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Arguments 

An argument consists of a set of formula : propositions

The premises formula propositions

The conclusion formula proposition

List of premises followed by the conclusion 

  A
1

  A
2

  …
  A

n
 

   --------
  B

formula
premises

conclusion
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Formulas and Sentences

An formula 
● A atomic formula
● The operator ¬ followed by a formula
● Two formulas separated by ∧, ∨, ⇒, ⇔
● A quantifier following by a variable followed by a formula

A sentence
● A formula with no free variables

∀x love(x,y) : free variable y : not a sentence
∀x tall(x) : no free variable  : a sentence
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Entailment Definition

If the truth of a statement P guarantees that 
another statement Q must be true, 

then we say that P entails Q, or that Q is entailed by P.

the key term, “must be true”
“Must be” is stating that 

something is necessary, 
something for which no other option or possibility exists.

 “Must be” encodes the concept of logical necessity. 

http://www.kslinker.com/VALID-AND-INVALID-ARGUMENTS.html
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Entailment Examples

P: “Mary knows all the capitals of the United States”
Q: “Mary knows the capital of Kentucky”
 
P: “Every one in the race ran the mile in under 5 minutes”
Q: “John, a runner in the race, ran the mile in less than 5 minutes”

P: “The questionnaire had a total of 20 questions, and Mary answered only 13”
Q: “The questionnaire answered by Mary had 7 unanswered questions”

P: “The winning ticket starts with 3 7 9”
Q: “Mary's ticket starts with 3 7 9 so Mary's ticket is the winning ticket”

conceptually familiarity
true conditional statements, or true implications are examples of entailment. 

any conditional statement, (“if . . .. then”) which is true, is an example of entailment. 
In Mathematics, the more familiar term is “implication”. 

http://www.kslinker.com/VALID-AND-INVALID-ARGUMENTS.html
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Entail 

The premises is said to entail the conclusion 

If in every model in which all the premises are true, 

the conclusion is also true 

List of premises followed by the conclusion 

  A
1

  A
2

  …
  A

n
 

--------
  B

whenever
all the premises are true

the conclusion must be true
for the entailment
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Entailment Notation

Suppose we have an argument
whose premises are A

1
, A

2
, …, A

n

whose conclusion is B 

Then
 

A
1
, A

2
, …, A

n
 ⊨ B  if and only if  

A
1
∧ A

2
∧ …∧ A

n
 ⇛ B  (logical implication)

logical implication:   if  A
1
∧ A

2
∧ …∧ A

n
 ⇒ B  is tautology

The premises is said to entail the conclusion 
If in every model in which 

all the premises are true, 
the conclusion is also true 

(always true)
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Entailment and Logical Implication

 
A

1
, A

2
, …, A

n
 ⊨ B  

A
1
∧ A

2
∧ …∧ A

n
 ⇛ B  

A
1
∧ A

2
∧ …∧ A

n
 ⇒ B  is a tautology  

(logical implication)

If all the premises are true, 
then the conclusion must be true 

T∧ T∧ …∧ T ⇒ T

T∧ T∧ …∧ T ⇒ F

F∧ X∧ …∧ X ⇒ T
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Sound Argument and Fallacy

A sound argument

A
1
, A

2
, …, A

n
 ⊨ B

A fallacy

A
1
, A

2
, …, A

n
 ⊭ B

If the premises entails the conclusion

If the premises does not entail the conclusion 
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Valid Argument Criteria 

● If all the premises are true, then the conclusion must be true.

● the truth of the conclusion is guaranteed 

if all the premises are true

● It is impossible to have a false conclusion 

if all the premises are true

● The premises of a valid argument entail the conclusion.

http://www.kslinker.com/VALID-AND-INVALID-ARGUMENTS.html
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Valid Argument Examples 

If John makes this field goal, then the U of A will win.
John makes the field goal .
Therefore the  U of A wins
Modus Ponens 

If the patient has malaria, then a blood test will indicate that his blood harbors at 
least one of these parasites: P. falciparum, P. vivax , P. ovale  and P. malaria
Blood test indicate that the patient harbors none of these parasites
Therefore the patient does not have malaria.
Modus Tollens

Either The Patriots or the Philadelphia Eagles will win the Superbowl
The Patriots lost
Therefore The Eagles won
Disjunctive Syllogism (Process of Elimination)

If John gets a raise, then he will buy a house.
If John buys a house, he will run for a position on the neighborhood council.
Therefore, if John gets a raise, he will run for a position on the neighborhood 
council
Hypothetical Syllogism

http://www.kslinker.com/VALID-AND-INVALID-ARGUMENTS.html

If P then Q
P
Therefore Q

If P then Q
Not Q
Therefore Not P

Either P or Q
Not P
Therefore Q

If P then Q
If Q then R
Therefore If P then R
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Valid Arguments 

An argument form is valid if and only if 

whenever the premises are all true, then conclusion is true. 

