
●

●

FPGA Carry Chain Adder (1A)

 Copyright (c) 2010 -- 2020 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

mailto:youngwlim@hotmail.com

Carry Chain Adder 3 Young Won Lim
1/8/21

FPGA Carry Chain Cell

Synthesis of Arithmetic Circuits: FPGA, ASIC and Ebedded Systems, J-P Deschamps et al

0 1
LUT

x(i)

y(i)

⊕

q(i)

z(i) = q(i) xor p(i)

q(i+1)

⊕
p(i)

si = (ai⊕bi)⊕ci = pi⊕c i
ci+1 = (ai⋅bi)+(ai⊕bi)ci = pi⋅gi+ pi⋅ci = pi⋅ai+ pi⋅ci = pi⋅bi+ pi⋅ci

when p
i
 = 1, then a

i
 = b

i

when g
i
 = 1, then a

i
 = b

i
 = 1

0 1
0 0 1
1 1 0

0 1
0 0 0
1 0 1

g(i)p(i)

If p(i) = 1, then q(i+1) = q(i)
If p(i) = 0, then q(i+1) = y(i)

Carry Chain Adder 4 Young Won Lim
1/8/21

FPGA Carry Chain Cell

Synthesis of Arithmetic Circuits: FPGA, ASIC and Ebedded Systems, J-P Deschamps et al

0 1LUT
x(3)
y(3) ⊕

q(3)
z(3)

q(4)

⊕

p(3)

0 1LUT
x(2)
y(2) ⊕

q(2)
z(2)⊕

p(2)

0 1LUT
x(1)
y(1) ⊕

q(1)
z(1)⊕

p(1)

0 1LUT
x(0)
y(0) ⊕

q(0)
z(0)⊕

p(0)

Carry Chain Adder 5 Young Won Lim
1/8/21

FPGAs generally contain dedicated computation resources
for generating fast adders

The Virtex family programmable arrays include
logic gates (XOR) and multiplexers that along with the
general purpose lookup tables allow one to build effective carry-chain adders

The carry chain is made up of multiplexers
belonging to adjacent configurable blocks

the lookup table is used for implementing the exclusive or function

p(i) = x(i) xor y(i)

https://en.wikipedia.org/wiki/Carry-lookahead_adder

FPGA Carry Chain

Carry Chain Adder 6 Young Won Lim
1/8/21

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

2 LUT 2 LUT

P

X Y Z

Cout1 Cout0

Cout

Cin

Programming Bit

Cout1, Cout2 : functions of X, Y, Cin

Cout1 = X+Y when Cin=1
Cout0 = X Y when Cin=0

Cout = (X + Y) Cin + X Y Cin

Cout = P’ Cin + G Cin … P’ = relaxed P

1 0

Cout1 Cout0 Cout Name
0 0 0 Kill
0 1 Cin Inverse Propagate
1 0 Cin Propagate
1 1 1 Generate

Carry Chain Adder 7 Young Won Lim
1/8/21

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

OR AND

P

X Y Z

Cout1 Cout0

Cout

Cin

Programming Bit

Cout : functions of X, Y, Cin

Cout(X, Y, 1) = Cout1 = X + Y
Cout(X, Y, 0) = Cout0 = X Y

Cout1 = X + Y when Cin=1
Cout0 = XY when Cin=0

Cout1 = P’ Cin … P’ = relaxed P
Cout0 = G Cin

Cin Cin
X Y Cout1 Cout0
0 0 0 0 X Y
0 1 1 0 X Y
1 0 1 0 X Y
1 1 1 1 X Y

If Cin, then Cout = (X Y + X Y + X Y)
If Cin, then Cout = X Y

Cin (X + Y) + Cin X Y
Cin (X Y + X Y + X Y) + Cin X Y
Cin (X Y + X Y) + (Cin + Cin) X Y
P Cin + G

Cin (X + Y) + Cin X Y
Cin P’ + Cin G … P’ : relaxed P

1 0

Carry Chain Adder 8 Young Won Lim
1/8/21

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

OR AND

P

X Y Z

Cout1 Cout0

Cout

Cin

Programming Bit

Cin Cin
X Y Cout1 Cout0
0 0 0 0 X Y
0 1 1 0 X Y
1 0 1 0 X Y
1 1 1 1 X Y

1 0
X Y Cin Cout
0 0 0 0 Cout0
0 1 0 0 Cout0
1 0 0 0 Cout0
1 1 0 1 Cout0
0 0 1 0 Cout1
0 1 1 1 Cout1
1 0 1 1 Cout1
1 1 1 1 Cout1

Carry Chain Adder 9 Young Won Lim
1/8/21

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

Cout1=1 Cout0=0

Cout1=1 when Cin=1
Cout0=0 when Cin=0

Cout = Cin

Cin

Cout0 Cout1 Cout Name
0 0 0 Kill
0 1 Cin Propagate
1 0 Cin Inverse Propagate
1 1 1 Generate

Cout1=0 Cout0=1

Cout1=0 when Cin=1
Cout0=1 when Cin=0

Cout = Cin

Cin

OR AND

F1 F0

Cout1 Cout0 Cout Name
0 0 0 Kill
0 1 Cin Inverse Propagate
1 0 Cin Propagate
1 1 1 Generate

Carry Chain Adder 10 Young Won Lim
1/8/21

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

Cout1=1 Cout0=0

Cout1=1 when Cin=1
Cout0=0 when Cin=0

Cout = Cin

Cin

Cout0 Cout1 Cout Name
0 0 0 Kill
0 1 Cin Propagate
1 0 Cin Inverse Propagate
1 1 1 Generate

