
Link 5. Loading

Young W. Lim

2018-10-02 Tue

Young W. Lim Link 5. Loading 2018-10-02 Tue 1 / 21

Outline

1 Linking - 5. Loading
Based on
Loading

Young W. Lim Link 5. Loading 2018-10-02 Tue 2 / 21

Based on

"Self-service Linux: Mastering the Art of Problem Determination",
Mark Wilding
"Computer Architecture: A Programmer’s Perspective",
Bryant & O’Hallaron

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim Link 5. Loading 2018-10-02 Tue 3 / 21

invoking the loader

the shell runs an executable object file
by invoking some memory resident os code
known as the loader

any program can invoke the loader
by calling the execve function

Young W. Lim Link 5. Loading 2018-10-02 Tue 4 / 21

loading

the process of copying the program into memory
and then running it, is known as loading

the loader copies the code and the data
in the executable object file from disk into memory

then runs the program by jumping
to its first instruction (entry point)

Young W. Lim Link 5. Loading 2018-10-02 Tue 5 / 21

run-time memory image (1)

the code segment always starts
at address 0x08048000
the data segment follows
at the next 4-KB aligned address
the runtime heap follows
on the first 4-KB aligned address
past the read/write segment
grows up via calls to the malloc library
shared libraries starts
at address 0x40000000

Young W. Lim Link 5. Loading 2018-10-02 Tue 6 / 21

run-time memory image (2)

the user stack always starts
at address 0xbfffffff
and grows down (towards lower memory addresses)
the segment starting above the stack
at address 0xc0000000
is reserved for the code and data
in the memory resident part of
the operating system (kernel)

Young W. Lim Link 5. Loading 2018-10-02 Tue 7 / 21

Linux Run-time Memory Image (1)

Kernel 0xc0000000
User Stack %esp

Shared Libraries 0x40000000
Run-time Heap brk
Read/Write segment
Read-only segment 0x08048000
Unused 0x00000000

Young W. Lim Link 5. Loading 2018-10-02 Tue 8 / 21

Linux Run-time Memory Image (2)

Kernel 0xc0000000
memory invisible to user code

User Stack %esp
created in run time
grows toward decreasing addresses

Shared Libraries 0x40000000
grow toward increasing addresses

Run-time Heap brk
created by malloc

Young W. Lim Link 5. Loading 2018-10-02 Tue 9 / 21

Linux Run-time Memory Image (3)

Read/Write segment
.data and .bss

-loaded from the executable file
Read-only segment 0x08048000

.init, .text, .rodata

-loaded from the executable file
Unused 0x00000000

Young W. Lim Link 5. Loading 2018-10-02 Tue 10 / 21

Linux Run-time Memory Image

Kernel Virtual Memory Memory invisible to user code 0xc0000000
User Stack created at run time %esp

Shared Libraries 0x40000000

Run-time Heap created by malloc brk
Read/Write segment .data, .bss
Read-only segment .init, .text, .rodata 0x08048000
Unused 0x00000000

Young W. Lim Link 5. Loading 2018-10-02 Tue 11 / 21

creating the memory image

when the loader runs, it creates the memory image
guided by the segment header table in the executable
it copies chunks of the executable
into the code and data segments

Young W. Lim Link 5. Loading 2018-10-02 Tue 12 / 21

jumping to the entry point

after copying the executable, the loader
jumps to the program’s entry point
the address of the _start symbol
the start-up code at the _start address
is defined in the object file crt1.o and
is the same for all C programs

Young W. Lim Link 5. Loading 2018-10-02 Tue 13 / 21

the crt1.o startup routine

0x080480c0 <_start> // entry point in .text
call __libc_init_first // startup code in .text
call _init // startup code in .init
call atexit // startup code in .text
call main // application main routine
call _exit // returns control to OS

Young W. Lim Link 5. Loading 2018-10-02 Tue 14 / 21

Startup code (1)

after calling initialization routines
from the .text and .init sections
the startup code calls the atexit routine
the atexit routine registers
a list of routines to be called
when the application (main)
calls the exit function
the exit function runs
those functions registered by atexit
then returns control to the os
by callying _exit

Young W. Lim Link 5. Loading 2018-10-02 Tue 15 / 21

Startup code (2)

when the startup code calls
the application’s main routine,
the C code begins to execute

after the application returns
(exit is called),
the startup code calls
the _exit routine,
which returns control to the os

Young W. Lim Link 5. Loading 2018-10-02 Tue 16 / 21

child process forked

each program runs in the context of a process
with its own virtual address space
the parent shell process forks a child process
that is a duplicate of the parent
the child process invokes the loader
via execve system call
the loader deletes the child’s
initial virtual memory segments
that are copied from the parent process
and creates a new set of
code, data, heap, and stack segments

Young W. Lim Link 5. Loading 2018-10-02 Tue 17 / 21

the loader is invoked

the new stack and heap segments are
initialized to zero
the new code and data segments are
initilialized to the contents of the executable file
by mapping pages in the virtual address space
to page-sized chunks of the executable file
finally the loader jumps to the _start address
which eventually calls the application’s main routine

Young W. Lim Link 5. Loading 2018-10-02 Tue 18 / 21

the copying is deferred

during the loading process,
there is no copying of data from disk to memory
except some header information

the copying is deferred until the CPU references
a mapped virtual page, at which point the os
automatically transfers the page from disk to memory
during it’s paging mechanism

Young W. Lim Link 5. Loading 2018-10-02 Tue 19 / 21

execve

#include <unistd.h>

int execve(const char *filename,~
char *const argv[],~
char *const envp[]);

Young W. Lim Link 5. Loading 2018-10-02 Tue 20 / 21

execve example

#include <unistd.h>
#include <stdio.h>

int main(void)
{

char *argv[] = { "/bin/sh", "-c", "env", 0 };
char *envp[] =
{ "HOME=/",

"PATH=/bin:/usr/bin",
"TZ=UTC0",
"USER=beelzebub",
"LOGNAME=tarzan",
0 };

execve(argv[0], &argv[0], envp);
fprintf(stderr, "Oops!\n");
return -1;

}

https://stackoverflow.com/questions/7656549/
understanding-requirements-for-execve-and-setting-environment-vars

Young W. Lim Link 5. Loading 2018-10-02 Tue 21 / 21

	Linking - 5. Loading
	Based on
	Loading

