Applications of Pointers (1A)

Young Won Lim
4/4/18

Copyright (c) 2010 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

Young Won Lim
4/4/18

mailto:youngwlim@hotmail.com

Variables and their addresses

address data
Int a, &a 3
int *p; &p 0
Int **q; &q q
Series : 5. 3 Young Won Lim
4/4/18

Applications of Pointers

Initialization of Variables

address data
int a = 100; @ 3 = 100
int **q = &p; &q q=&p
Series : 5. 4 Young Won Lim

Applications of Pointers 4/4/18

Traditional arrow notations

address data address data
‘sa) a = 100 &a a = 100
@ P =<&a) &p ¢ p = &a
&Q q {&@ &Q ¢ q=&p
Series : 5. 5 Young Won Lim
4/4/18

Applications of Pointers

Pointed addresses : p, g

address data
int a; a
int *p = &a; (p)
Int **q = &p; &q (q)
p = &a
q=&p
Series : 5. 6 Young W3?4I7i1rg

Applications of Pointers

Dereferenced Variables : *p

address data
nt > D *r=a
int *p = &a; {(p)
int **q = &p;
Series : 5. 7 Young Won Lim

Applications of Pointers 4/4/18

Dereferenced Variables : *p

iInt a;
Address Variable
assignment aliasing
int *p = &a; p=&a ® *p =a
p = &a Relations after
. * = * address assignment
Nt **q —_ &p’ *(p)— (&a) 9
P = d
Series : 5. 8 Young Won Lim
4/4/18

Applications of Pointers

Dereferenced Variables : *q, **q

address data
int a; e 0 = 3
nt *p = &a; Ca) [4 Ca *q = p

Nt = G0 £ la

Series : 5. 9 Young Won Lim
Applications of Pointers 4/4/18

Dereferenced Variables : *q, **q

int a;
Address Variable
assignment aliasing

int *p = &a; p=&a ® *p=a

int ¥*q = &p; q=&p ®» *gQ=p

- **q = a
q= &p Relations after
*(q) = *(&p) address assignment
g = P
*kq = *p
**q = a
Series : 5. 10 Young W3?4I7i1rg

Applications of Pointers

Two more ways to access a : *p, **q

&p P &p | ¢ p q ¢ xq
&q q &q q & | ¢ q

a *p = a **0 = a
Series : 5. 11 Young Won Lim

Applications of Pointers 4/4/18

Two more ways to access a : *p, **q

address data
&a a
*p
&p P — ()
&Q g

1) Read / Write a
2) Read/Write *p
3) Read / Write **q

Series : 5. 12 Young Won Lim
Applications of Pointers 4/4/18

Variables

Int d, address data
. &a a
a can hold an integer
a = 100; address data
&a a4m 100
a holds 100
Series : 5. Young Won Lim

Applications of Pointers

13

4/4/18

Pointer Variables

Int * o}

P can hold an address

p holds an address

. * _
N | ntY J pL of a int type data &p P
pointer to int
int * . *p holds
A w— p' a int type data P | *P
int
Series : 5. Young Won Lim
14 4/4/18

Applications of Pointers

Pointer to Pointer Variable

int ** Q;

q holds an address

int ** q;
-
pointer to
pointer to int
int * *q;
E—
pointer to int
int **q;
int
Series : 5.

q holds an address of
a pointer to int type data

*q holds an address of
a int type data

**q holds a int type data

15

Applications of Pointers

**q

Young Won Lim

Pointer Variables Examples

INt a = 200; &a @ a4 200

Int * p =& a;

int ** q=&p; &g Ox3CE | qém Ox3AB

&0 = Ox3CE

0 = 0x3AB
k0 = 0x3A0
+kq my 200

Series : 5. 16 Young Won Lim
Applications of Pointers 4/4/18

Pointer Variable p with an arrow notation

address data address data

@ 0 &a @ a 4= 200

&> Ox3AB P ¢= 0x3A0

using an arrow notation

&p = Ox3AB

o = 0x3A0
*D = 200

Series : 5. 17 Young Won Lim
Applications of Pointers 4/4/18

Pointer Variable q with an arrow notation

address data address data

*q *oxQ &a (0x3A0 | a 4= 200

&9 JS‘z J & Ox3CE | o= 0x3AB_

&0 =) 0x3CE
using an arrow notation g = Ox3AB

*0 = 0x3A0
**g = 200

Series : 5. 18 Young Won Lim
Applications of Pointers 4/4/18

The type view point of pointers

data (int)

address/ (int *) /
address / (int **) /

Types

Series : 5. 19 Young Won Lim
Applications of Pointers 4/4/18

The different view points of pointers

(int)

