EO transitions:

where we have been, where we are going, where we would like to go

John L. Wood

School of Physics

Georgia Institute of Technology

EO: transition operator and matrix element --a model independent description

EO transition strengths are a measure of the off-diagonal matrix elements of the mean-square charge radius operator.

$$
\rho^{2}(E O)=\frac{1}{\Omega \tau(E O)}
$$

"Electronic factor"

$$
\Omega=\Omega(Z, \Delta E)=\Omega_{k}+\Omega_{L_{1}}+\cdots+\Omega_{e^{+} e^{-}}
$$

Monopole strength parameter
$\rho_{i f}(E 0)=\frac{\langle f| \sum_{j} e_{j} r_{j}^{2}|i\rangle}{e R^{2}} \equiv \frac{\langle f| m(E O)|i\rangle}{e R^{2}} \equiv \frac{M_{i f}(E O)}{e R^{2}}$
Ω values: http://bricc.anu.edu.au

т: partial lifetime for E0 decay branch

Mixing of configurations with different mean-square charge radii produces EO transition strength.

$$
\begin{aligned}
&|\ddot{i}\rangle=\alpha|1\rangle+\beta|2\rangle, \quad|f\rangle=-\beta|1\rangle+\alpha|2\rangle \\
& M_{i f}(E Q)= \alpha \beta\{\langle 2| m(E O)|2\rangle-\langle 1| m(E O)|1\rangle\} \\
&+\left(\alpha^{2}-\beta^{2}\right)\langle 1| m(E O)|2\rangle \\
& M_{i f}(E O) \simeq \alpha \beta \Delta\left\langle r^{2}\right\rangle
\end{aligned}
$$

J. Kantele et al. Z. Phys. A289 1571979 and see
JLW et al. Nucl. Phys. A651 3231999

Comments on model-motivated research

- Research should be pursued to falsify models, not to promote them
- When a model fails, we have learned somethingrecall that failure of the Standard Model of particles and fields is being sought, avidly
- Models provide powerful schemes for organizing data

Wave functions must overlap for a transition to occur

solid line—schematic potential
dashed line-schematic wave function

In the earlier literature there are some serious misconceptions on this point

Figure from JLW et al., Nucl. Phys. A651 3231999

EO transition between states with very different deformations and mean-square charge radii

J. Kantele et al., Phys. Rev. Lett. 51, 91 (1983)

The EO strength from the ${ }^{238} \mathrm{U}$ "fission" isomer is the weakest known
T. Kibédi and R.H. Spear, ADNDT 89772005

Figure from JLW et al., Nucl. Phys. A651 3231999

EO transitions in the light Ni isotopes:

the $\mathrm{O}_{2} \rightarrow \mathrm{O}_{1}$ strength in ${ }^{58} \mathrm{Ni}$ is very small indicating near-pure neutron configurations are involved $\left(e_{n}=0\right)$
$\pi 2 p-2 h$ from 2-, 4-proton transfer RX
$\mathrm{E}(\mathrm{MeV})$

E0 transitions associated with shape coexistence in ${ }^{114-120} \mathrm{Sn}$

J. Kantele et al., ZP A289, 157 (1979)
T. Kibedi and R.H. Spear, ADNDT 89, 277 (2005)

Mixing of close lying configurations with different mean-square charge radii produces E0 strength

E2 transitions associated with shape coexistence in ${ }^{114-120} \mathrm{Sn}$

Systematics of $\mathrm{B}\left(\mathrm{E} 2 ; \mathrm{O}^{+}{ }_{2} \rightarrow \mathbf{2}^{+}{ }_{1}\right)$ vs. $\mathrm{E}_{\gamma}\left(0^{+}{ }_{2}-2^{+}{ }_{1}\right)$

$\mathrm{B}\left(\mathrm{E} 2 ; \mathrm{O}_{2}^{+} \rightarrow 2_{1}{ }^{+}\right)$vs. $\mathrm{E}\left(\mathrm{O}_{2}^{+}\right)-\mathrm{E}\left(2_{1}{ }^{+}\right)$: coexistence and mixing yields $B\left(E 2 ; \mathrm{O}_{2}^{+} \rightarrow 2_{1}^{+}\right) \sim \alpha^{2} \beta^{2}(\Delta \mathrm{Q})^{2}$

Recall:
$B_{02}=5 \times B_{20}$

Deformed bands in ${ }^{112-120}$ Sn built on the first excited 0^{+}states

Figure from Rowe \& Wood
$B(E 2)$'s in W.u. [100 = rel. value]

