Angle Recording CORDIC 1. Hu

20180911 Tue

Copyright (c) 2015 - 2016 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

by encoding the angle of rotation

as a linear combination of

selected elementary angle of micro-rotations

Signal / Image processing DFT & DCT

— the rotation angle <u>known</u> a priori

greedy algorithms to penform angle recoding

linear combination of

elementary rotation angles (EAS)

a circular rotation

$$\begin{bmatrix} x/\\ y' \end{bmatrix} = \begin{bmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix}$$

coso, sin o

CORDIC: a sequence of successive rotation

$$a(i), i = 0, ..., n-1$$

$$tan[\alpha(i)] = 2^{-i}$$

only shifts and adds operations

$$\theta = \sum_{i=0}^{n-1} u(i) a(i) + \varepsilon$$

E: an angle approximation error

$$|\mathcal{E}| \leq \alpha(n-1)$$

the direction of rotation angle

$$2(i+1) = 2(i) - u(i) \alpha(i)$$
 $i=0, ..., n-1$

Initialization
$$X(0)=x$$
 $Y(0)=y$

Scaling operation
$$\begin{bmatrix} \chi' \\ y' \end{bmatrix} = \prod_{i=0}^{n-1} \cos u(i) \alpha(i) \cdot \begin{bmatrix} \chi(n) \\ y(n) \end{bmatrix}$$

$$\begin{bmatrix} \chi' \\ y' \end{bmatrix} \leftarrow \begin{bmatrix} \chi(n) \\ \chi(n) \end{bmatrix} \leftarrow \cdots \leftarrow \begin{bmatrix} \chi(l) \\ \chi(l) \end{bmatrix} \leftarrow \begin{bmatrix} \chi(0) \\ \chi(0) \end{bmatrix}$$

shift and add operations

$$\lim_{i=0}^{N+1} (os uci)ali) = \frac{1}{K(n)}$$
 morm correction

a known constant

a multiplier recoding method

can be applied

Buoth's algurithm.

$$|0| < 20(0) = \frac{\pi}{2}$$

$$\bigcirc \text{ if } \pi > 0 > \frac{\pi}{2} \qquad \left[\begin{array}{c} \chi \\ y \end{array} \right] \sim \left[\begin{array}{c} \gamma \\ -x \end{array} \right], \quad 0 \in 0 - \frac{\pi}{2}$$

CORDIC Angle Recoding Problem

(repetition)

desirable to minimize [| u(i) |

-> reduce complc iterations

Angle Recoding

given
$$a(i)$$
, $i=0, ..., n-1$ $a(i) \in EAS$

0 an angle

find
$$u(i)$$
, $i=0,--,n-1$ $u(i) \in \{-1,0,+1\}$

such that

(i)
$$0 = \sum_{i=0}^{n-1} u(i) a(i) + \varepsilon$$
 $\varepsilon < a(n+1)$

CORDIC Angle Recoding Algorithm

Greedy Algorithm

In: tialization: $\Theta(0) = \Theta$, $\{u(i) = 0, 0 \le i \le n-1\}$, k = 0

Repeat until O(k) < a(n-1) Do

① Chouse ir, 0 ≤ ir ≤ n-1 such that

 $|O(k)| - \alpha (i_k) = Min_{0 \le i \le n-1} |O(k)| - \alpha (i)$

greedy

at every step
represent the remaining angle
Using a closest elementary CORDIC angle

draw it without replacement

Chousing ir, D≤ir≤n-1

1 With angle replacement

always choose in ambers (0...n-1)

angle repetition is allowed

 $\theta(k+1) \leq \theta(k)$ monotonically decreasing

2 without angle replacement

at each step choose lk

Among one less numbers

than the previous step's numbers

O(k+1) < O(k) Strictly decreasing

Strictly decreasing

$$g(i) = a(i) - a(i+1)$$
 $i = 0, 1, ..., n-2$
 $a(i) = tan^{-1}(x^{-i})$

$$g(i) = \alpha(i) - \alpha(i+1) = \tan^{-1}(2^{-i}) - \tan^{-1}(2^{-i-1}) > 0$$

$$g(i+1) = \alpha(i+1) - \alpha(i+2) = \tan^{-1}(2^{i-1}) - \tan^{-1}(2^{-i-2}) > 0$$

