en.wikipedia.org/wiki/APT_(programming_language)
https://en.wikipedia.org/wiki/G-code
https://en.wikipedia.org/wiki/FreeBSD
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/NIST
https://en.wikipedia.org/wiki/Sourceforge.net
https://en.wikipedia.org/wiki/Public_Domain
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://en.wikipedia.org/wiki/Hardware_Abstraction_layer
https://en.wikipedia.org/wiki/Cartesian_coordinate_robot
https://en.wikipedia.org/wiki/Lathe
https://en.wikipedia.org/wiki/Tap_and_die
https://en.wikipedia.org/wiki/SCARA_robot
https://en.wikipedia.org/wiki/Ladder_logic
http://www.emc.com/

4 CHAPTER 2. LINUXCNC

2.3 Platforms

Due to the need of fine grained, precise real time control
of machines in motion, EMC requires a platform with
real-time computing capabilities. It uses Linux kernel
with real time extensions (RTAI) or with RT-PREEMPT
kernel using linuxcnc’s 'uspace' flavour of RTAPI. In-
stalling EMC2 (and the underlying real time extension)
is a daunting task, therefore prebuilt binary packages
have been built and are being distributed. The policy for
EMC2 is to build packages and offer support on Ubuntu
LTS (long-term support) releases.[1]

2.4 Design

LinuxCNC uses the model of 'sense, plan, act' in its inter-
actions with hardware.[2] For instance, it reads the current
axis position, calculates a new target position/voltage, and
then writes that to the hardware. There is no buffer-
ing of commands nor are externally initiated reads or
writes allowed. This no-buffering approach gives the
most freedom to adding or changing capabilities of Lin-
uxCNC. By using relatively “dumb” external hardware
and programming the capabilities in the host computer,
LinuxCNC is not locked to any one piece of hardware.
It also allows an interested user to easily change be-
haviour/capabilities/hardware.
This model tends to lend itself to specific types of ex-
ternal interfaces---PCI, PCIE, Parallel port (in SPP or
EPP mode), ISA, and Ethernet have been used for motor
control. USB and RS232 serial are not good candidates;
USB having bad realtime capabilities and RS232 being
too slow for motor control.
LinuxCNC has basic “realtime” requirements because of
this model. The interval between reading and writing
must be consistent and reasonably fast. A typical machine
does realtime calculations in a 1 millisecond repeating
thread. The reading and writing to hardware must be a
small part of this time, e.g. 200 microseconds, otherwise
the phase shift makes tuning more difficult and there is
less time available for the non-realtime programs, which
may make the screen controls less responsive.
LinuxCNC “employs a trapezoidal velocity profile
generator.”[3]

2.5 Configuration

LinuxCNC uses a software layer called HAL (Hardware
Abstraction Layer).[4]

HAL allows a multitude of configurations to be built [5]
while being flexible: one can mix & match various hard-
ware control boards, output control signals through the
parallel port or serial port - while driving stepper or servo

motors, solenoids and other actuators.
LinuxCNC also includes a software programmable logic
controller (PLC) which is usually used in extensive con-
figurations (such as complex machining centres). The
software PLC is based on the open source project
Classicladder,[6] and runs within the real-time environ-
ment.

2.6 References
Notes

[1] “Installing EMC2 ... and supported platforms”. Linux-
cnc Board of Directors. September 18, 2010. Retrieved
2010-09-29.

[2] “Linuxcnc hardware design requirements”.

[3] “Simple Tp Notes”.

[4] “EMC2’s Hardware Abstraction Layer”. Linuxcnc Board
of Directors. Retrieved 2010-09-30.

[5] “A couple case studies”. Retrieved 2010-09-30.

[6] “ClassicLadder”. sites.google.com. Retrieved 2014-03-
06.