The nature of the shape coexisting state in ${ }^{116} \mathrm{Sn}$ revealed by (${ }^{3} \mathrm{He}, \mathrm{n}$) transfer reaction spectroscopy

Excited 0^{+}states at closed shells: intruder states in the Pb and Sn isotopes

Coexistence in even-Pb isotopes:

 multiple parabolas and spherical (seniority) structureFigure: Heyde \& Wood
Heavy arrows indicate E0+M1+E2 transitions
188Pb: G.D. Dracoulis et al., PR C67 R 0513012003

Coexistence in the odd-Pb isotopes:

Shape coexistence in the even- Hg isotopes:

NOTE characteristic parabolic energy trend

Conversion electron spectroscopy:

uniquely sensitive to EO transitions, identifies shape coexistence

EO transitions: $\alpha_{k}>\alpha_{k}(\mathrm{M} 1)$

M.O. Kortelahti et al., PR C43 4841991

$0^{+} \rightarrow 0^{+}$decays are pure EO: no $\gamma^{\prime} s\left({ }^{190} \mathrm{Hg}\right)$

M.O. Kortelahti et al. PR C43 4841991

1279 keV pure EO evidence

The ground states of ${ }^{178-186} \mathrm{Pt}$ and ${ }^{177-187} \mathrm{Pt}$ are intruder states

Figure from: JLW et al., Phys. Repts. 215, 101 (1992)

See P.M. Davidson et al., NP A657 2191999 (ANU)

Coexistence in the odd-Pt isotopes

Coexistence in the even-Pt isotopes: mixing and EO transition strength

From: J. von Schwarzenberg, PhD thesis, Ga Tech 1991

$$
V=50,100,400 \mathrm{keV}
$$

Coexistence in the even-Pt isotopes:

 coexistence of $\mathrm{K}=0$ and $\mathrm{K}=2$ bands in ${ }^{184} \mathrm{Pt}$

E2 / M1 from low-temperature nuclear orientation on-line

Coexistence in the even-Pt isotopes:

$$
\mathrm{K}=0 \text { and } \mathrm{K}=2 \text { bands }
$$

Coexistence in the even-Pt isotopes:

$$
\mathrm{K}=0 \text { and } \mathrm{K}=2 \text { bands }
$$

Pure E0's in an odd-mass nucleus?

Pure EO's in an odd-mass nucleus


```
* }\mp@subsup{}{}{185}\textrm{Au}->\mp@subsup{}{}{185}\textrm{Pt
```


J. von Schwarzenberg et al., PR C45 R896 1992 UNISOR

Isotope shifts: Pt, Au, Hg, Tl, Pb, Bi, Po, At

From: Barzakh INPC 2013

Odd-mass Au systematics showing the $h_{9 / 2}$ intruder state

Figure from: M.O. Kortelahti et al., JP G14 1361 (1988)

EO transitions between "single"and "double" intruder states in ${ }^{185} \mathrm{Au}$

C.D. Papanicolopulos PhD thesis Ga Tech 1987 and ZP A330 3711988 UNISOR

$\mathrm{Z}=79$	427 keV
mult	α_{k}
E1	0.010
E2	0.027
M 1	0.11
expt.	0.33

> 9/2- state @ 9 keV: "double" intruder state: $\pi h_{9 / 2}(1 p) \times{ }^{184} \mathrm{Pt}[\pi(2 p-6 \mathrm{~h})]=\pi(3 p-6 \mathrm{~h})$

9/2 state @ 322 keV : "single" intruder state: $\pi h_{9 / 2}(1 p) \times{ }^{184} \mathrm{Pt}[\pi(4 h)]=\pi(1 p-4 h)$

EO transitions between "spherical" states and "core" intruder states in ${ }^{185} \mathrm{Au}$

C.D. Papanicolopulos

PhD thesis Ga Tech 1987 ZP A330 3711988 UNISOR
$\begin{array}{cc}Z=79 & 492 \mathrm{keV} \\ \text { mult } & \alpha_{k}\end{array}$
E1
E2
M1 0.073
expt. 0.21

$11 / 2^{-}$state @ $220 \mathrm{keV}:$ "spherical" state:
$\pi \mathrm{h}_{11 / 2}(1 \mathrm{~h}) \times{ }^{186} \mathrm{Hg}[\pi(2 \mathrm{~h})]=\pi(3 \mathrm{~h})$

11/2 state @ 712 keV : "core" intruder state: $\pi h_{11 / 2}(1 h) \times{ }^{186} \mathrm{Hg}[\pi(2 p-4 h)]=\pi(2 p-5 h)$

EO transitions between "single"and "double" intruder states in ${ }^{187} \mathrm{Au}$

EO transitions between "single"and "double" intruder states in ${ }^{187} \mathrm{Au}$

WHEN STUDYING THE QUANTUM MECHANICAL MANY-BODY PROBEM, ALWAYS BE MINDFUL OF:

- "We are to admit no more causes of natural things than such as are both true and sufficient to explain their appearances.