An argument is valid if its argument form is valid.

http://math.stackexchange.com/questions/281208/what-is-the-difference-between-a-sound-argument-and-a-valid-argument

premises : true conclusion : trueIf then

false true

false false

true falseIf then never
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Sound Arguments

An argument is sound if it is valid and all the premises are actually true.

for an argument to be sound, two conditions must be meet: 
1) the argument must be valid, and 
2) the argument must actually have all true premises. 

What can be said about the conclusion to a sound argument?

Since the argument is sound, then it is both valid and actually has all true 
premises, so the conclusion must be true, by definition of validity. 

an example of a sound argument:

If a number is greater than 7 it is greater than 3.
8 is greater than 7.
Therefore 8 is greater than 3.

http://www.iep.utm.edu/val-snd/
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Soundness

A deductive argument is sound if and only if 

it is both valid, and all of its premises are actually true. 

Otherwise, a deductive argument is unsound.

http://www.iep.utm.edu/val-snd/

premises : true conclusion : trueAlways therefore
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Models and Interpretations

First specify a signature
Constant Symbols
Predicate Symbols
Function Symbols

Determines the language

Given a language
A model is specified 

A domain of discourse
a set of entities 

An interpretation
constant assignments
function assignments
truth value assignments - predicate
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Satisfiability of a sentence

If a sentence s evaluates to True under a given interpretation I

I satisfies s; I  ⊨ s

A sentence is satisfiable 
if there is some interpretation under which it is true.
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Valid Formulas and Sentences

A formula is valid 
if it is satisfied by every interpretation

Every tautology is a valid formula 

A valid sentence: human(John)  ¬∨ human(John)

A valid sentence: x∃  (human(x)  ¬∨ human(x)

A valid formula: loves(John, y)  ¬∨ loves(John, y)
True  regardless of which individual 
in the domain of discourse is assigned to y
This formula is true in every interpretation
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Validity and Satisfiability of Formulas

A formula is valid if it is true for all values of its terms.

Satisfiability refers to the existence of a combination of values to make the 
expression true. 

So in short, a proposition / a formula is 
satisfiable if there is at least one true result in its truth table, 
valid if all values it returns in the truth table are true.
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Contradiction

A sentence is a contradiction if there is no interpretation that satisfies it

∃x (human(x)  ¬∧ human(x)

not satisfiable under any interpretation
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Well-formed Strings

A term
● A constant symbol
● A variable symbol
● A function symbol with comma separated list

An atomic formula
● A predicate symbol
● A predicate symbol with comma separated list
● Two terms separated by the = symbol

An formula 
● A atomic formula
● The operator ¬ followed by a formula
● Two formulas separated by ∧, ∨, ⇒, ⇔
● A quantifier following by a variable followed by a formula

A sentence
● A formula with no free variables
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Arguments 

An argument consists of set of formulas, called the premises

And a formula called the conclusion

The premises entail the conclusion 

If in every model in which all the premises are true, 

the conclusion is also true.

If the premises entail the conclusion, 

the argument is sound

otherwise, it is a fallacy

A set of inference rules : a deductive system

A deductive system is sound if it only derives sound arguments

A deductive system is complete if it can derive every sound argument
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Quantifiers

Universal Quantifier
∀x for all entity  e in the domain of discourse

Existential Quantifier
∃x for some entity e in the domain of discourse
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Instantiation and Generalization

Universal Instantiation
∀x A(x) for all entities e in the domain of discourse ⊨ A(c) for any constant term c 

Universal Generalization
A(e) for every entity e in the domain of discourse ⊨ ∀x A(x)

Existential Instantiation
∃x A(x) ⊨ A(e) for some entity e in the domain of discourse

Existential Generalization
A(e) for an entity e in the domain of discourse ⊨ ∃x A(x)
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Universal Instantiation

∀x A(x) for all entities x in the domain of discourse ⊨ A(c) for any constant term c 

If A(x) has value T for all entities in the domain of discourse,
then it must have value T for term t 

man(John)
∀x man(x) ⇒ human(x)
human(John)

man(John)
∀x man(x) ⇒ human(x)
man(John) ⇒ human(John)
human(John)
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Universal Generalization

A(e) for every entity e in the domain of discourse ⊨ ∀x A(x)

If A(e) has value T for every entity e, 
Then   ∀x A(x) has value T

The rule is ordinarily applied by showing that A(e) has value T 
for an arbitrary entity e

∀x (man(x) ⇒ human(x))
∀x (¬human(x) ⇒ ¬man(x))

∀x (man(x) ⇒ human(x))
man(e) ⇒ human(e)
¬human(e)
¬man(e)
¬human(e) ⇒ ¬man(e)
∀x (¬human(x) ⇒ ¬man(x))