(int *) /
(int **) /

Types

Series : 5.
Applications of Pointers

-
.
="

Variables

20

-
-

Addresses

Young Won Lim
4/4/18

Single and Double Pointer Examples (1)

int a ;
int *P o
int || ¥*q| ;

a, *p, and **q:
int variables

Series : 5. 2 1 Young Won Lim
Applications of Pointers 4/4/18

Single and Double Pointer Examples (2)

Nt a ; a
Int * P ;
p P

p and *q : q
int pointer variables g‘

(singlepointers) q .\L‘
Series : 5. 22 Young Won Lim

Applications of Pointers 4/4/18

Single and Double Pointer Examples (3)

INt a ; a
Int * P ;
int ** q ; e

q: q
double int pointer variables I'%

Series : 5. 2 3 Young Won Lim
Applications of Pointers 4/4/18

Values of double pointer variables

(int **) o

Iz

(int)

(float *) o

(float)

(int **) o

(int*) ¢

(int)

Series : 5.
Applications of Pointers

24

Young Won Lim
4/4/18

Pointed Addresses and Data

int a : &a |a =100

The variable a holds an integer data

int * p; &p pe—T—_, 200

The pointer variable p holds an address,
at this address, an integer data is stored

int * * q ; &qQ qe—— | *q e— 30

The pointer variable g holds an address,
at the address q, another address *q is stored
at the address *g, an integer data **q is stored

Series : 5.

2 5 Young Won Lim
Applications of Pointers 4/4/18

Dereferencing Operations

INt a &a |a =100
*(&a) = a
Int * p &p pe—T > p *p=200
*(&p) =p *(p) =*p
Int * * g &g q &=~ | *qe—T—a¥q|**q=30
*(&q) = q *(CI) — *q *(*Q) — **q
Series : 5. 26 Young W3?4I7i1rg

Applications of Pointers

Direct Access to an integer a

Int a : &a |a =100
address value
Direct Access &a 3 integer

1 memory access

Series : 5. 2 7 Young Won Lim
Applications of Pointers 4/4/18

Indirect Access *p to an integer a

int * p ; & | p p|*p=200
address value
Indirect Access &p P

1 Dereference Operator *

2 memory accesses the content of the pointed location

P *p

Series : 5. 28 Young Won Lim
Applications of Pointers 4/4/18

Double Indirect Access **q to an integer a

int **q ; &q| ge~] g *qe | *q **q=30
_/
address value
Double Indirect Access &Q q
3 memory accesses l Dereference Operator *
the content of the pointed location

l Dereference Operator *

the content of the pointed location

Series : 5. 29 Young Won Lim
Applications of Pointers 4/4/18

Values of Variables

Int a ; &a |a =100
address value
&a a ------- integer
int * p; &p o p|*p=200
address value
&pp D ------- address
P *p --q--- integer
’\\/ .
address value
&q G - - - - address
q >|<q ------- address
*q glo EEEEEEY integer
Seri o B oun on Lim
eries: 5 30 k gW4/4|718

Applications of Pointers

Swapping pointers
- pass by reference
- double pointers

Series : 5. 3 1 Young Won Lim
Applications of Pointers 4/4/18

Swapping integer pointers

&p p=&a ©- &p p = &b
&Q q=&b e &qQ q = &a
a=111 a=111
b =222 b =222

Series : 5. 32 Young Won Lim

Applications of Pointers

4/4/18

Swapping integer pointers

&p p = &a ‘> &p p = &b
&q q=8&b &q q = &a
int *p, *q;
swap_pointers(&p, &q); function cal

swap_pointers(int **, int **); function prototype

Series : 5. 33 Young Won Lim
Applications of Pointers 4/4/18

Pass by integer pointer reference

void swap_pointers (int **m, int **n)

{ int ** m int ** n
Int* tmp; int * *m int * kN
tmp = *m; int* tmp
*N = tmp;

}

int a, b;
int *p, *q; p=&a, q=&b;

swe;ic;_pointers(&p, &q);

Young Won Lim

Serle_s : 5 _ 34 on Lim
Applications of Pointers

Array of Pointers

Series : 5. 35 Young Won Lim
Applications of Pointers 4/4/18

Array of Pointers

Type of each element

Int al[4];
Int * b [4];

No. of elements = 4
Int a [4]

No. of elements = 4

Int *

b [4]

Type of each element

Series : 5.