Therefore, to the same natural effects we must, so far as possible, assign the same causes."
--Isaac Newton
(From William of Ockham [near Guildford, UK], ca. 1320)

- "Everything should be made as simple as possible, but not simpler."
-- Albert Einstein

Systematics of $\mathrm{O}_{2}{ }^{+}$states in Zr isotopes, $50 \leq \mathrm{N} \leq 62$: electric monopole transition strengths

Systematic of $2_{1}{ }^{+}$states in Zr isotopes, $50 \leq \mathrm{N} \leq 62$: electric quadrupole transition strengths

Systematic of $\mathrm{E}\left(2_{1}{ }^{+}\right)$for $\mathrm{N} \geq 50, \mathrm{Z} \leq 50$

Ground-state properties are a direct signature of shell and deformation structures

Differences in mean-square charge radii (isotope shifts) determined by:
optical hyperfine spectroscopy using lasers

Two-neutron separation energies deduced from nuclear masses determined by:
direct mass measurements

$2_{1}{ }^{+}$state properties are a strong signature of shell and deformed structures

Energies of $2_{1}{ }^{+}$states determined by: gamma-ray spectroscopy following β decay
problem- β-decaying parent is further from stability and yield will be (much) lower than nucleus of interest
gamma-ray spectroscopy following Coulomb excitation

Reduced E2 transition rates, $\mathrm{B}(\mathrm{E} 2)$ from $2_{1}{ }^{+}$states determined by:
lifetime measurements using fast $\beta-\gamma$ timing following β decay
problem--see above
gamma-ray yields following Coulomb excitation

Excited 0^{+}states at closed shells--mixing and repulsion of pair configurations in ${ }^{90} \mathrm{Zr}$

$\mathrm{N}=50$: $\mathrm{g}_{9 / 2}$ seniority structure
$j=1 / 2$ orbitals can only contribute to $\mathbf{v}=\mathbf{0}$ states, at low energy

${ }^{90} \mathrm{Zr} \mathrm{E}\left(\mathbf{2}_{1}{ }^{+}\right)$is high: suggests a closed subshell, BUT is due to depression of the ground-state energy

Shape coexistence at and near closed subshells: the nuclei ${ }^{96} \mathrm{Sr}$ and ${ }^{98} \mathrm{Zr}$

Figure from K. Heyde and J.L. Wood, Rev. Mod. Phys. 83, 1467 (2011)

expt. ${ }^{96} \delta r \quad \rho^{2}=0.210^{31} \quad$ (H. Mach et al.
PR ©4 , $350(1990)$)
theory:

$$
\begin{aligned}
\Delta\left\langle r^{2}\right\rangle & =0.6 \\
\rho^{2} & =\frac{\alpha^{2} \beta^{2} z^{2}\left(\Delta\left\langle r^{2}\right\rangle\right)^{2}}{R^{4}}
\end{aligned}
$$

for $\alpha^{2}=\beta^{2}=0.5$ (maximal mixing)

$$
\begin{aligned}
\rho^{2} & =\frac{0.25 \times 38^{2} \times 0.36}{\left(1.2 \times 96^{1 / 3}\right)^{4}} \\
\therefore \rho^{2} & =0.143
\end{aligned}
$$

Deformation in Zr isotopes, $50 \leq \mathrm{N} \leq 62$

A deformed structure can intrude to become a ground state:
appears to produce a "collective phase change"

Nuclei are manifestations of coexisting structures
that may invert by addition of a few nucleons, and may mix.

Proton pair excitations with respect to the $Z=40$ subshell

Ground state properties, $\mathrm{S}_{2 \mathrm{n}}$ and $\delta\left\langle\mathrm{r}^{2}\right\rangle$, in the regions of $N=60,90$ are very similar

Figure from S. Naimi et al. Phys. Rev. Lett. 105032502 (2010)

Figure from Heyde \& Wood
$\mathrm{E}\left(2_{1}{ }^{+}\right)$systematics for $\mathrm{N} \sim 90$ and $\mathrm{Z} \sim 64$

Evidence for the $Z=64$ subshell gap from $E(2,+) v s . Z$ and N.