Bibliography

• Proctor, F. M., and Michaloski, J., “Enhanced Ma-
chine Controller Architecture Overview,” NIST In-
ternal Report 5331, December 1993. Available on-
line at ftp://129.6.13.104/pub/NISTIR_5331.pdf

• Albus, J.S., Lumia, R., “The Enhanced Machine
Controller (EMC): An Open Architecture Con-
troller for Machine Tools,” Journal of Manufactur-
ing Review, Vol. 7, No. 3, pp. 278–280, September
1994.

• Lumia, “The Enhanced Machine Controller Archi-
tecture”, 5th International Symposium on Robotics
and Manufacturing, Maui, HI, August 14–18,
1994, http://www.nist.gov/customcf/get_pdf.cfm?
pub_id=820483

• Fred Proctor et al., “Simulation and Implementa-
tion of an Open Architecture Controller”, Simu-
lation, and Control Technologies for Manufactur-
ing, Volume 2596, Proceedings of the SPIE, Octo-
ber 1995, http://www.isd.mel.nist.gov/documents/
proctor/sim/sim.html

• Fred Proctor, John Michaloski, Will Shackleford,
and Sandor Szabo, “Validation of Standard Inter-
faces for Machine Control”, Intelligent Automation
and Soft Computing: Trends in Research, Devel-
opment, and Applications, Volume 2, TSI Press,
Albuquerque, NM, 1996, http://www.isd.mel.nist.
gov/documents/proctor/isram96/isram96.html

https://en.wikipedia.org/wiki/Real-time_computing
https://en.wikipedia.org/wiki/RTAI
https://en.wikipedia.org/wiki/Ubuntu_(operating_system)
https://en.wikipedia.org/wiki/Long-term_support
https://en.wikipedia.org/wiki/Parallel_port
https://en.wikipedia.org/wiki/Serial_port
https://en.wikipedia.org/wiki/Stepper_motor
https://en.wikipedia.org/wiki/Servomechanism
https://en.wikipedia.org/wiki/Servomechanism
https://en.wikipedia.org/wiki/Solenoid
https://en.wikipedia.org/wiki/Actuator
https://en.wikipedia.org/wiki/Programmable_logic_controller
https://en.wikipedia.org/wiki/Programmable_logic_controller
http://wiki.linuxcnc.org/cgi-bin/wiki.pl?Installing_LinuxCNC
http://wiki.linuxcnc.org/cgi-bin/wiki.pl?Emc2HardwareDesign
http://wiki.linuxcnc.org/cgi-bin/wiki.pl?Simple_Tp_Notes
http://www.linuxcnc.org/docview/devel/html/hal/intro.html
http://wiki.linuxcnc.org/cgi-bin/emcinfo.pl?Case_Studies
http://sites.google.com/site/classicladder/
ftp://129.6.13.104/pub/NISTIR_5331.pdf
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=820483
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=820483
http://www.isd.mel.nist.gov/documents/proctor/sim/sim.html
http://www.isd.mel.nist.gov/documents/proctor/sim/sim.html
http://www.isd.mel.nist.gov/documents/proctor/isram96/isram96.html
http://www.isd.mel.nist.gov/documents/proctor/isram96/isram96.html

2.7. EXTERNAL LINKS 5

• Shackleford and Proctor, “Use of open source
distribution for a Machine tool Controller”,
Sensors and controls for intelligent manufac-
turing. Conference, Boston MA, 2001, vol.
4191, pp. 19–30, http://www.isd.mel.nist.
gov/documents/shackleford/4191_05.pdf or
http://dx.doi.org/10.1117/12.417244

• Morar et al., “ON THE POSSIBILITY OF IM-
PROVING THE WIND GENERATORS”, In-
ternational Conference on Economic Engineering
and Manufacturing Systems, Brasov, 25–26 Octo-
ber 2007, http://www.recentonline.ro/021/Morar_
L_01a.pdf

• Zhang et al., “Development of EMC2 CNC
Based on Qt”, Manufacturing Technology & Ma-
chine Tool, 2008, http://en.cnki.com.cn/Article_
en/CJFDTOTAL-ZJYC200802046.htm