Cout1=0 Cout0=1

Cout1=0 when Cin=1
Cout0=1 when Cin=0

Cout = Cin

Cin

OR AND

F1 F0

X Y Cin Cout Cout1 Cout0
0 0 0 0 Cout0 0 0
0 1 0 0 Cout0 1 0
1 0 0 0 Cout0 1 0
1 1 0 1 Cout0 1 1
0 0 1 0 Cout1 0 0
0 1 1 1 Cout1 1 0
1 0 1 1 Cout1 1 0
1 1 1 1 Cout1 1 1

Carry Chain Adder 11 Young Won Lim
1/8/21

Carry Chain

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

OR AND

P

X Y Z

Cout1 Cout0

Cout

Cin

Programming Bit

Cin Cin
X Y Cout1 Cout0
0 0 0 0 X Y
0 1 1 0 X Y
1 0 1 0 X Y
1 1 1 1 X Y

1 0

Cout1 Cout0 Cout Name
0 0 0 Kill
0 1 Cin Inverse Propagate
1 0 Cin Propagate
1 1 1 Generate

Carry Out
X Y Cin
0 0 Cin Cin
0 1 Cin Cin
1 0 Cin Cin
1 1 Cin Cin

Cout1=1 when Cin=1
Cout0=0 when Cin=0
Cout = Cin propagate

Cout1=0 when Cin=1
Cout0=1 when Cin=0
Cout = Cin inverse propagate

Carry Chain Adder 12 Young Won Lim
1/8/21

Parity Checker

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

XNOR XOR

P

X Y Z

Cout1 Cout0

Cout

Cin

Programming Bit

Cin Cin
X Y Cout1 Cout0
0 0 1 0 X Y
0 1 0 1 X Y
1 0 0 1 X Y
1 1 1 0 X Y

1 0

Cout1 Cout0 Cout Name
0 0 0 Kill
0 1 Cin Inverse Propagate
1 0 Cin Propagate
1 1 1 Generate

Computing Parity
X Y ⊕ Y Cin ⊕ Y
0 0 ⊕ Y Cin ⊕ Y Cin
0 1 Cin ⊕ Y ⊕ Y Cin
1 0 Cin ⊕ Y ⊕ Y Cin
1 1 ⊕ Y Cin ⊕ Y Cin

Cout1=1 when Cin=1
Cout0=0 when Cin=0
Cout = Cin propagate

Cout1=0 when Cin=1
Cout0=1 when Cin=0
Cout = Cin inverse propagate

Carry Chain Adder 13 Young Won Lim
1/8/21

Ripple Carry Chain

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

XNOR XOR

0

X Y Z

Cout1 Cout0

Cout

1 0

XNOR XOR

0Cout

1 0

XNOR XOR

0

X Y Z

Cout

1 0

XNOR XOR

PCout

Cin
1 0

0/1

X Y Z X Y Z

1

0

1

0

1

0

1

0

Cout1 Cout0 Cout1 Cout0 Cout1 Cout0

the first cell in the chain

Carry Chain Adder 14 Young Won Lim
1/8/21

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

the logic cells - resources to compute a function
the exact location of logic cells depends on the user.
a user can start or end a carry computation
at any place in an fpga.

OR AND

P

X Y Z

Cout1 Cout0

Cout

Cin

Programming Bit

1 2

But in many carry computations,
the first cell has only 2 inputs,
and forcing the carry chain
to wait for the arrival of an additional,
unnecessary input Z will only needlessly
slow down the circuit's computation.

● used in combined adder/subtractors
● must be ignored, otherwise

when Cin is ignored,
Z is routed to mux1

Carry Chain Adder 15 Young Won Lim
1/8/21

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

F F

P

X Y Z

Cout1 Cout0

Cout

Cin

Programming Bit

1 2

Cout1 Cout0

Cout

1

the first cell in the chain

the same LUTs

the same output
regardless of Z and Cin

Cout1 = Cout0 = Cout
regardless of the select

when Cin is ignored,
Z can also be ignored
by having the same LUTs

Carry Chain Adder 16 Young Won Lim
1/8/21

Ripple Carry Chain

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

Out

Select

Select

I1

I0

fig1b shows an implementation of a mux that does
not obey this requirement

since the carry chain is part of an fpga,
the input to this mux could be connected to
some unused logic in another row which is
generating unknown values.

if that unused logic had multiple transitions
which caused the signal to change quicker
than the gate could react,
then it is possible that the select signal to this mux
could be stuck midway between true and false
(2.5V for 5V CMOS)

in this case, it will not be able to pass a true value
from the input to the output
and thus will not function properly for this
application.

Cout1 Cout0

Cout

1

Carry Chain Adder 17 Young Won Lim
1/8/21

Ripple Carry Chain

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

Out

Select

I1

I0

Select

however a mux built with
both n-transistor and p-transistor pass gates
will operate properly for this case

assume this mux implementation will be used

tristate driver based muxes could be used,
which restore signal drive and cut series RC chains

Carry Chain Adder 18 Young Won Lim
1/8/21

Unit Gate Delay Model

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

All simple gate of two or three inputs
that are directly implementable
in one logic level in CMOS
are considered to have a delay of one.

All other gate must be implemented by such gates,
and have the delay of the underlying circuit.