Systematics of $\left\langle r^{2}\right\rangle$ and $S_{2 n}$ for the Eu isotopes

${ }^{152}$ Sm and the neighboring $\mathrm{N}=90$ isotones are a manifestation of shape coexistence

Proton particle-hole excitations across the $Z=64$ gap may be the source of the coexisting shapes.

Less-deformed 2 h and moredeformed $2 \mathrm{p}-4 \mathrm{~h}$ structures coexist at low energy at $N=90$.

Strong mixing obscures the energy differences that are indicative of different shapes.

Strong E0 transitions are a key signature of the mixing of coexisting structures.

As observed, the $K=2$ bands will also mix strongly, resulting in EO transitions.

Shape coexistence in the $N=90$ isotones:

 revealed by EO transition strengthsStrong mixing of coexisting shapes produces strong electric monopole (EO) transitions and identical bands.

Data from Heyde and Wood (2011)

Strong mixing produces (near) identical bands

Mixing of coexisting structures in ${ }^{152}$ Sm

Mixing of coexisting structures in ${ }^{154} \mathrm{Gd}$

J	0	2	4	6	8
$\alpha_{\text {J }}$	0.7071	0.7422	0.7865	0.8226	0.8463
β_{J}	0.7071	0.6702	0.6176	0.5686	0.5327
$\Delta\left\langle r^{2}\right\rangle=0.39 \mathrm{fm}^{2}$ (from Eu)			$R=1.20 A^{1 / 3} \mathrm{fm}$		

```
8+1290
```


${ }^{152}$ Sm: $B(E 2)$ values

Grodzins' rule for quadrupole strength
$\left[E\left(2_{1}^{+}\right) \mathrm{keV}\right]\left[B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right) e^{2} \cdot b^{2}\right] \frac{A}{Z^{2}} \approx 16.0$
Rotor matrix elements

$$
\begin{aligned}
M_{J, J-2} & =\sqrt{\frac{3 J(J-1)}{2(2 J-1)}} M_{20} \\
M_{J, J} & =-\sqrt{\frac{J(J+1)(2 J+1)}{(2 J-1)(2 J+3)}} M_{20} \\
M_{20} & =\sqrt{B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)} \\
M_{20}^{a} & =1.595 e \cdot b\left({ }^{148} \mathrm{Ce}: E\left(2_{1}^{+}\right)\right) \\
M_{20}^{b} & =2.221 e \cdot b\left({ }^{(54} \mathrm{Sm}: E\left(2_{1}^{+}\right)\right)
\end{aligned}
$$

e.g.,

$$
\begin{array}{llrl}
\text { l.g., } & & \\
M_{2_{1} 0_{1}}=\alpha_{0} \alpha_{2} M_{20}^{a}+\beta_{0} \beta_{2} M_{20}^{b} & 1.785 & e \cdot b \\
M_{4_{12} 2_{1}}=\left(\alpha_{2} \alpha_{4} M_{20}^{a}+\beta_{2} \beta_{4} M_{20}^{b}\right)(1.604) & = & 2.922 \\
M_{22}=\beta_{0} \beta_{2} M_{20}^{a}+\alpha_{0} \alpha_{2} M_{20}^{b} & = & 2.025 \\
M_{22} 0_{1}=-\alpha_{0} \beta_{2} M_{20}^{a}+\alpha_{2} \beta_{0} M_{20}^{b} & = & 0.1891 \\
M_{22} 2_{1}=\alpha_{2} \beta_{2}\left(M_{20}^{b}-M_{20}^{a}\right)(-1.195) & = & -0.3525 \\
M_{0_{2} 2_{1}}=-\alpha_{2} \beta_{0} M_{20}^{a}+\alpha_{0} \beta_{2} M_{20}^{b} & = & 0.3891
\end{array}
$$

