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E0: transition operator and matrix element
--a model independent description

E0 transition strengths are a measure of the
off-diagonal matrix elements of the
mean-square charge radius operator. 

Mixing of configurations with different 
mean-square charge radii produces
E0 transition strength. 

Ω values:  http://bricc.anu.edu.au

τ: partial lifetime for E0 decay branch

J. Kantele et al. Z. Phys. A289  157  1979
and see
JLW et al. Nucl. Phys. A651  323  1999 



Comments on model-motivated research

• Research should be pursued to falsify models, not to 
promote them

• When a model fails, we have learned something—
recall that failure of the Standard Model of particles 
and fields is being sought, avidly

• Models provide powerful schemes for organizing data



Wave functions must overlap 
for a transition to occur

Figure from JLW et al.,
Nucl. Phys. A651  323  1999

solid line—schematic potential

dashed line—schematic wave function

In the earlier literature there are 
some serious misconceptions on
this point



E0 transition between states with very different 
deformations and mean-square charge radii

6.6 x 10-7

B(E1) W.u.

B(E2) W.u.

ρ2(E0) x 103

238 U

J. Kantele et al., Phys. Rev. Lett. 51, 91 (1983)

Figure from JLW et al.,
Nucl. Phys. A651  323  1999

The E0 strength from the
238U “fission” isomer is
the weakest known

T. Kibédi and R.H. Spear, 
ADNDT 89  77  2005



E0 transitions in the light Ni isotopes:
the 02 01 strength in 58Ni is very small indicating near-pure neutron 

configurations are involved (en = 0)

6.3 x 10-3

8030

1 <  < 27

7842
66

> 0.43

T. Kibédi and R.H. Spear, 
ADNDT 89  77  2005

Figure from JLW et al.,
Nucl. Phys. A651  323  1999

π2p-2h from 2-, 4-proton transfer RX

ρ2(E0) 103



E0 transitions associated with shape coexistence in 114-120Sn
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Mixing of close lying configurations with different mean-square charge radii produces E0 strength



E2 transitions associated with shape coexistence in 114-120Sn
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B(E2; 02
+
 21

+) vs. E(02
+) – E(21

+): coexistence and 
mixing yields B(E2; 02

+
21

+) ~ α2 β2 (ΔQ)2

Recall:
B02 = 5 x B20



Deformed bands in 112-120Sn built on the first 
excited 0+ states

Figure from Rowe & Wood B(E2)’s in W.u. [100 = rel. value]



The nature of the shape coexisting state in 116Sn 
revealed by (3He,n) transfer reaction spectroscopy

Spectrum taken from H.W.Fielding et al., 
NP A281, 389 (1977)



Excited 0+ states at closed shells: 
intruder states in the Pb and Sn isotopes

neutron numbermid shell mid shell

green—yrast states
red—non-yrast states



Coexistence in even-Pb isotopes: 
multiple parabolas and spherical  (seniority) structure

Figure: Heyde & Wood Heavy arrows indicate E0+M1+E2 transitions
188Pb: G.D. Dracoulis et al., PR C67  R 051301 2003 



Coexistence in the odd-Pb isotopes:
Data for E0 transitions are from:
J.C. Griffin et al., NP A530 (1991) 401—195Pb (UNISOR / LISOL);
J. Vanhorenbeeck et al., NP A531 (1991) 63—197Pb (LISOL);
K. Van de Vel et al., PR C65, 064301 (2002)—189,191Pb (KUL @ JYFL)

spin sequence in 195,197Pb
implies oblate deformation

Heavy downward vertical arrows indicate 
E0+M1+E2 transitions

Diagonal arrows indicate
α-decay strength (from Po) 



Shape coexistence in the even-Hg isotopes: 
NOTE characteristic parabolic energy trend

80Hgmid-shell

Figure from J. Elseviers et al.
PR C84 034307  2011



Conversion electron spectroscopy:
uniquely sensitive to E0 transitions, identifies shape coexistence
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M.O. Kortelahti et al.,
PR C43  484  1991  UNISOR



E0 transitions: αK > αK(M1)

  



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M.O. Kortelahti et al., PR C43 484 1991
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0+
 0+ decays are pure E0: no γ’s (190Hg)

M.O. Kortelahti et al. PR C43 484 1991 1279 keV pure E0
evidence



The ground states of 178-186Pt and 177-187Pt
are intruder states

Figure from: JLW et al.,
Phys. Repts. 215, 101 (1992)

mid shell
N = 104 See P.M. Davidson et al.,

NP A657  219  1999 (ANU)   