Delay of one
● inverters and
● 2 to 3 input NAND
● 2 to 3 input NOR gates

A 2:1 mux has a delay of one
from the I0 or I1 inputs to the output,
But has a delay of two
from the select input to the output
due to the Inverter delay

Delay of zero (constant delay)
● the delay of the 2-LUTs,
● any routing leading to them,

Delay of 1 Delay of 2

2 LUT

Delay of 0

Carry Chain Adder 19 Young Won Lim
1/8/21

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

Significantly slower
two muxes on the carry chain in each cell

Delay 1 for first cell
Delay 3 for each additional cell in the carry chain

delay 1 for mux2
delays 2 for mux1

Overall 3n-2 for an n-cell carry chain

OR AND

P

X Y Z

Cout1 Cout0

Cout

Cin

Programming Bit

1 2

OR AND

P

X Y Z

Cout1 Cout0

Cout

Cin

Programming Bit

1 2

Delay 3 Delay 1

The critical path comes from the 2-LUTs
and not from the input Z
since the delay through the 2-LUTs
will be larger than through mux 2 in the first cell

larger delay

Carry Chain Adder 20 Young Won Lim
1/8/21

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

OR AND

P

X Y Z

Cout1 Cout0

Cout

Cin

1 2

OR AND

P

X Y Z

Cout1 Cout0

Cout

Cin

1 2

OR AND

P

X Y Z

Cout1 Cout0

Cout

Cin

1 2

delay of 1delay of 3 delay of 3

delay of 3n-2 for an n-bit ripple carry chain

Carry Chain Adder 21 Young Won Lim
1/8/21

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

the linear delay growth of ripple carry adders

optimize a ripple carry chain structure for use in FPGAs

while this provides some performance gain
over the basis ripple carry scheme
found in many current FPGAs,

still much slower than what is done in custom logic

advanced adder techniques in custom logic
can be integrated into reconfigurable logic

Carry Chain Adder 22 Young Won Lim
1/8/21

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

OR AND

P

X Y Z

F

Cin

Cout

Cout1 Cout0

1 2

3

X Y

F

Cout

Fast Carry Logic

Z

C1 C0

P

OR AND

PP

Cout1 Cout0

2 3

5

1

 2n / 2n+12n / 2n+2 2n+2

OR AND

P

X Y

F

Cin

Cout

P

Cout1 Cout0

Z

2 3

4

1

Design BDesign A Design C

Carry Chain Adder 23 Young Won Lim
1/8/21

Design A

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

to reduce the delay of the ripple carry chain
● remove mux2 from the carry path.
● no need to choose between Cin and Z

 for the select line to the output mux1

OR AND

P

X Y Z

F

Cin

Cout

Cout1 Cout0

1 2

3

OR AND

P

X Y Z

Cout1 Cout0

Cout

Cin

Programming Bit

1 2

● two separate muxes, mux1 and mux2,
 controlled by Cin and Z, respectively.

● the circuit chooses
 between these outputs with mux3.

Carry Chain Adder 24 Young Won Lim
1/8/21

Design A

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

● not logically equivalent
● the Z input in the first cell cannot be used

● Z is only attached to mux2
● mux2 does not lead to the carry cells
● not connected to Cout

OR AND

P

X Y Z

Cout1 Cout0

Cout

Cin

Programming Bit

OR AND

P

X Y Z

F

Cin

Cout

Cout1 Cout0

1 2 1 2

3

Carry Chain Adder 25 Young Won Lim
1/8/21

Design A

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

OR AND

P

Z

F

Cin

Cout

1 0

1 2

3

0 1

OR AND

P

Z

F

Cin

Cout

1 0

1 2

3

delay of 2

0 1

an additional cell
for generating Cin

● need an additional cell to use Z
as a carry input

delay of 2

Carry Chain Adder 26 Young Won Lim
1/8/21

Design A

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

OR AND

P

X Y Z

F

Cin

Cout

Cout1 Cout0

1 2

3

OR AND

P

X Y Z

F

Cin

Cout

Cout1 Cout0

1 2

3

OR AND

P

X Y Z

F

Cin

Cout

Cout1 Cout0

1 2

3

delay of 1delay of 3 delay of 2

(2 for mux1, 1 for mux3)

delay of 2n for an n-bit ripple carry chain

from an
additional cell

delay of 2n for an n-bit ripple carry chain

delay of 2(n+1)

cn c2 c1

without a carry input Z

with a carry input Z

50% faster circuit that the original design

the first cell

Carry Chain Adder 27 Young Won Lim
1/8/21

Design A

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

OR AND

P

Z

F

Cin

Cout

1 0

1 2

3

delay of 2

0 1

OR AND

P

X Y Z

F

Cin

Cout

Cout1 Cout0

1 2

3

delay of 1

delay of 2(n+1) for an n-bit ripple carry chain with a carry input

with a carry input Zthe first cell the additional cell

Carry Chain Adder 28 Young Won Lim
1/8/21

Design B

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

although this design is 1 gate delay slower than that of fig 2a,
it provides the ability to have a carry input
to the first cell in a carry chain,
something that is important in many computations.

Also, for carry computations that do not need this feature,
without a carry input
the first cell in a carry chain built from fig 2b
can be configured to bypass mux1,
reducing the overall delay to 2n,
which is identical to that of fig2a.

OR AND

P

X Y

F

Cin

Cout

P

Cout1 Cout0

Z

2 3

4

1

(2 for mux1, 1 for mux3)

Carry Chain Adder 29 Young Won Lim
1/8/21

Design B

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

for cells in the middle of a carry chain
mux2 passes Cout1
mux3 passes Cout0
mux4 receives Cout1 and Cout0
provides a standard ripple carry path.