• Leto et al., “CAD/CAM INTEGRATION FOR
NURBS PATH INTERPOLATION ON PC
BASED REAL-TIME NUMERICAL CON-
TROL”, 8th INTERNATIONAL CONFERENCE
ON ADVANCED MANUFACTURING SYS-
TEMS AND TECHNOLOGY JUNE 12–13,
2008 UNIVERSITY OF UDINE - ITALY, http:
//158.110.28.100/amst08/papers/art837759.pdf

• Xu et al., “Mechanism and Application of HAL
in the EMC2”, Modern Manufacturing Technol-
ogy and Equipment 2009-05, http://en.cnki.com.
cn/Article_en/CJFDTOTAL-SDJI200905037.htm

• Zivanovic et al., “Methodology for Configuring
Desktop 3-axis Parallel Kinematic Machine”, FME
Transactions (2009) 37, 107-115,

• Glavonjic et al., “Desktop 3-axis parallel kine-
matic milling machine”, The International Journal
of Advanced Manufacturing Technology Volume
46, Numbers 1-4, 51-60 (2009), http://dx.doi.org/
10.1007/s00170-009-2070-3

• Staroveski et al., “IMPLEMENTATION OF A
LINUX-BASED CNC OPEN CONTROL SYS-
TEM”, 12th INTERNATIONAL SCIENTIFIC
CONFERENCE ON PRODUCTION ENGI-
NEERING –CIM2009, Croatian Association of
Production Engineering, Zagreb 2009,

• Li et al., “Control system design and simula-
tion of parallel kinematic machine based on
EMC2”, Machinery Design & Manufacture
2010-08, http://en.cnki.com.cn/Article_en/
CJFDTOTAL-JSYZ201008074.htm

• Li et al., “Kinematics Analysis and Control System
Design of 6-DOF Parallel Kinematic Machine with
Matlab and EMC2”, Advanced Materials Research

(Volumes 102 - 104): Digital Design and Man-
ufacturing Technology, 2010, http://dx.doi.org/10.
4028/www.scientific.net/AMR.102-104.363

• Klancnik et al., “Computer-Based Workpiece De-
tection on CNC Milling Machine Tools Using Op-
tical Camera and Neural Networks”, Advances
in Production Engineering & Management 5
(2010) 1, 59-68, http://maja.uni-mb.si/files/apem/
APEM5-1-view.pdf

• Milutinovic et al., “Reconfigurable robotic machin-
ing system controlled and programmed in a ma-
chine tool manner”, The International Journal of
Advanced Manufacturing Technology, 2010, http:
//dx.doi.org/10.1007/s00170-010-2888-8