Coexistence in the odd-Pt isotopes
Chapter 2. Background 19

Figur e 2.4: Systemat ics of yrast states in A = 168− 194 Pt isotopes as a funct ion of

the neutron number N . The even-A isotopes (open symbols) are plot ted with respect

to the 0+ ground state. Posit ive-signature states of odd-A isotopes (filled symbols) are

plot ted taking the 13/ 2
+ state as a reference. Vert ical dashed lines highlight N = 95, 97

of 173,175Pt , respect ively. Around the neutron mid shell (N = 104) the excitat ion

energies of these yrast states have a pronounced staggering between the odd-A and

even-A nuclei. When moving away from the neut ron mid shell, the mot ion of the odd

neut ron is seen to become weakly coupled to the core deformat ion. This is seen from

the similarity of the excitat ion energy between even and odd-A Pt isotopes at N 97

and N ≥ 109. Data are taken from [Pii75, Jan88, Bes76, Nyb90, Bur67, De Voigt90,

Bag09, Dra86, Dra90, Dra91, Ced98, Jos05, GH09].

P. Peura, Ph.D. thesis, JYFL 2014
mid shell
N = 104



Coexistence in the even-Pt isotopes:
mixing and E0 transition strength 

From: J. von Schwarzenberg,
PhD thesis, Ga Tech 1991 

E (sph.gs) = 0

E (gs) = 0

ρ2(E0)

V = 50, 100, 400 keV



Coexistence in the even-Pt isotopes:
coexistence of K = 0 and K = 2 bands in 184Pt 





Y. Xu et al.  PRL 68  3853  1992  UNISOR  

E2 / M1 from low-temperature
nuclear orientation on-line



Coexistence in the even-Pt isotopes:
K = 0 and K = 2 bands 





Y. Xu et al.  PRL 68  3853  1992  UNISOR 



Coexistence in the even-Pt isotopes:
K = 0 and K = 2 bands 





Y. Xu et al.  PRL 68  3853  1992  UNISOR 
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  

Pure E0’s in an odd-mass nucleus?

185Pt

J. von Schwarzenberg et al., 
PR C45  R896  1992  UNISOR 



M1 + E2

Pure E0’s in an odd-mass nucleus

J. von Schwarzenberg et al., 
PR C45  R896  1992  UNISOR 

185Au  185Pt



Isotope shifts: Pt, Au, Hg, Tl, Pb, Bi, Po, At

From: Barzakh INPC 2013

International Nuclear Physics Conference INPC2013: 2-7 June 2013, Firenze, Italy 
 

Shape coexistence and charge radii in thallium, gold and astatine  

isotopes studied by in-source laser spectroscopy at RILIS-ISOLDE 
 

A. Barzakh 
 

Petersburg Nuclear Physics Institute (PNPI), NRC Kurchatov Institute, 188300 Gatchina, Russia 

On behalf of York-KU Leuven-Gatchina-Mainz-Bratislava-Liverpool-ISOLDE collaboration 
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The competition between spherical and deformed nuclear shapes at low energy gives rise to 

shape coexistence in the region of the neutron-deficient lead isotopes with Z~82 and N~104 [1]. In 

order to determine to which extent the ground and/or isomeric states of those and neighboring nu-

clides are affected by this phenomenon, a campaign of investigation of changes in the mean-square 

charge radii and electromagnetic moments is on-going at ISOLDE. By combining the high sensitiv-

ity of the in-source laser spectroscopy technique, ISOLDE mass separation and Windmill alpha-

decay spectroscopy setup [2], it has been possible to study long isotopic chains of lead [3] and po-

lonium [4], down to N=100 and N=107 respectively, and, recently, thallium isotopic chain down to 

N=98. 

In this contribution, we present the the preliminary results of the charge radii, 

electromagnetic moments and spins measurements in thallium, gold and astatine isotopes. In the 

gold and astatine cases, next to Faraday cup and Windmill measurements, also the Multi-Reflection 

Time-of-Flight (MR-ToF) mass separation technique [5] involving the ISOLTRAP collaboration 

was used. 
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Figure 1: Charge radii for Pt-At isotopes. For the sake of clarity the data for different elements are 

shifted relative to each other by a vertical off-set. Tl data for the light isotopes are from ISOLDE [5] 

and Gatchina. Preliminary data for gold and astatine chains are from [6]. 
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Odd-mass Au systematics showing
the h9/2  intruder state

Figure from: M.O. Kortelahti et al., JP G14 1361 (1988)



E0 transitions between “single”and “double” 
intruder states in 185Au 



 