OR AND

P

X Y

F

Cin

Cout

P

Cout1 Cout0

Z

2 3

4

1

For the first cell in a carry chain
with a carry input (provided by input Z),
mux2 and mux3 both pass the value from mux1

the two main inputs to mux4 are identical
the output of mux4 (Cout) will be the same
as the output of mux1 (ignoring Cin)

OR AND

P

F

Cin

Cout

P

Cout1 Cout0

2 3

4

1

Cout1 Cout0

carry input

X Y Z

the first cellthe other cells

Carry Chain Adder 30 Young Won Lim
1/8/21

Design B

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

mux1's main inputs are driven
by two 2-LUTs (OR, AND) controlled by X and Y
mux1 forms a 3-LUT with the other 2-LUTs

When mux2 and mux3 pass the value from mux1
(Cout1 and Cout2 respectively)
the circuit is configured to continue the carry chain

Functionally equivalent

OR AND

P

X Y Z

F

Cin

Cout

Cout1 Cout0

1 2

3

OR AND

P

F

Cin

Cout

P

Cout1 Cout0

2 3

4

1

carry input

X Y Z

the first cell

Carry Chain Adder 31 Young Won Lim
1/8/21

Design B

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

A delay of 2 in all other cells
except the first cell in the carry chain

an total delay of 2n+1 for an n-bit carry chain
when a carry input to the first cell is enabled

1 gate delay slower than that of fig 2a,

a delay of 3 in the first cell
1 in mux1, 1 in mux2, 1 in mux4

carry input

delay of 2 delay of 3 with a carry input

OR AND

P

X Y

F

Cin

Cout

P

Cout1 Cout0

Z

2 3

4

1

OR AND

P

F

Cin

Cout

P

Cout1 Cout0

2 3

4

1

Cout1 Cout0

X Y Z

the first cellthe other cells

Carry Chain Adder 32 Young Won Lim
1/8/21

Design B

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

A delay of 2 in all other cells
except the first cell in the carry chain

an total delay of 2n for an n-bit carry chain
when a carry input to the first cell is disabled

a delay of 2 in the first cell
 when a carry input is not used

delay of 2 without a carry input

OR AND

P

X Y

F

Cin

Cout

P

Cout1 Cout0

Z

2 3

4

1

Cout1 Cout0

OR AND

P

X Y

F

Cin

Cout

P

Cout1 Cout0

Z

2 3

4

1

Cout1 Cout0

delay of 2 the first cellthe other cells

Carry Chain Adder 33 Young Won Lim
1/8/21

Design B

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

OR AND

P

X Y

F

Cin

Cout

P

Cout1 Cout0

Z

2 3

4

1

OR AND

P

X Y

F

Cin

Cout

P

Cout1 Cout0

Z

2 3

4

1

OR AND

P

X Y

F

Cin

Cout

P

Cout1 Cout0

Z

2 3

4

1

delay of 2n for an n-bit ripple carry chain

delay of 2n+1

delay of 3delay of 2 delay of 2

cn c2 c1

without a carry input Z

with a carry input Z

with Z
delay of 2 without Z

Carry Chain Adder 34 Young Won Lim
1/8/21

Design B

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

OR AND

P

X Y

F

Cin

Cout

P

Cout1 Cout0

Z

2 3

4

1

OR AND

P

X Y

F

Cin

Cout

P

Cout1 Cout0

Z

2 3

4

1

OR AND

P

X Y

F

Cin

Cout

P

Cout1 Cout0

Z

2 3

4

1

delay of 2n for an n-bit ripple carry chain

delay of 2n+1

delay of 3delay of 2 delay of 2

cn c2 c1

delay of 2

without a carry input Z

with a carry input Z

without Z
with Z

Carry Chain Adder 35 Young Won Lim
1/8/21

Design C (1)

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

various high performance carry chains
can be developed based on
the carry cell of Design C

very similar to Design B
except that the actual carry chain (mux4)
has been replaced by
an abstract fast carry logic unit
and mux5 has been added

this extra mux5 is present because
although some of our faster carry chains will
have much faster carry propagation
for long carry chains,
they incur significant delay
for non-carry computations

thus, when the cell is used as
a simple normal 3 LUT,
using inputs X, Y, and Z
mux5 allows us to bypass the carry chain
by selecting the output of mux1

X Y

F

Cout

Fast Carry Logic

Z

C1 C0

P

OR AND

PP

Cout1 Cout0

2 3

5

1

Carry Chain Adder 36 Young Won Lim
1/8/21

Design C (1)

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

The important thing to realize about the logic of Design C
is that any logic that can compute the value

where i is the position of the cell within the carry chain,
can provide the functionality necessary to support the
needs of FPGA computations

thus, the fast carry logic unit can contain any logic
structure implementing this (including Brent-Kung),
Variable Bit, and Ripple Carry.

Note that because of the needs and requirements of
carry chains for FPGAs, we will have to develop
new circuits, inspired by the standard adder structures,
but which are more appropriate for FPGAs

X Y

F

Cout

Fast Carry Logic

Z

C1 C0

P

OR AND

PP

Cout1 Cout0

2 3

5

1

Cout i=(Cout i−1⋅C 1i) + (Cout i−1⋅C 0i)

Carry Chain Adder 37 Young Won Lim
1/8/21

Design C (2)

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

the main difference is to support all states
● Generate
● Propagate
● Kill
● Inverse Propagate

These 4 states are encoded
on signals C1 and C0

Also, while standard adders are concerened
only with the maximum delay
through an entire n-bit adder structure,
the delay concerns for FPGAs
are more complicated

Specifically, when an n-bit carry chain is built into
the architecture of an FPGA
it does not represent an actual computation,
but only the potential for a computation.