$$
B(E 2)=\frac{M^{2}}{2 J_{i}+1} \times 206.4 \mathrm{~W} . \mathrm{u} .
$$

	calc.	expt.	calc.*
$2_{1} \rightarrow 0_{1}$	132	143^{2}	143
$4_{1} \rightarrow 2_{1}$	196	209^{3}	212
$6_{1} \rightarrow 4_{1}$	228	245^{5}	246
$8_{1} \rightarrow 6_{1}$	252	285^{14}	272
$2_{2} \rightarrow 0_{2}$	170	169^{15}	
$4_{2} \rightarrow 2_{2}$	233	265^{44}	
$0_{2} \rightarrow 2_{1}$	31.4	33.1^{21}	
$2_{2} \rightarrow 4_{1}$	22.8	17.8^{14}	
$4_{2} \rightarrow 6_{1}$	21.5	16.7^{28}	
$2_{2} \rightarrow 2_{1}$	5.16	5.80^{47}	
$4_{2} \rightarrow 4_{1}$	5.12	4.9^{8}	
$2_{2} \rightarrow 0_{1}$	1.48	0.94^{8}	
$4_{2} \rightarrow 2_{1}$	0.47	0.75^{13}	
			*Grodzins $+8 \%$

Mottelson, Tokyo Conf., 1967: comment on breakdown of $\Delta K=0$ Alaga rules at $N=90$

I have discussed in some detail the phenomena associated with the coupling between $K=2$ and $K=0$ bands in order to illustrate the wealth of quantitative relationships which can be brought to bear in analyzing the rotational effects. I shall now consider, much more briefly, the data concerning the coupling of the ground state and excited $K=0$ bands (beta vibrations) in even-even nuclei. The first step in the analysis, as in the $\Delta K=2$ case, is to consider the general form of the matrix elements as obtained from the expansion in powers of I; for the E2 transitions between the bands we get (including up to linear terms in I)

$$
\begin{equation*}
B\left(\mathrm{E} 2 ; K=0_{2} I_{2} \rightarrow K=0_{1} I_{1}\right)=\left\langle I_{2} 0 ; 20 \mid I_{1} 0\right\rangle^{2}\left|M_{1}+M_{2}\left[I_{2}\left(I_{2}+1\right)-I_{1}\left(1_{1}+1\right)\right]\right|^{2} \tag{17}
\end{equation*}
$$

The intensity rule (17) has been much less tested than the relation (6) for $\Delta K=2$ transitions, but a similar accuracy is expected. During the past year, intensities of transitions from excited $K=0$ bands in ${ }^{152} \mathrm{Sm},{ }^{154} \mathrm{Gd}$ and ${ }^{166} \mathrm{Gd}$ have been measured and found to be in disagreement with the predictions of (17) (Ewan and Graham: Moscow Conference 1966; Liu, Nielsen, Salling and Skilbreid: Moscow Conference 1966; Ewan and Anderson: Contribution No. 4.146, this conference; Johnson, Riedinger and Hamilton: Contribution No. 4.144; similar data on ${ }^{178} \mathrm{Hf}$ has been obtained by Loft Nielsen: private communication). Since a failure of (17) would imply a breakdown in the fundamental rotational relationships (i.e. this is not a result that depends on any detailed model for the intrinsic structure), I think that everyone is reluctant to believe that the fault lies there. Indeed it has been noticed that all the deviations could be explained if in the transition $0_{2} I=2 \rightarrow 0_{1} I$ $=2$ there is a significant contribution from M1 radiation. Such radiation is forbidden in the I-independent approximation, but the familiar rotational contribution to the nuclear magnetic moments is already a term linear in I and if the g-factor depends somewhat on the deformation we obtain a transition operator

$$
\mathscr{M}(\mathrm{M} 1, \mu)=\sqrt{\frac{3}{4 \pi}}\left\{g_{\mathrm{R}}\left(\beta_{0}\right)+\left(\beta-\beta_{0}\right) \frac{\partial g_{\mathrm{R}}\left(\beta_{0}\right)}{\partial \beta}+\cdots\right\} I_{\mu}\left(\frac{e \hbar}{2 M c}\right)
$$

and a transition matrix element for decay of a β-vibrational state

$$
\begin{equation*}
B\left(\mathrm{M} 1 ; n_{\beta}=1, I_{2} \rightarrow n_{\beta}=0, I_{1}\right)=\frac{3}{4 \pi}\left(\frac{e \hbar}{2 M c}\right)^{2} \frac{\hbar \omega_{\beta}}{2 C_{\beta}}\left(\frac{\partial g_{\mathrm{R}}}{\partial \beta}\right)^{2} \delta\left(I_{1}, I_{2}\right) I_{1}\left(I_{1}+1\right) \tag{17a}
\end{equation*}
$$

where $\left(\hbar \omega_{\beta} / 2 C_{\beta}\right)$ is the amplitude of the β-vibrational motion as measured in the E2 transition matrix elements connecting the two bands. Values of $\partial g_{\mathrm{R}} / \partial \beta$ of order unity are sufficient to explain the postulated M1 intensities. The situation looks promising, but the crucial measurement is obviously a direct determination of the Ml contribution to the $\Delta I=0$ transitions between these bands. Tentative evidence against the expected M1 admixtures has been submitted to this conference by Hamilton, Ramayya, Whitlock and Meulenberg: Contribution No. 4.145. I cannot judge the finality of this measurement, but I must emphasize that if the M1 intensity is not found, we face a major crisis in the application of the rotational relationships to these nuclei.