9/2- state @ 9 keV: “double” intruder state:
πh9/2 (1p) × 184Pt [π(2p-6h)] = π(3p-6h)

9/2- state @ 322 keV: “single” intruder state:
πh9/2 (1p) × 184Pt [π(4h)] = π(1p-4h)

C.D. Papanicolopulos PhD
thesis  Ga Tech  1987 and
ZP A330  371  1988  UNISOR

Z = 79 427 keV
mult αK 

E1          0.010
E2          0.027
M1        0.11

expt.        0.33



E0 transitions between “spherical” states and 
“core” intruder states in 185Au 

11/2- state @ 220 keV: “spherical” state:
πh11/2 (1h) × 186Hg [π(2h)] = π(3h)

11/2- state @ 712 keV: “core” intruder state:
πh11/2 (1h) × 186Hg [π(2p-4h)] = π(2p-5h)







C.D. Papanicolopulos
PhD thesis Ga Tech 1987
ZP A330  371  1988
UNISOR

Z = 79  492 keV
mult αK 

E1          0.007
E2          0.020
M1        0.073

expt.        0.21



E0 transitions between “single”and “double” 
intruder states in 187Au 

D. Rupnik et al. 
PR C51 R2867 1995  UNISOR 



E2



E0 transitions between “single”and “double” 
intruder states in 187Au 

D. Rupnik et al. 
PR C51 R2867  1995 UNISOR  





WHEN STUDYING THE QUANTUM MECHANICAL 
MANY-BODY PROBEM, ALWAYS BE MINDFUL OF:

• "We are to admit no more causes of natural things than such 
as are both true and sufficient to explain their appearances.

Therefore, to the same natural effects we must, so far as

possible, assign the same causes.”
--Isaac Newton

(From William of Ockham [near Guildford, UK], ca. 1320) 

• “Everything should be made as simple as possible, 

but not simpler.”
-- Albert Einstein



Systematics of 02
+ states in Zr isotopes, 50 ≤ N ≤ 62:

electric monopole transition strengths
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Systematic of 21
+ states in Zr isotopes, 50 ≤ N ≤ 62:

electric quadrupole transition strengths
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Systematic of E(21
+) for N ≥ 50, Z ≤ 50 



Ground-state properties are a direct signature of 
shell and deformation structures

R&W Fig. 1.41

R&W Fig. 1.42

Differences in mean-square charge radii (isotope shifts)
determined by:

optical hyperfine spectroscopy using lasers

Two-neutron separation energies deduced from 
nuclear masses determined by:

direct mass measurements



21
+ state properties are a strong signature of 

shell and deformed structures

R&W Fig. 1.39

R&W Fig. 1.40

Energies of 21
+ states determined by:

gamma-ray spectroscopy following β decay
problem—β-decaying parent is further from stability and yield will be (much)

lower than nucleus of interest

gamma-ray spectroscopy following Coulomb excitation

Reduced E2 transition rates, B(E2) from 21
+ states 

determined by:
lifetime measurements using fast β-γ timing following β decay

problem--see above

gamma-ray yields following Coulomb excitation



Excited 0+ states at closed shells--mixing and 
repulsion of pair configurations in 90Zr 

p1/2
2

0+

g9/2
2

0+

+0 0

1761

+0
N=50: g9/2 seniority structure

j = ½ orbitals can only contribute
to v = 0 states, at low energy

90Zr E(21
+) is high: suggests a closed 

subshell, BUT is due to depression
of the ground-state energy

Figure from Heyde & Wood



Shape coexistence at and near closed subshells: 
the nuclei 96Sr and 98Zr

Figure from K. Heyde and J.L. Wood, Rev. Mod. Phys. 83, 1467 (2011)

E0 transitions: 
ρ2(E0)103 values

are shown

96Sr58
98Zr58

G. Lhersonneau et al., 
PR C49, 1379 (1994)

C.Y. Wu et al.,
PR C70, 064312 

(2004)

G. Lhersonneau et al., 
PR C49, 1379 (1994)

C.Y. Wu et al.,
PR C70, 064312 (2004)

ρ2(E0)103 = 21031

in 96Sr is  largest 
known for A > 56

210
76

61

11



0.21031



Deformation in Zr isotopes, 50 ≤ N ≤ 62
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A deformed structure can intrude to become a ground state:

appears to produce a “collective phase change”

Proton particle-hole excitations across the Z = 64 gap may be the 
source of the coexisting shapes.

There is no a priori way to determine the nature of the 
unmixed configurations or the strength of the mixing.
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Less-deformed 2h and more-
deformed 2p-4h structures 
coexist at low energy at N=90.