X Y

F

Cout

Fast Carry Logic

Z

C1 C0

P

OR AND

PP

Cout1 Cout0

2 3

5

1

Carry Chain Adder 38 Young Won Lim
1/8/21

Design C (2)

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

F

Cout

Fast Carry Logic
C1 C0

P5

Cin Cin
X Y Cout1 Cout0
0 0 0 0 X Y
0 1 1 0 X Y
1 0 1 0 X Y
1 1 1 1 X Y

Cout1 Cout0 Cout Name
0 0 0 Kill
0 1 Cin Inverse Propagate
1 0 Cin Propagate
1 1 1 Generate

Cout1=1 Cout0=0

Cout1=1 when Cin=1
Cout0=0 when Cin=0

Cout = Cin

Cin

Cout1=0 Cout0=1

Cout1=0 when Cin=1
Cout0=1 when Cin=0

Cout = Cin

Cin

OR AND F1 F0

OR AND

P

X Y

P

Cout1 Cout0

Z

2 3

1

 C1 C0 Name
0 0 0 Kill
0 1 Cin Inverse Propagate
1 0 Cin Propagate
1 1 1 Generate

Carry Chain Adder 39 Young Won Lim
1/8/21

Design C (2)

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

F

Cout

Fast Carry Logic
C1 C0

P5

OR AND

P

X Y

Cout1 Cout0

Z

2 3

1

 C1 C0 Name
0 0 0 Kill
0 1 Cin Inverse Propagate
1 0 Cin Propagate
1 1 1 Generate

Cout i=(Cout i−1⋅C 1i) + (Cout i−1⋅C 0i)

X Y C1 C0
0 0 0 0 X Y
0 1 1 0 X Y
1 0 1 0 X Y
1 1 1 1 X Y

(Cout i−1⋅C1i) = Cout i−1⋅(X Y +X Y +X Y)

(Cout i−1⋅C 0i) = Cout i−1⋅X Y

X Y Cout
i
 Cout

i+1

0 0 0 0
0 1 0 0
1 0 0 0
1 1 0 1
0 0 1 0
0 1 1 1
1 0 1 1
1 1 1 1

C1i = X i+Y i
C 0i = X i⋅Y i

Carry Chain Adder 40 Young Won Lim
1/8/21

Design C (3)

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

X
3

Y
3
 X

2
Y

2
Cout2 Cout3

0 0 0 0 0 0
0 0 0 1 Cout1 0
0 0 1 0 Cout1 0
0 0 1 1 1 0
0 1 0 0 0 0
0 1 0 1 Cout1 Cout1
0 1 1 0 Cout1 Cout1
0 1 1 1 1 1
1 0 0 0 0 0
1 0 0 1 Cout1 Cout1
1 0 1 0 Cout1 Cout1
1 0 1 1 1 1
1 1 0 0 0 1
1 1 0 1 Cout1 Cout1
1 1 1 0 Cout1 Cout1
1 1 1 1 1 1

= (Cout1⋅(C 13⋅C 12 + C 03⋅C 12))
+ (Cout1⋅(C 13⋅C 02 + C 03⋅C02))

Cout3

Cout
3

0
0
0
0
0

Cout1
Cout1

1
0

Cout1
Cout1

1
1

Cout1
Cout1

1

+ +

X
3
 Y

3 X
2
 Y

2

Cout1Cout2Cout3

Carry Chain Adder 41 Young Won Lim
1/8/21

Design C (4)

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

X
3

Y
3
 X

2
Y

2
C1

3
C0

3
C1

2
C0

2

0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 0
0 0 1 1 0 0 1 1
0 1 0 0 1 0 0 0
0 1 0 1 1 0 1 0
0 1 1 0 1 0 1 0
0 1 1 1 1 0 1 1
1 0 0 0 1 0 0 0
1 0 0 1 1 0 1 0
1 0 1 0 1 0 1 0
1 0 1 1 1 0 1 1
1 1 0 0 1 1 0 0
1 1 0 1 1 1 1 0
1 1 1 0 1 1 1 0
1 1 1 1 1 1 1 1

= (Cout1⋅(C 13⋅C 12 + C 03⋅C 12))
+ (Cout1⋅(C 13⋅C 02 + C 03⋅C02))

Cout3

C1
3
C1

2
C0

3
C1

2
C1

3
C0

2
C0

3
C0

2
Cout3

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 Cout1
1 0 0 0 Cout1
1 0 1 0 1
0 0 0 0 0
1 0 0 0 Cout1
1 0 0 0 Cout1
1 0 1 0 1
0 1 0 1 1
1 0 0 1 Cout1
1 0 0 1 Cout1
1 0 1 0 1

Carry Chain Adder 42 Young Won Lim
1/8/21

Design C (3)

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

= (Cout1⋅(C 13⋅C 12 + C 03⋅C 12))
+ (Cout1⋅(C 13⋅C 02 + C 03⋅C02))

Cout3

+ +

X
3
 Y

3 X
2
 Y

2

Cout1Cout2Cout3

C13⋅C 12⋅Cout1

+ +

X
3
 Y

3
X

2
 Y

2

Cout1Cout2Cout3 C 03⋅C 12⋅Cout 1

prop prop

gen prop

Carry Chain Adder 43 Young Won Lim
1/8/21

Design C (3)

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

= (Cout1⋅(C 13⋅C 12 + C 03⋅C 12))
+ (Cout1⋅(C 13⋅C 02 + C 03⋅C02))

Cout3

+ +

X
3
 Y

3 X
2
 Y

2

Cout1Cout2Cout3

C13⋅C 02⋅Cout 1

+ +

X
3
 Y

3
X

2
 Y

2

Cout1Cout2Cout3 C 03⋅C 02⋅Cout 1

prop

gen

gen

gen

(C1
3
C1

2
+ C0

3
C1

2
)Cout

1
 + (C1

3
C0

2
+ C0

3
C0

2
)Cout

1

Carry Chain Adder 44 Young Won Lim
1/8/21

Design C - Carry Select (1)