Multi-Coulex of ${ }^{152} \mathrm{Sm} \mathrm{O}_{2}{ }^{+}(685 \mathrm{keV})$:

 strongest response is to head of $\mathrm{K}=\mathbf{2}^{+}$band at 1769 keV(in-band response attenuated by 99.7% decay out @ 811 level)

Shape coexistence in the $\mathrm{N}=90$ isotones: coexisting $\mathrm{K}=2$ bands revealed by EO transitions

```
3+},\textrm{K}=2->\mp@subsup{3}{}{+},\textrm{K}=2:631 keV transition in '158Er has no observable \psi-ray strength, only ce'
[3\mp@subsup{K}{}{2}-1(I+1)=0] are observed --accidental cancellation of E2; M1 is very weak.
```


Neutron-deficient Kr isotopes: puzzling collectivity

Multistep Coulomb excitation of ${ }^{74,76} \mathrm{Kr}$ using radioactive beams of Kr on a ${ }^{208} \mathrm{~Pb}$ target

E. Clément et al., PR C75 0543132007

Quadrupole shape invariants constructed from E2 matrix elements for ${ }^{74,76} \mathrm{Kr}$

$$
\begin{aligned}
&\left\langle q^{2}\right\rangle \equiv\left\langle 0_{1}^{+}\|\hat{Q}\| 2_{1}^{+}\right\rangle\left\langle 2_{1}^{+} \| \hat{Q} \mid 0_{1}^{+}\right\rangle+\left\langle 0_{1}^{+}\|\hat{Q}\| 2_{2}^{+}\right\rangle\left\langle 2_{2}^{+} \mid \hat{Q} \| 0_{1}^{+}\right\rangle \\
& \text {for the ground state } \\
&\left\langle q^{3} \cos 3 \delta\right\rangle \equiv \sum_{r, s=1,2}\left\langle 0_{1}^{+}\|\hat{Q}\| 2_{r}^{+}\right\rangle\left\langle 2_{r}^{+}\|\hat{Q}\| 2_{s}^{+}\right\rangle\left\langle 2_{s}^{+} \mid \hat{Q} \| 0_{1}^{+}\right\rangle .
\end{aligned}
$$

E. Clément et al., PR C75 0543132007

CONCLUSIONS: EO TRANSITIONS

1). They give a unique perspective on shape coexistence in nuclei
2). They probe the proton and neutron configurations that occur in nuclei
3). They probe K quantum numbers through their $\Delta K=0$ selection rule

We need more data for:
$\mathrm{T}_{1 / 2}\left(\mathrm{O}^{+}\right)$[and $\mathrm{T}_{1 / 2}\left(2^{+}\right), \mathrm{T}_{1 / 2}\left(4^{+}\right), \mathrm{T}_{1 / 2}\left(3^{+}\right)$] conversion electron intensities
E2 / M1 mixing ratios-to extract E2 + M1 + E0

Electric monopole transition strengths: critical test of phase transition models

Shape coexistence in the Hg and Cd isotopes

Shape coexistence in the Cd isotopes

Deformed bands in ${ }^{110-116} \mathrm{Cd}$

Figure from Rowe \& Wood

The spectroscopy of mixing in the Cd isotopes:

 ρ^{2} (EO) values in ${ }^{114} \mathrm{Cd}$

EO transition strengths in ${ }^{114} \mathrm{Cd}$ support the existence of good K quantum numbers

Spectroscopy of mixing in the Cd isotopes: ρ^{2} (EO) $\cdot 10^{3}$ values in ${ }^{114} \mathrm{Cd}$

Spectroscopy of mixing in the Cd isotopes: ${ }^{116} \mathrm{Cd}(\mathrm{p}, \mathrm{t}){ }^{114} \mathrm{Cd}$ and $\rho^{2}(\mathrm{EO}) \cdot 10^{3}$

$$
\begin{aligned}
& \Delta\left\langle r^{2}\right\rangle \sim 0.4 \mathrm{fm}^{2} \text { [first estimate] } \\
& \rho_{\mathrm{J} \rightarrow \mathrm{~J}^{2}}(\mathrm{EO}) \cdot 10^{3} \sim 300 \alpha_{\mathrm{J}}{ }^{2} \beta_{\mathrm{J}}{ }^{2}
\end{aligned}
$$