Modus Tolens 
A ⇒ B
¬B
¬A
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Existential Instantiation

∃x A(x) ⊨ A(e) for some entity e in the domain of discourse

If x A(x) has value ∃ T, 
then A(e) has value T for some entity e

∃x man(x)
∀x man(x) ⇒ human(x)
∃x human(x)

∃x man(x)
∀x man(x) ⇒ human(x)
man(e)
man(e) ⇒ human(e)
human(e)
∃x human(x)
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Existential Generalization

A(e) for an entity e in the domain of discourse ⊨ ∃x A(x)

If A(e) has value T for some entity e, 
Then x A(x) has value T ∃

man(John)
∀x man(x) ⇒ human(x)
∃x human(x)

man(John)
∀x man(x) ⇒ human(x)
man(John) ⇒ human(John)
human(John)
∃x human(x)



First Order Logic (5A)
Arguments

30 Young Won Lim
3/10/17

Unification

Two sentences A and B

A unification of A and B
A substitution θ of values for some of the variables in A and B 
that make the sentences identical

The set of substitutions θ is called the unifier

loves(Dave, y) loves(x, Gloria)

θ ={x/Dave, y/Gloria}

loves(Dave, Gloria)
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Unification

parents(Dave, y, z) parents(y, Mary, Sam)

parents(x, Mary, Sam)

θ ={x/Dave, y/May, z/Sam}

parents(Dave, Mary, Sam)

different variable

rename

parents(x, father(x), mother(Dave)) parents(Dave, father(Dave), y)

θ ={x/Dave, y/mother(Dave)}

parents(Dave, father(Dave), mother(Dave))
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Unifier Instance

father(x, Sam) father(y, z)

θ ={x/Dave, y/Dave, z/Sam}

father(Dave, Sam)

father(x, Sam) father(y, z)

θ ={x/y, z/Sam}

father(y, Sam)

instance

more general unifier
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Most General Unifier

If every other unifier θ’ is 
an instance of θ 
in the sense that θ’ can be derived 
by making substitutions in θ

θ
1

θ
2

θ
3

θ

Instances of θ

Most General Unifier

father(Dave, Sam

father(y, Sam)

y/Dave
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Unification Algorithm

Input : Two sentences A and B; an empty set of substitution theta
Output : a most general unifier of the sentences if they can be unified; 
otherwise failure.

Procedure unify (A, B, var theta) 
Scan A and B from left to right
   Until A and B disagree on a symbol or A and B are exhausted
If A and B are exhausted
  Let x and y be the symbols where A and B disagree
  If x is a variable
    Theta = theta U {x/y}
    unify(subst(theta, A), subst(theta, B), theta)
  Else if y is a variable
    Theta = theta U {y/x}
    unify(subst(theta, A), subst(theta, B), theta)
  Else 
    Theta = failure;
  Endif
endif  
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Subst

Procedure subst
Input : a set of substitutions θ and a sentence A
Applies the substitutions θ in to A

A: parents(Dave, y, z)
θ = {x/Dave, y/Mary, z/Sam}

subst(A, θ) 

parents(Dave, May, Sam)
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Generalized Modus Ponens

Suppose we have sentences A, B, and C, and the the sentence A ⇒ B, which 
is implicitly universally quantified for all variables in the sentence.

The Generalized Modus Ponens (GMP) rule is as follows
   
A ⇒ B, C, unify(A, C, θ)  ⊨ subst(B, θ)



First Order Logic (5A)
Arguments

37 Young Won Lim
3/10/17

 Modus Ponens

1. mother(Mary, Scott)
2. sister(Mary, Alice)
3. ∀x∀y∀z mother(x,y)  ∧ sister(x,z) ⇒ aunt(z,y)

4. mother(Mary, Scott)  ∧ sister(Mary, Alic)
5. ∀y∀z mother(Mary,y)  ∧ sister(Mary,z) ⇒ aunt(z,y)
6. ∀z mother(Mary,Scott)  ∧ sister(Mary,z) ⇒ aunt(z,Scott)
7. mother(Mary,Scott)  ∧ sister(Mary,Alice) ⇒ aunt(Alice,Scott)
8. aunt(Alice,Scott)
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 Generalized Modus Ponens

1. mother(Mary, Scott)
2. sister(Mary, Alice)
3. ∀x∀y∀z mother(x,y)  ∧ sister(x,z) ⇒ aunt(z,y)

4. mother(Mary, Scott)  ∧ sister(Mary, Alic)
5. θ = {x/Mary, y/Scott, z/Alice}
6. aunt(Alice,Scott)
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Logical Equivalences 

¬, , ∧
 ∨

⋀⋁⌐⌍⇒
⇔≡⇛⊨

⇒
⇔
≡

¬, , ∧
 ∨

⋀⋁⌐⌍⇒
⇔≡⇛ ⊨

⇒
⇔
≡
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