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

= (Cout1⋅(C 13⋅C 12 + C 03⋅C 12))
+ (Cout1⋅(C 13⋅C 02 + C 03⋅C02))

Cout3 = (Cout1⋅(C 13⋅(X̄ 2Y 2+X2 Ȳ 2+X 2Y 2) + C 03⋅ X̄2 Ȳ 2))
+ (Cout1⋅(C13⋅X2Y 2 + C 03⋅(X̄2Y 2+X 2Ȳ 2+ X̄2 Ȳ 2)))

C 1=X̄ Y +X Ȳ +X Y C0=X Y

C 0= X̄ Y +X Ȳ + X̄ Ȳ

X Y C1
0 0 0
0 1 1
1 0 1
1 1 1

X Y C0
0 0 0
0 1 0
1 0 0
1 1 1

X Y C1
0 0 0
0 1 1
1 0 1
1 1 1

X Y C0
0 0 0
0 1 1
1 0 1
1 1 1

C1=X̄ Ȳ

C 1=X̄ Y +X Ȳ +X Y

C0=X Y

C̄1=(X̄ Y)+(X Ȳ)+(XY)= X̄ Ȳ

C̄0= X̄+Ȳ=X̄ Y +X Ȳ + X̄ Ȳ

Carry Chain Adder 45 Young Won Lim
1/8/21

Design C - Carry Select (1)

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

Cell 1

M1

Cell 0Cell 3

M2

Cell 2

M4

M3

M5

Cout
0

Cout
1

Cout
2

Cout
3

C1
0

C0
0

C1
1

C0
1

C1
2

C0
2

C1
3

C0
3

Cout
0

Cout
1

Cout
1

= (Cout0⋅C 11)
+ (Cout 0⋅C 01)

Cout1= (Cout1⋅C 12)
+ (Cout 1⋅C 02)

Cout2

= (Cout1⋅(C 13⋅C 12 + C 03⋅C 12))
+ (Cout1⋅(C 13⋅C 02 + C 03⋅C02))

Cout3 = (Cout1⋅(C 13⋅(X̄ 2Y 2+X2 Ȳ 2+X 2Y 2) + C 03⋅ X̄2 Ȳ 2))
+ (Cout1⋅(C13⋅X2Y 2 + C 03⋅(X̄2Y 2+X 2Ȳ 2+ X̄2 Ȳ 2)))

C 1=X̄ Y +X Ȳ +X Y C 0=X Y

C 1=X̄ Ȳ C 0= X̄ Y +X Ȳ + X̄ Ȳ

Carry Chain Adder 46 Young Won Lim
1/8/21

Design C - Carry Select (1)

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

Cout1 =(Cout 0⋅C 11) + (Cout0⋅C 01)

Cout2 = (Cout1⋅C 12) + (Cout 1⋅C 02)

= (Cout1⋅(C 13⋅C 12 + C 03⋅C12))
+ (Cout1⋅(C 13⋅C02 + C 03⋅C 02))

Cout3

= (Cout1⋅(C 13⋅(X̄ 2Y 2+X2 Ȳ 2+X 2Y 2) + C 03⋅ X̄2 Ȳ 2))
+ (Cout1⋅(C13⋅X2Y 2 + C 03⋅(X̄2Y 2+X 2Ȳ 2+ X̄2 Ȳ 2)))

C 1=X̄ Y +X Ȳ +X Y C 0=X Y

C1=X̄ Ȳ C 0= X̄ Y +X Ȳ + X̄ Ȳ

= Cout1⋅[(X̄ Y +X Ȳ +XY)3⋅(X̄ Y +X Ȳ +X Y)2 + (XY)3⋅(X Y)2]

+ Cout1⋅[(X̄ Y +X Ȳ +X Y)3⋅(X Y)2 + (X Y)3⋅(X̄ Y +X Ȳ + X̄ Ȳ)2]

Cout3 = (Cout2⋅C13) + (Cout 2⋅C 03)

 C1 C0 Name
0 0 0 Kill
0 1 Cin Inverse Propagate
1 0 Cin Propagate
1 1 1 Generate

Carry Chain Adder 47 Young Won Lim
1/8/21

Design C (3)

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

A carry chain resource may span
the entire height of a column in the FPGA,
but a mapping to the logic may use
only a small portion of this chain,
with the carry logic in the mapping
starting and ending
at arbitrary points in the column

concerned with not just the carry delay
from the first to the last position
in a carry chain, but must consider
the delay for a carry computation
beginning at any point within this column.

For example,
even though the FPGA architecture may
provide support for carry chains of up to 32 bits,
it must also efficiently support 8 bit
carry computations placed at any point
within this carry chain resource

X Y

F

Cout

Fast Carry Logic

Z

C1 C0

P

OR AND

PP

Cout1 Cout0

2 3

5

1

Carry Chain Adder 48 Young Won Lim
1/8/21

Design C (4)

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

Carry Select

the problem with a ripple carry structure is that
the computation of the Cout for bit position i
cannot begin until after the computation has been
completed in bit positions 0 .. i-1

A carry select structure overcomes this limitation

the main observation is that for any bit position,
the only information it received
from the previous bit positions is its Cin signal,
which can be either true or false.