Applications of Pointers

36

Young Won Lim
4/4/18

Array of Pointers - variable view

int al4l; int * b[4];

_—+b[0] *h[0] =11

al0] =11 b[0] &
all] = 22 O[1] e ——»b[1] *b[1l] = 22
al2] = 33 D[2]
a[3] =44 b[3] e —>bl2] *b[2] = 33
kb[31 *b[3] = 44
Series : 5. 37 Young Wc‘>174I7i1rg

Applications of Pointers

Array of Pointers - type view

int al4l; int * b[4];

(int)
(int) (int)
(int)
(int) (int)
(int)
Series : 5. 38 Young W3?4I7i1rg

Applications of Pointers

Pointer to Arrays

Series : 5. 39 Young Won Lim
Applications of Pointers 4/4/18

Pointer to array - variable declarations

int m; int a [4]
| | | |
int *n; int | (*p) [4]
an integer pointer an integer array pointer

Int func (int a, int b);

| |

int (*fp) (int a, int b);

a function pointer

Series : 5. 40 Young Won Lim
Applications of Pointers 4/4/18

Pointer to array - type

int int []

Int * int (*) []

an integer pointer an integer array pointer
Int (int, int)

Int (*) (int, int)

a function pointer

Series : 5. 41 Young Won Lim
Applications of Pointers 4/4/18

Pointer to array - a variable view

INt al[4]; INt (*p) [4] = &a;

,, *Pp = a
(*p)[0]
- (*p)[1]
al2] (*p)[2]
al3] (*p)[3]
Series : 5. 42 Young Wcz%ifg

Applications of Pointers

Pointer to array - a variable view

it al4]; nt 1 [4]
int [(*p) [4]

(int (*)[4])®

Series : 5. 43 Young Won Lim
Applications of Pointers 4/4/18

Pointer to array (2)

Nt a [4]
| |
int | (*p) [4]
(*p) = a
! §
&(*p) = &a
! §
p = &a
aEZE
sizeof(p)= 4 bytes al[3]
sizeof(*p)= 16 bytes
Series : 5. 44 Young Won Lim

Applications of Pointers 4/4/18

Pointer to array (3)

a 2-d array (int) c[0][0]
with 4 rows (int) c[0][1]
and 4 columns (int) c[0][2]
(int) c[O][3]
(int) c[1][O]
(int) c[1][1]
(int) c[1][2]
(int) c[1][3]
(int) c[2][0]
(int) c[2][1]
(int) c[2][
(int) c[2]
(int) '
(int)
(int)
(int)

(int [])

(int [1)
al2] (int [1)
al[3] (int [1)

WwN =IO
® o o

O 00O 0

O 0O 0O 0

WNEOWN

3
Ell
El
3

Series : 5. 45 Young Won Lim
Applications of Pointers 4/4/18

Pointer to array (3)

a 2-d array (int) c[O][0]
int (*p) [4] ; with 4 rows (int) c[O][1]
and 4 columns (int) c[0][2]
T (int) c[O][3]
. (int) c[1][0]
int [c[4] [4] Gnt () 1) C (nt) C[1][1
(int) c[1][2]
&p ((nt™MI) p < *p (inty c[1][3]
; — (int) c[2][0]
Pl (int[]) c[O] e : -
: - (int) c[2][1]
(int[1) c[2]e (int) c[2][3]
(nt[l) c[3] e}—®+3) (int) c[3][0]
T (int) c[3][1]
Cp) LTI]; (int) c[3][2]
(int) c[3][3]

Series : 5. 46 Young Wc‘>174I7i1r181

Applications of Pointers

Pointer to array (4)
int c [4][4];
int (*p) [4];
P=C

func(p, ...);

void func(int (*x)[4], ...) void func(int x[|[4], ...)
{ {

X[r]lc] = X[r]lc] =
} }

Series : 5. 47 Young Won Lim
Applications of Pointers 4/4/18

2-d Arrays

Series : 5. 48 Young Won Lim
Applications of Pointers 4/4/18

Addresses of 4 element integer arrays

INt A | [4] A - (int)
(int)
(int)
(int)

int c[4] [4] c[i] - » (int)
(int)

1=0,1, 2,3 (int)
(int)

int |c [4][4];