$$g(i)-g(i+1)=a(i)-\lambda a(i+1)+a(i+2)>0$$

$$tan(a(i)) = tan(tan^{-1}(1^{-i})) = 2^{-i}$$

 $tan(a(i+1)) = tan(tan^{-1}(2^{-i-1})) = 2^{-i-1}$

$$tan(\alpha(i)) = 2 \cdot tan(\alpha(i+1))$$

$$a(i) < 2 \cdot a(i+1) < 2a(i)$$

$$\alpha(i+1) < g(i) = \alpha(i) - \alpha(i+1) < \alpha(i+1)$$

$$|0| \leqslant \alpha(0) = \frac{\pi}{4}$$

$$\sum_{i=0}^{n-1} |u_{i(i)}| \leqslant \frac{\eta}{2}$$

$$a(n-1) < |0| < a(0)$$

$$|0| \in [a(i_0+1), a(i_0)]$$
 or $|0| \in [a(i_0), a(i_0-1)]$

$$O(1) = |O(0)| - A(10)|$$

$$|O(kt1)| < g(2k)/2$$

< $a(2kt1)/2$

$$= O(2(kt))$$

$$2k \geqslant n-1 \qquad k^* \leqslant \frac{(n-1)}{2}$$

```
l = 0,1,2, ..., n-1 ←.... n-bit word
```

$$|O(k)| < O(N-1)$$
 termination condition
 $k = 0, 1,, k'-1$ hopefully less than $N-1$

$$k=0$$
 $0 \le i_0 \le n-1$
 $k=1$ $0 \le i_1 \le n-1$

$$k=k'-1$$
 $0 \leqslant i_{k'+1} \leqslant n-1$

$$\Theta(k) > 0$$
 $U(i_k) = +1$ $\Theta(k+1) = \Theta(k) - \alpha(i_k)$

$$\Theta(k) < 0$$
 $U(ik) = -1$ $\Theta(k+1) = -\Theta(k) + \alpha(ik)$

$$U(i_{j}) = 0$$
 $j \in \{0, 1, ..., n-1\}$
 $j \in \{i_{0}, i_{1}, ..., i_{\frac{n}{2}-1}\}$

	no repeatition	repetition allowed
0	0 +	in MVR
1	2 -	
ζ.	· 4 +	k'
3	5 -	
4	8 -	
5	0	
6	0	
1	0	
8 .	0	
9	0	
10	0	
Ц	. 0	
12	0	
13	0	
14	0	
15	0	

if the algorithm terminates at
$$k = k^*$$
, $k^* < \frac{\eta}{2}$

$$g(i) = a(i) - a(i+1)$$
 $i = 0, 1, ..., n-1$
 $a(i) = tan^{-1} 2^{-i}$

(2)
$$\alpha(i+2) < \alpha(i) - \alpha(i+1) < \alpha(i+1)$$

$$\sum_{i=0}^{n-1} |u(i)| < \frac{\eta}{2}$$

Elementary Angle Set

$$S = \{ (e \cdot tom^{-1}(x^{-r})) : \sigma \in \{+1, -1\}, r \in \{1, 2, ..., n-1\} \}$$

N-bit angle as a linear combination

$$\theta = \sum_{i=0}^{n-1} \sigma_i \cdot \tan^{-1} (\lambda^{-i})$$

AR: O = {1,0,+1}

EAS (Elementary Angle Set) for Ak methods

SEAS = { (0. tom (2-r)): 0={+1,0,1}, r ∈ {1,2,..., n-1}}

Simple angle recording — Itu's greedy algorithm

tries to represent the remaining angle Using the closest elementary angle ±tan-i

Yestoring mode - Angle Recording

Vectoring mode - Backward Angle Recording (BAK)

initialize
$$\theta_0 = \theta$$

$$0_i = 0 \qquad i = 0, 1, ..., M$$

$$k = 0$$

repeat until
$$|0_k| < \tan^{-1}(2^{-n+1})$$
 do

1. choose
$$i_k$$
, $i_k = 0, 1, 2, ..., n-1$
Such that
$$|O_k| - tan^{-1}(2^{-i_k})| = \min_{i \in [0:m]} |O_k| - tan^{-1}(2^{-i})$$

$$\prod_{i=0}^{n-1} (os u(i) a(i) = 1/k(n)$$

a modified Booth's multiplier recoding representation for 1/k(n)

the total number of i's and T's

> additional iterations needed for CORDIC scaling
(norm correction operation)

the total number of iterations

for CORDIC rotation operations for norm correction operations