In a carry select adder
the carry chain is broken at a specific column,
and two separate additions occur

X Y

F

Cout

Fast Carry Logic

Z

C1 C0

P

OR AND

PP

Cout1 Cout0

2 3

5

1

Carry Chain Adder 49 Young Won Lim
1/8/21

Design C (5)

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

one assuming the Cin signal is true,
the other assuming it is false

These computations can take place before
the previous columns complete their operation
since they do not depend on the actual value of
the Cin signal

This Cin signal is instead used to determine
which adder's outputs should be used

if the Cin signal is true, the output of the following
stages comes from the adder that assumed
that the Cin would be true

likewise, a false Cin chooses the other adder's output

X Y

F

Cout

Fast Carry Logic

Z

C1 C0

P

OR AND

PP

Cout1 Cout0

2 3

5

1

Carry Chain Adder 50 Young Won Lim
1/8/21

Design C (6)

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

This splitting of the carry chain
can be done multiple times,
breaking the computation
into several pairs of short adders
with output muxes choosing
which adder's output to select

the length of the adders and
the breakpoint are carefully chosen
such that the small adders finish computation
just as their Cin signals become available

Short adders handle the low-order bits,
and the adder length is increased
further along the carry chain,
since later computations have more time
until their Cin signal is available

X Y

F

Cout

Fast Carry Logic

Z

C1 C0

P

OR AND

PP

Cout1 Cout0

2 3

5

1

Carry Chain Adder 51 Young Won Lim
1/8/21

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

Cell 1

M1

Cell 0Cell 3

M2

Cell 2

M4

Cell 5

M6

Cell 4

M10

Cell 6

M7

M3M8M9

M11M12 M5

Cout
0

Cout
1

Cout
2

Cout
3

Cout
4

Cout
5

Cout
6

C1
0

C0
0

C1
1

C0
1

C1
2

C0
2

C1
3

C0
3

C1
4

C0
4

C1
5

C0
5

C1
6

C0
6

Cout i=(Cout i−1⋅C 1i) + (Cout i−1⋅C 0i)

Cout i+1=(Cout i⋅C 1i+1) + (Cout i⋅C 0i+1)

Cout i+1=([(Cout i−1⋅C1i) + (Cout i−1⋅C 0i)]⋅C 1i+1) + ([(Cout i−1⋅C1i) + (Cout i−1⋅C 0i)]⋅C 0i+1)

Cout1=(Cout 0⋅C11) + (Cout0⋅C01)

Cout1=(C10⋅C 11) + (C 10⋅C 01)

Carry Chain Adder 52 Young Won Lim
1/8/21

Design C - Carry Select (1)

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

A Carry Select carry chain structure
for use in FPGAs
the carry computation
for the first two cells is performed
with the simple ripple-carry structure
implemented by mux1

For cell2 and cell3 we use
two ripple carry adders,
with one adder (implemented by mux2)
assuming the Cin is true,
and the other (mux3)
assuming the Cin is false

Then mux4 and mux5 pick
between these two adders' outputs
based on the actual Cin coming from mux1.

Cell 1

M1

Cell 0Cell 3

M2

Cell 2

M4

M3

M5

Cout
0

Cout
1

Cout
2

Cout
3

C1
0

C0
0

C1
1

C0
1

C1
2

C0
2

C1
3

C0
3

Carry Chain Adder 53 Young Won Lim
1/8/21

Design C - Carry Select (2)

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

Similarly, cell4, cell5, cell6
have two ripple carry adders
(mux6 & mux7 for a Cin of 1,
mux8 & mux9 for a Cin of 0),
with output muxes (mux10, mux11, mux12)
deciding between the two based
upon the actual Cin (from mux5).

Subsequent stages will continue
to grow in length by one,
with cells7, cell8, cell9, cell10 in one block,
cell11, cell12, cell13, cell14, cell15 in another, and so on.

timing values showing
the delay of the Carry Select carry chain
relative to other carry chain will be presented later

Cell 5

M6

Cell 4

M10

Cell 6

M7

M8M9

M11M12

Cout
3

Cout
4

Cout
5

Cout
6

C1
4

C0
4

C1
5

C0
5

C1
6

C0
6

Carry Chain Adder 54 Young Won Lim
1/8/21

Design C - Carry Select (3)

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

A Carry Select carry chain structure for use in FPGAs
The carry computation for the first two cells is performed
with the simple ripple-carry structure implemented by mux1

For cells 2 and 3 we use two ripple carry adders, with one
adder (implemented by mux2) assuming the Cin is true,
and the other (mux3) assuming the Cin is false

Then muxes 4 and 5 pick between these two adders' outputs
based on the actual Cin coming from mux1.

Similarly, celss 4-6 have two ripple carry adders
(mux6 & mux7 for a Cin of 1, mux8 & mux9 for a Cin of 0),
with output muxes (muxes 10-12) deciding between the two based
upon the actual Cin (from mux5).

Subsequent stages will continue to grow in length by one, with cells
7-10 in one block, cells 11-15 in another, and so on.

timing values showing the delay of the Carry Select carry chain
relative to other carry chain will be presented later

Cell 3

M2

Cell 2

M4

M3

M5

Cout
2

Cout
3

C1
2

C0
2

C1
3

C0
3

Cell 5

M6

Cell 4

M10

M8

M11

Cout
4

Cout
5

C1
4

C0
4

C1
5

C0
5

Carry Chain Adder 55 Young Won Lim
1/8/21

Fast Carry Logic Fast Carry Logic

Design C

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

X Y

F

Cout

Z

C1 C0

P

OR AND

PP

Cout1 Cout0

2 3

5

1

X Y

F

Cout

Z

C1 C0

P

OR AND

PP

Cout1 Cout0

2 3

5

1

X Y

F

Cout

Z

C1 C0

P

OR AND

PP

Cout1 Cout0

2 3

5

1

delay of 3delay of 2 delay of 2

(1 for mux1, 1 for mux2, 1 in mux4)
delay of 2n+2 for an n-bit ripple carry chain

Carry Chain Adder 56 Young Won Lim
1/8/21

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

X Y

F

Cout

Fast Carry Logic

Z

C1 C0

P

Cout i=(Cout i−1⋅C 1i) + (Cout i−1⋅C 0i)

