Systems of Linear Equations

Young W Lim

Jun 18, 2024

Copyright (c) 2024 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.

Based on
A First Course in Linear Algebra, R. A. Beezer http://linear.ups.edu/fcla/front-matter.html

Outline

(1) Systems of Linear Equations

- Solving systems of linear equations

Outline

(1) Systems of Linear Equations

- Solving systems of linear equations

System of a Linear Equations

A System of Linear Equations

is a collection of m equations in the variable quantities $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ of the form,

$$
\begin{array}{cc}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n} & =b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots+a_{3 n} x_{n} & =b_{3} \\
\vdots & \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\cdots+a_{m n} x_{n} & =b_{m}
\end{array}
$$

where the values of $a_{i j}, x_{j}$, and $b_{i},(1 \leq i \leq m, 1 \leq j \leq n)$, are from the set of complex numbers, \mathbb{C}.

Solution of a System of a Linear Equations

A Solution of a System of Linear Equations

is an ordered list of n complex numbers, $s_{1}, s_{2}, s_{3}, \ldots, s_{n}$ for n variables, $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$, such that
if we substitute
s_{1} for x_{1},
s_{2} for x_{2},
s_{3} for x_{3},
s_{3} for x_{n},
then all m equations are true simultaneously, i.e,
for every equation of the system the left side will equal to the right side

Solution Set of a System of a Linear Equations

The solution set of a System of Linear Equations

is the set which contains every solution to the system, and nothing more.

Three types of a solution set

- $\begin{aligned} 2 x_{1}+3 x_{2} & =3 \\ x_{1}-x_{2} & =4\end{aligned}$
- $\begin{aligned} 2 x_{1}+3 x_{2} & =3 \\ 4 x_{1}+6 x_{2} & =6\end{aligned} \quad$ inifintely many solution
- $\begin{array}{r}2 x_{1}+3 x_{2}=3 \\ 4 x_{1}+6 x_{2}=10\end{array}$
a single solution
no soution

Equivalent Systems

Equivalent Systems

Two systems of linear equations are equivalent if their solution sets are equal.

Equation Operations

Equation Operations

Given a system of linear equations, the following three operations will transform the system into a different one, and each operation is known as an equation operation.
(1) swap the locations of two equations in the list of equations.
(2) multiply each term of an equation by a nonzero quantity.
(3) multiply each term of one equation by some quantity, and add these terms to a second equation, on both sides of the equality. leave the first equation the same after this operation, but replace the second equation by the new one.

Equation Operations Preserve Solution Sets

Equation Operations

If we apply one of the three equation operations to a system of linear equations, then the original system and the transformed system are equivalent.

Three Equations and One Solution

Equation Operations

solve the following by a sequence of equation operations

$$
\begin{aligned}
x_{1}+2 x_{2}+2 x_{3} & =4 \\
x_{1}+3 x_{2}+3 x_{3} & =5 \\
2 x_{1}+6 x_{2} & +5 x_{3}
\end{aligned}=6
$$

(1) $-1 \cdot e q 1+e q 2 \rightarrow e q 2$
$-1 \cdot(1,2,2,4)+(1,3,3,5) \rightarrow(0,1,1,1)$

$$
\begin{array}{rll}
x_{1} & +2 x_{2}+2 x_{3} & =4 \\
0 x_{1} & +1 x_{2}+1 x_{3} & =1 \\
2 x_{1} & +6 x_{2} & +5 x_{3}
\end{array}=6
$$

(2) multiply each term of one equation by some quantity, and add these terms to a second equation, on both sides of the equality. leave the first equation the same after this operation, but replace the second equation by the new one.