Fortune PR C35 23181987
$\mid \mathrm{V}_{\mathrm{J}=0} \mathrm{I} \sim 330 \mathrm{keV}$
$\beta_{0} / \alpha_{0} \sim 0.28 \quad \alpha_{0}^{2}+\beta_{0}^{2}=1$

$$
\begin{aligned}
& \rho_{0 \rightarrow 0}{ }^{2}(E O) \sim\left[\Delta\left\langle r^{2}\right\rangle\right]^{2} \alpha_{0}^{2} \beta_{0}^{2} \\
& \Delta\left\langle r^{2}\right\rangle=\left\langle r^{2}\right\rangle_{\text {def }}-\left\langle r^{2}\right\rangle_{\text {sph }}[\text { unknown }]
\end{aligned}
$$

$$
\rho_{0 \rightarrow 0} 0^{2}(\mathrm{EO}) \cdot 10^{3}=19=\frac{48^{2}\left[\Delta\left\langle r^{2}\right\rangle\right]^{2} 10^{3}[0.28 \times 0.96]^{2}}{\left[1.2 \times 114^{1 / 3}\right]^{4}}
$$

Wood et al.
NP A651 3231999

The spectroscopy of mixing in the Cd isotopes: ${ }^{114} \mathrm{Cd}$ unmixed energies

114
Cd: unmixed energies

$$
\begin{aligned}
& 114 \mathrm{Cd} \pi(2 \mathrm{~h}) \text { arg. }{ }^{106} \mathrm{Cd}{ }^{122} \mathrm{Cd} \\
& \begin{array}{llll}
1 & 601 & 638 & 569 \\
41 & 1412 & 1494 & 1329
\end{array} \\
& \begin{array}{lllll}
22 & 1543 & 1717 & 1368
\end{array} \\
& \text { "arg." }{ }^{11} R_{u}{ }^{122} \mathrm{Ba}_{\mathrm{a}} \text { : } \\
& \begin{array}{rllll}
\pi(2 p-4 h) & 2_{1} & 226 & 241 & 196 \\
4_{1} & 632 & 663 & 569 \\
22 & 722 & 613 & 940
\end{array} \\
& { }^{*} \text { arg. }^{n} \equiv \frac{2}{3} x^{110} R u+\frac{1}{3} x^{122 / 2 a}
\end{aligned}
$$

The spectroscopy of mixing in the Cd isotopes: ${ }^{114}$ Cd energies

The spectroscopy of mixing in the Cd isotopes: ρ^{2} (EO) values in ${ }^{114} \mathrm{Cd}$

J_{i}	α_{J}	β_{J}	$\rho_{J \rightarrow T}^{2}(E 0)=228 \alpha_{J}^{2} \beta_{J}^{2}$	$\beta_{J \rightarrow T}^{2}(E 0)$ expt.
0_{1}	0.9613	0.2755	16	$16 \pm T$
z_{1}	0.9220	0.3872	29	36 ± 5
4_{1}	0.8038	0.5948	52	67 ± 10
z_{2}	0.8218	0.5698	50	95 ± 19

The spectroscopy of mixing in the Cd isotopes: $\mathrm{M}(\mathrm{E} 2)$ and $\mathrm{B}(\mathrm{E} 2)$ values in ${ }^{114} \mathrm{Cd}$

* $B(E 2)$ properties:

Grodzins' rule: $\left[E\left(Z_{1}^{+}\right) \mathrm{kev}\right]\left[B\left(E 2 ; 01^{+} \rightarrow 3^{+}\right) e^{2} \cdot h^{2} \frac{A}{z^{2}} \approx 16.0\right.$

$$
\begin{aligned}
& M_{20}=\sqrt{B(E 2 ; 0,+2,+)} e \cdot b \\
& E(2,+)^{a} 601 \mathrm{keV} \Rightarrow M_{20}^{a}=0.73 \mathrm{e} \cdot b \\
& E\left(22^{+}\right)^{b} \operatorname{226} \mathrm{keV} \Rightarrow M_{20}^{b}=1.20 \mathrm{e} \cdot b
\end{aligned}
$$