OR AND

P

X Y

F

Cin

Cout

P

Cout1 Cout0

Z

C1 C0

OR AND

PP

Cout1 Cout0

2 3

4

1

2 3

5

1

Carry Chain Adder 57 Young Won Lim
1/8/21

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

X Y Z

C1
i

C0
i

Cout i=(Cout i−1⋅C 1i) + (Cout i−1⋅C 0i)

OR AND

PP

Cout1 Cout0

2 3

1

Cout
i

Fast Carry Logic

P5

Carry Chain Adder 58 Young Won Lim
1/8/21

Carry Select Adder
Carry Lookahead Adder

Brent-Kung
Variable Block
Ripple Carry Adder

https://en.wikipedia.org/wiki/Carry-lookahead_adder

Fast Carry Logc

Carry Chain Adder 59 Young Won Lim
1/8/21

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

Cell 1

M1

Cell 0Cell 3

M2

Cell 2

M4

Cell 5

M6

Cell 4

M10

Cell 6

M7

M3M8M9

M11M12 M5

Cout
0

Cout
1

Cout
2

Cout
3

Cout
4

Cout
5

Cout
6

C1
0

C0
0

C1
1

C0
1

C1
2

C0
2

C1
3

C0
3

C1
4

C0
4

C1
5

C0
5

C1
6

C0
6

Cout i=(Cout i−1⋅C 1i) + (Cout i−1⋅C 0i)

Cout i+1=(Cout i⋅C 1i+1) + (Cout i⋅C 0i+1)

Cout i+1=([(Cout i−1⋅C1i) + (Cout i−1⋅C 0i)]⋅C 1i+1) + ([(Cout i−1⋅C1i) + (Cout i−1⋅C 0i)]⋅C 0i+1)

Cout1=(Cout 0⋅C11) + (Cout0⋅C01)

Cout1=(C10⋅C 11) + (C 10⋅C 01)

Carry Chain Adder 60 Young Won Lim
1/8/21

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

Cell 3

M2

Cell 2

M4

M3

M5

Cout
1

Cout
3

C1
2

C0
2

C1
3

C0
3

Couti = (Cout i−1⋅C1i) + (Couti−1⋅C 0i)

Couti+1 = (Couti⋅C1i+1) + (Cout i⋅C0i+1)

Cout
1

C1
2

C0
2

Cout
2

Cout2 = (Cout1⋅C12) + (Cout1⋅C 02)

Cout3 = (Cout2⋅C 13) + (Cout 2⋅C 03)

= (((Cout1⋅C 12) + (Cout 1⋅C02))⋅C 13)

+ (((Cout 1⋅C12) + (Cout1⋅C 02))⋅C03)

(((Cout 1⋅C12)⋅(Cout1⋅C 02))⋅C 03)

= (((Cout1 + C 12)⋅(Cout 1 + C02))⋅C 03)

= (Cout1Cout 1 + C12Cout1 + Cout 1C 02 + C12C 02)⋅C 03

= (C12Cout1 + C 02Cout 1)⋅C 03

(C1
3
C1

2
+ C0

3
C1

2
)Cout

1
 + (C1

3
C0

2
+ C0

3
C0

2
)Cout

1

= (C03C12Cout1 + C 03C 02Cout 1)

(((Cout 1⋅C12) + (Cout1⋅C 02))⋅C13)

= (C13C12Cout 1 + C13C 02Cout1)

Carry Chain Adder 61 Young Won Lim
1/8/21

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

Cell 3

M2

Cell 2

M4

M3

M5

Cout
1

Cout
3

C1
2

C0
2

C1
3

C0
3

Cout
1

C1
2

C0
2

Cout
2

= (Cout1Cout 1 + C12Cout1 + Cout 1C 02 + C12C 02)⋅C 03

= (C12Cout1 + C 02Cout 1)⋅C 03

(C1
3
C1

2
+ C0

3
C1

2
)Cout

1
 + (C1

3
C0

2
+ C0

3
C0

2
)Cout

1

= (C03C12Cout1 + C 03C 02Cout 1)

Carry Chain Adder 62 Young Won Lim
1/8/21

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

Cell 3

M2

Cell 2

M4

M3

M5

Cout
1

Cout
3

C1
2

C0
2

C1
3

C0
3

Cout
1

C1
2

C0
2

Cout
2

C1
3
C1

2
+ C0

3
C1

2

C1
3
C0

2
+ C0

3
C0

2

(C1
3
C1

2
+ C0

3
C1

2
)Cout

1
 + (C1

3
C0

2
+ C0

3
C0

2
)Cout

1

+ C 03⋅(C12Cout1 + C 02Cout1)

= C13⋅(C12Cout1 + C 02Cout 1)

Carry Chain Adder 63 Young Won Lim
1/8/21

FPGA Carry Chain Cell

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

Cell 3

M2

Cell 2

M4

M3

M5

Cout
1

Cout
3

C1
2

C0
2

C1
3

C0
3

Couti = (Cout i−1⋅C1i) + (Couti−1⋅C 0i)

Couti+1 = (Couti⋅C1i+1) + (Cout i⋅C0i+1)

Couti+1 = ([(Cout i−1⋅C1i) + (Couti−1⋅C 0i)]⋅C 1i+1)

Cout
1

C1
2

C0
2

Cout
2

+ ([(Cout i−1⋅C 1i) + (Couti−1⋅C 0i)]⋅C 0i+1)

Carry Chain Adder 64 Young Won Lim
1/8/21

References

[1] http://en.wikipedia.org/
[2] J-P Deschamps,et. al., “Synthesis of Arithmetic Circuits”, 2006

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

