# Characteristics of Multiple Random Variables 

Young W Lim

June 19, 2019

Copyright (c) 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.

Based on
Probability, Random Variables and Random Signal Principles, P.Z. Peebles,Jr. and B. Shi

## Outline

(1) Joint Guassian Random Variables

## Bivariate Gaussian Density

## Definition

The two random variables $X$ and $Y$ are said to be jointly Gaussian, if their joint density function is

$$
\begin{gathered}
f_{X, Y}(x, y)=\frac{1}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\rho^{2}}} \cdot \\
\exp \left\{\frac{-1}{2\left(1-\rho^{2}\right)} \cdot\left[\frac{(x-\bar{X})^{2}}{\sigma_{X}^{2}}-\frac{2 \rho(x-\bar{X})(y-\bar{Y})}{\sigma_{X} \sigma_{Y}}+\frac{(y-\bar{Y})^{2}}{\sigma_{Y}^{2}}\right]\right\} \\
\bar{X}=E[X], Y=E[Y], \sigma_{X}^{2}=E\left[(X-\bar{X})^{2}\right], \sigma_{Y}^{2}=E\left[(Y-\bar{Y})^{2}\right], \\
\rho=E[(X-\bar{X})(Y-\bar{Y})] / \sigma_{X} \sigma_{Y}
\end{gathered}
$$

## Bivariate Gaussian Density - Maximum value

$$
f_{X, Y}(x, y) \leq f_{X, Y}(\bar{X}, \bar{Y})=\frac{1}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\rho^{2}}}
$$

## Bivariate Gaussian Density - Uncorrelated

when $\rho=0$

$$
\begin{gathered}
f_{X, Y}(x, y)=\frac{1}{2 \pi \sigma_{X} \sigma_{Y}} \cdot \exp \left\{-\frac{1}{2} \cdot\left[\frac{(x-\bar{X})^{2}}{\sigma_{X}^{2}}+\frac{(y-\bar{Y})^{2}}{\sigma_{Y}^{2}}\right]\right\} \\
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(x) \\
f_{X}(x)=\frac{1}{2 \pi \sigma_{X}} \cdot \exp \left\{-\frac{(x-\bar{X})^{2}}{2 \sigma_{X}^{2}}\right\} \\
f_{Y}(y)=\frac{1}{2 \pi \sigma_{Y}} \cdot \exp \left\{-\frac{(y-\bar{Y})^{2}}{2 \sigma_{Y}^{2}}\right\}
\end{gathered}
$$