$$
\begin{aligned}
& M_{210}=\alpha_{0} \alpha_{2} M_{20}^{a}+\beta_{0} \beta_{2} M_{20}^{b} \quad=0.775 \cdot 0.714^{21} \\
& M_{4121}=\left(\alpha_{2} \alpha_{4} M_{20}^{a}+\beta_{2} \beta_{4} M_{20}^{b}\right)(1.604)=1.311 \quad 1.85^{4} \\
& \begin{aligned}
& M_{021}=-\alpha_{2} \beta_{0} M_{20}^{a}+\alpha_{0} \beta_{2} M_{20}^{b}=0.261 \cdot 0.3000^{+7}, \\
& \hline-1.5 \%
\end{aligned} \\
& -1.5 \% \Rightarrow \quad 0.300 \\
& \ddagger M_{42,3}=\left(\beta_{2} \beta_{4} M_{20}^{a}+\alpha_{2} \alpha_{4} M_{20}^{b}\right)(1604)=1.696 \quad 1.85_{-6}^{+10} \\
& M_{232}=\beta_{0} \beta_{2} M_{10}^{a}+\alpha_{2} \alpha_{2} M_{30}^{b}=1.142,0.51^{3} \\
& d_{2}-1.5 \% \Rightarrow \rho^{2}(E 0)_{2 \rightarrow 2}: 29 \rightarrow 33\left(36^{\circ}\right)
\end{aligned}
$$

$$
\begin{aligned}
& B(E 2 ; 2 \rightarrow 01)=\frac{M_{201}^{2}}{S_{2}} e^{2} \cdot b^{2} \times 302.3 \frac{W_{1} \cdot u .}{e^{2} \cdot b^{2}}: 36 d .33^{2} \text { Roman } \\
& B\left(E 2 ; o_{2} \rightarrow 2_{1}\right)=M_{021}^{2} \quad \alpha_{2}-1.5 \%: \zeta_{27}^{21} \text { of } 27.2^{14} \\
& B\left(E_{2} ; A_{1} \rightarrow 2_{1}\right)=\frac{M_{B_{2}}^{2}}{Q_{2}} \\
& B\left(E_{2} ; A_{2} \rightarrow 2_{3}\right)=\frac{M_{A_{2} z_{3}}^{2}}{g}
\end{aligned}
$$

$\neq \alpha_{2}$ decreases by 1.5% for $\lambda_{2}^{(1)}: 559 \rightarrow 547 \mathrm{keV}$

Electric monopole transition strengths in the $N=60$ isotones

Systematics of low-lying collective states in $\mathrm{N}=60$ isotones

Spectroscopy of mixing in the Cd isotopes: ρ^{2} (EO) $\cdot 10^{3}$ values in ${ }^{114} \mathrm{Cd}$

${ }^{114} \mathrm{Cd}$

th	$\alpha_{J}{ }^{2}$	$\beta_{J}{ }^{2}$
$0_{1} 0_{2}$	0.99	0.01
$2_{1} 2_{3}$	0.97	0.02
$4_{1} 4_{2}$	0.94	0.05
$2_{2} 2_{4}$	0.87	0.04
$2_{2} 2_{3}$	0.87	0.09

Garrett, Green, Wood PR C78 0443072008
To fit B(E2)'s

IBM2-MIX
mixing is multi-state

Excited 0^{+}decays in the Cd isotopes

Deformed band head 0^{+}states: strong E2 decay to "one-phonon" 2^{+}states
"Two-phonon" 0^{+}states: very weak E2 decay to "one-phonon" 2^{+}states; but strong E2 decay to "two-phonon" 2^{+}states

Introduction to mid-shell collectivity in $Z=48,52(N=66)$ isotones

Demise of quadrupole vibrations in ${ }^{110-116} \mathrm{Cd}$:

 low-energy 0^{+}states are shell and subshell excitations

Coexisting deformed bands in the even-mass Pb isotopes

Figure from Heyde \& Wood
Heavy arrows indicate E0+M1+E2 transitions: G.D. Dracoulis et al., PR C67 R 0513012003
$\left(12^{+}\right) \quad 2812$

Shape coexistence in ${ }^{184} \mathrm{Pt}$:
 revealed by EO transitions

ote: the non-
observation of a γ ray between the two 3^{+} $\mathrm{K}=2$ states due to accidental cancellation of the E2 matrix element because $3 K^{2}-I(I+1)=0$

Zirconium isotopes have excited 0^{+}states that are strongly populated in two- and four-nucleon transfer reactions

Figure from A. Saha et al. PL B82 2081979