2.7 External links
• EMC2 project homepage at www.linuxcnc.org

• EMC2 project wiki

• The NIST RS274NGC Standard - Version 3 Aug
2000 also available as a PDF

• The Enhanced Machine Controller homepage at
NIST

http://www.isd.mel.nist.gov/documents/shackleford/4191_05.pdf
http://www.isd.mel.nist.gov/documents/shackleford/4191_05.pdf
http://dx.doi.org/10.1117/12.417244
http://www.recentonline.ro/021/Morar_L_01a.pdf
http://www.recentonline.ro/021/Morar_L_01a.pdf
http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZJYC200802046.htm
http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZJYC200802046.htm
http://158.110.28.100/amst08/papers/art837759.pdf
http://158.110.28.100/amst08/papers/art837759.pdf
http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDJI200905037.htm
http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDJI200905037.htm
http://www.simlab.mas.bg.ac.rs/istrazivanje/biblioteka/publikacije/Transactions_FME/Volume37/3/01_SZivanovic.pdf
http://www.simlab.mas.bg.ac.rs/istrazivanje/biblioteka/publikacije/Transactions_FME/Volume37/3/01_SZivanovic.pdf
http://dx.doi.org/10.1007/s00170-009-2070-3
http://dx.doi.org/10.1007/s00170-009-2070-3
http://crosbi.znanstvenici.hr/datoteka/421305.209-Staroveski-Brezak-Udiljak-Majetic-CIM_2009.pdf
http://crosbi.znanstvenici.hr/datoteka/421305.209-Staroveski-Brezak-Udiljak-Majetic-CIM_2009.pdf
http://crosbi.znanstvenici.hr/datoteka/421305.209-Staroveski-Brezak-Udiljak-Majetic-CIM_2009.pdf
http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSYZ201008074.htm
http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSYZ201008074.htm
http://dx.doi.org/10.4028/www.scientific.net/AMR.102-104.363
http://dx.doi.org/10.4028/www.scientific.net/AMR.102-104.363
https://en.wikipedia.org/wiki/Advances_in_Production_Engineering_&_Management
https://en.wikipedia.org/wiki/Advances_in_Production_Engineering_&_Management
http://maja.uni-mb.si/files/apem/APEM5-1-view.pdf
http://maja.uni-mb.si/files/apem/APEM5-1-view.pdf
http://dx.doi.org/10.1007/s00170-010-2888-8
http://dx.doi.org/10.1007/s00170-010-2888-8
http://www.linuxcnc.org/
http://wiki.linuxcnc.org/
http://linuxcnc.org/handbook/RS274NGC_3/RS274NGC_3TOC.html
http://linuxcnc.org/handbook/RS274NGC_3/RS274NGC_3TOC.html
http://www.isd.mel.nist.gov/documents/kramer/RS274NGC_3.pdf
http://www.isd.mel.nist.gov/projects/_emc/

6 CHAPTER 2. LINUXCNC

2.8 Text and image sources, contributors, and licenses

2.8.1 Text
• Hardware abstraction Source: http://en.wikipedia.org/wiki/Hardware%20abstraction?oldid=623653409 Contributors: Kku, Marius,
Tagishsimon, Rich Farmbrough, Neg, Danhash, Chobot, DaGizza, NTBot, SmackBot, Brianski, Bluebot, Phatom87, Alaibot, Widefox,
JAnDbot, Metrax, Mr. Stradivarius, Alexbot, Arjayay, DanielPharos, Callmejosh, Addbot, Dawynn, AnomieBOT, Erik9bot, Matzi4,
WikitanvirBot, ZéroBot, MajorVariola, Ego White Tray, Bomazi, Helpful Pixie Bot, Wbm1058, Tech77, Greenstruck, Monkbot and
Anonymous: 13

• LinuxCNC Source: http://en.wikipedia.org/wiki/LinuxCNC?oldid=646656844 Contributors: Archivist, Bearcat, Vadmium, Ringbang,
GraemeLeggett, Ichudov, Chris the speller, Chendy, Wizard191, Servant74, Hebrides, Electron9, Arch dude, 7severn7, Cirt, Sun Cre-
ator, Onomou, Addbot, Grandscribe, Team4Technologies, AnomieBOT, SubtlySnide, I dream of horses, EmausBot, JonathanMElson,
SWPadnos, BG19bot, Game-Guru999, Autodidaktos, K7L, Mogism, Oroszegy, Petebachant, Chester8888 and Anonymous: 13

2.8.2 Images

2.8.3 Content license
• Creative Commons Attribution-Share Alike 3.0

http://en.wikipedia.org/wiki/Hardware%2520abstraction?oldid=623653409
http://en.wikipedia.org/wiki/LinuxCNC?oldid=646656844
http://creativecommons.org/licenses/by-sa/3.0/

	Hardware abstraction
	Overview
	In Operating Systems
	Microsoft Windows
	AS/400

	References

	LinuxCNC
	Purpose
	History
	Platforms
	Design
	Configuration
	References
	External links
	Text and image sources, contributors, and licenses
	Text
	Images
	Content license