Strong mixing obscures the 
energy differences that are 
indicative of different shapes.

Strong E0 transitions are a key 
signature of the mixing of 
coexisting structures.

As observed, the K=2 bands 
will also mix strongly, resulting 
in E0 transitions.

24

Nuclei are manifestations of coexisting structures
that may invert by addition of a few nucleons, and may mix.      

52   54   56   58   60   62

N=58

Proton pair excitations with respect to the Z = 40 subshell

π(2p-2h)

π(0p-0h)



Ground state properties, S2n and δ<r2>, in the regions of 
N = 60, 90 are very similar

Figure from Heyde & WoodFigure from S. Naimi et al. Phys. Rev. Lett. 
105 032502 (2010)



E(21
+) systematics for N ~90 and Z ~64



Systematics of  <r2> and S2n for the Eu isotopes



152Sm and the neighboring N = 90 isotones are a 
manifestation of shape coexistence



Shape coexistence in the N = 90 isotones:
revealed by E0 transition strengths

Strong mixing of coexisting shapes produces strong electric monopole 
(E0) transitions and identical bands.

E0 strength is a function of mixing.
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Strong mixing produces (near) identical bands
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Mixing of coexisting structures in 152Sm
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Mixing of coexisting structures in 154Gd
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152Sm:  B(E2) values

Grodzins’ rule for quadrupole strength

Rotor matrix elements

e.g.,

*Grodzins +8%



Mottelson, Tokyo Conf., 1967: comment on 
breakdown of ΔK = 0 Alaga rules at N = 90



Multi-Coulex of 152Sm 02
+(685 keV): 

strongest response is to head of K=2+ band at 1769 keV
(in-band response attenuated by 99.7% decay out @ 811 level)

The strongest response is from the band head of the

K=2+ structure at 1769 keV.
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Shape coexistence in the N = 90 isotones:
coexisting K = 2 bands revealed by E0 transitions

Kulp, Wood, Garrett, Zganjar and others

E (MeV)

3+, K = 2    3+, K = 2: 631 keV transition in 158Er has no observable γ-ray strength, only ce’s
[ 3K2 – I(I+1)  =  0 ]        are observed --accidental cancellation of E2; M1 is very weak.

152Sm: W.D. Kulp et al., Phys. Rev. C77   061301   2008

cf. 184Pt



Neutron-deficient Kr isotopes:
puzzling collectivity

E. Clément et al.,
PR C75  054313  2007  



Multistep Coulomb excitation of 74,76Kr using 
radioactive beams of Kr on a 208Pb target

76Kr

74Kr 74Kr 76Kr

E. Clément et al.,
PR C75  054313  2007  



Quadrupole shape invariants constructed from 
E2 matrix elements for 74,76Kr

for the ground state

E. Clément et al.,
PR C75  054313  2007  



CONCLUSIONS: E0 TRANSITIONS

1). They give a unique perspective on shape coexistence
in nuclei

2). They probe the proton and neutron configurations that
occur in nuclei

3). They probe K quantum numbers through their ΔK = 0
selection rule

We need  more data for:
T1/2(0+) [and T1/2(2+), T1/2(4+), T1/2(3+)]    
conversion electron intensities
E2 / M1 mixing ratios—to extract E2 + M1 + E0



Electric monopole transition strengths: critical 
test of phase transition models

P. von Brentano et al., 
PRL 93, 152502 (2004)



Shape coexistence in the Hg and Cd isotopes
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Shape coexistence in the Cd isotopes

Fielding  NP  A281  389  1977

108Pd(3He,n)110Cd

110Pd(3He,n)112Cd

Pd targets  π(4h)  



Deformed bands in 110-116Cd

Figure from Rowe & Wood B(E2)’s in W.u. [100 = rel. value]



The spectroscopy of mixing in the Cd isotopes:
ρ2 (E0) values in 114Cd
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Shape%coexistence%in%the%N%=%90%isotones:%
%revealed%by%E0%transi6on%strengths%

Strong mixing of coexisting shapes produces strong electric monopole 
(E0) transitions and identical bands.

E0 strength is a function of mixing.
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E0 transition strengths in 114Cd support the 
existence of good K quantum numbers

STRONG Δ K=2 E0
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Spectroscopy of mixing in the Cd isotopes:
ρ2 (E0)103 values in 114Cd
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NOTE:
despite the proximity of 
these two 2+ states, the 
ρ2 (E0) value is not large 
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Δ<r2 >  ~ 0.45 fm2 [2nd est.]
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Spectroscopy of mixing in the Cd isotopes:
116Cd (p,t) 114Cd and ρ2 (E0)  103

Fortune  PR C35  2318  1987
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The spectroscopy of mixing in the Cd isotopes:
114Cd unmixed energies 



The spectroscopy of mixing in the Cd isotopes:
114Cd energies



The spectroscopy of mixing in the Cd isotopes:
ρ2 (E0) values in 114Cd



The spectroscopy of mixing in the Cd isotopes:
M(E2) and B(E2)  values in 114Cd



Electric monopole transition strengths in the 
N = 60 isotones
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Systematics of low-lying collective states in N=60 isotones
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Spectroscopy of mixing in the Cd isotopes:
ρ2 (E0)103 values in 114Cd
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Excited 0+ decays in the Cd isotopes

TRIUM F EEC Update on Research Proposal Update of Proposed Research for Experiment # :1288
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Figure 2: Port ion of the level schemes for 110,112,114,116Cd showing the decays from the low-lying 0+

states. The observed transit ions between levels are indicated by arrows with widths proport ional to

the B(E2) values and are labeled with the absolute B(E2) values or limits, with the uncertaint ies

in parentheses.

The result of our studies with the 8π spectrometer have been extremely successful. Very recent ly,

we have published our first results from the 110In decay to 110Cd from S984 [9]. Combining level

lifet imes from the (n, n γ) react ion, and the branching rat ios or limits from the β-decay data, we

could, for the first t ime, extract B(E2) values or limits for every possible decay from the previously-

purported mult i-phonon states. What we found was remarkable – aside from the 0+ int ruder band

head and 6+ state in the ground state band, there was a lack of enhancement in any of the tran-

sitions between the intruder configuration and the non-intruder states. Comparison with theoret ical

calculat ions indicated that this scenario could only occur if the mixing were weak [9].

The reject ion of the strong-mixing scenario in 110Cd immediately raised the quest ion of the

explanat ion of the decay of the excited 0+ states. In the previous vibrat ional picture, the 0+
3 level

was a two-phonon state and the 0+
2 level the intruder band head; maximal mixing of these two levels

was required to account for the enhancement of the B(E2; 0+
2 → 0+

gs) value and the cancellat ion of

the matrix elements contribut ing to the B(E2; 0+
3 → 0+

gs). However, since this st rong-mixing scenario

was rejected, a new interpretat ion was required. From the decay pat terns, the underlying structure of

the non-intruder has the appearance that is associated with a γ-soft potent ial, or Wilets-Jean model,

whose key signature is an enhanced decay of the excited 0+ state to the second excited 2+ state, as

observed in the Cd isotopes as shown in Fig. 2.

In addit ion to this paradigm shift in the 110Cd structure, it was also suggested that the propert ies

of the 0+
4 level, previously assigned as a three-phonon 0+ , was actually the head of a deformed proton

4p − 6h int ruder band. This suggest ion was based on its strongly favored decay to the 2+ int ruder

band level, which has theproton 2p− 4h assignment. Figure3 displays a port ion of theγ-ray spectrum

of coincidences with a 1397-keV γ ray from the 3475-keV I = 1 → 2079-keV 0+
4 level, clearly showing

the dominance of the 295-keV 0+
4 → 2+

3 (i ) γ ray feeding the 2+ int ruder level. Also noted is the

locat ion of a potent ial 603-keV 0+
4 → 2+

2 t ransit ion (the expected enhanced transit ion if the 0+
4 level

were a three-phonon state); the extracted upper limit for the branch is < 0.18. With a sensit ivity

to individual branches at the 10− 4 level, the β-decay data provides an unprecedented view into the

collect ive nature of low-lying states.

2

Deformed band head 0+ states: strong E2 decay to “one-phonon” 2+ states

“Two-phonon” 0+ states: very weak E2 decay to “one-phonon” 2+ states;
but strong E2 decay to “two-phonon” 2+ states



Introduction to mid-shell collectivity
in Z = 48, 52 (N = 66) isotones
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Demise of quadrupole vibrations in 110-116Cd: 
low-energy 0+ states are shell and subshell excitations
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Coexisting deformed bands in the even-mass 
Pb isotopes

Figure from Heyde & Wood Heavy arrows indicate E0+M1+E2 transitions:
G.D. Dracoulis et al., PR C67  R 051301  2003 



Shape coexistence in 184Pt:
revealed by E0 transitions

Y. Xu et al. PRL 68  3853  1992 UNISOR



Figure:  Heyde & Wood

Figure from A. Saha et al. PL B82  208  1979

Zirconium isotopes have excited 0+ states that are strongly 
populated in two- and four-nucleon transfer reactions
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