Series : 5. 49 Young Won Lim
Applications of Pointers 4/4/18

A 2-D Array - a variable view

. - »[0] c[O][0]
int c[4][4]; c[0][1]
/ clol[2]
c[O][3]
— w11l c[1][0]

iy c[1][1]
c[1][2]
P c[11[3]
-/ - wc2]] c[2][0]

T c[2][1]
cile c[2][2]

c[3] e o »C[3]

W W ww N
EiSiEEE

OO 0O 0

Series : 5. 50 Young Won Lim
Applications of Pointers 4/4/18

A 2-D Array - a type view

int c[4][4]; . .

| (int)
(int)
- = (int)

(int)
)
(int)
(int)
(int)
o > (int)
(int)
(int)
(int)

Series : 5. 5 1 Young Won Lim
Applications of Pointers 4/4/18

A 2-D Array - an index view

*(c+i)H] *(*(c+i)+))

(c+) | *c+) o |

Series : 5. 52 Young Won Lim
Applications of Pointers 4/4/18

A 2-D Array via a double indirection

int c[4][4]; int |c[4] [4]
c [i][] *(c+1))[] *(*(c+i)+))
c [i]) = (*(c+i) b=+
Series : 5. 53 Young W3?4I7i1rg

Applications of Pointers

A 2-D Array via an array pointer

int c[4][4]; int (*p) [4];
c [i][] *(c+1))[] *(*(c+i)+))
Pp=C
p [iD{] *(p+1))[i] *(*(p+1)+))
Series : 5. 54 Young W3?4I7i1rg

Applications of Pointers

A 2-D Array via a double pointer

int c[4][4]; int **p, *q[4];

c [iD] *(c+1)0] *(*(c+i)+))

p=4dq; ql0]=c[0], q[ll=c[1], q[2]=c[2], q[3]=c[3];

p [1])0] *(p+1))[1] *(*(p+)+))

Series : 5. 55 Young Won Lim
Applications of Pointers 4/4/18

2-D array as a 1-D array

[iI*4+]]

int c[4][4]; »clo] c[0][0] 0=[0*4+0]
c[0][1] 1=[0%4+1]

c[0][2] 2=[0%4+2]

| c[O][3. 3=[0*4+3]

,,, _» o111 €l1][0] 4=[1%4+0]
C / c[11[1] 5=[1*4+1]
*** c[1][2; 6=[1*4+2]
/ c[1][3] 7=[1*4+3]

= w2 c[2][0] 8=[2*4+0]

clol = ' c2l1] | o=iz+a+1)

CI1T o c[2][2] 10=[2*4+2]

c[2] o c[2][3] 11=[2*4+3]

c[3] e« — »cI3] c[3]l0] 12=[3*4+40]

c[3][1] 13=[3*4+1]

A c[31[2] 14=[3*4+2]

clilly] c[3][3] 15=[3*4+3]

Series : 5.
Applications of Pointers

Young Won Lim
4/4/18

Ul
o

Accessing a 2-D array via a single pointer

int c[4][4];

clillj]

o clll

o 2]

clo] ¢ |
C[1] o "
cl2] o |
c[3] o |

—» c[3]

p[0*4+0]

p[0*4+41]

p[0*4+42]

p[0*4+3]

p[1*440]

p[1*4+1]

p[1*4+2]

p[1*4+3]

p[2*4+0]

p[2*4+1]

p[2*4+2]

p[2*4+3]

p[3*4+0]

p[3*4+1]

p[3*4+2]

p[3*4+3]

int *p;

e p =c[0];

pli*4+j]

Series : 5.

Applications of Pointers

57

Young Won Lim
4/4/18

2-D array index vs 1-D array index

int c[4][4]; cfo] c[0][0] p[0*4+0]
c[0][1] p[0*4+1]
c[0][2] p[0*4+2]
. c[O][3] p[0*4+3]
int *p=c[0]; (1] I L]0} o[1%4+0]
c[1][1] p[1*¥4+1]
c[1][2] p[1*¥4+2]
N c[1][3] p[1*¥4+3]
cli]lj] 2] c[2][0] p[2*4+0]
c[2][1] p[2*4+1]
c[2][2] p[2*4+2]
pli*4+j] c[2][3] p[2*4+3]
c[31F c[3][0] p[3*4+0]
c[31[1] p[3*4+1]
c[3][2] p[3*4+2]
c[3][3] p[3*4+3]
Series : 5. 58 Young Wc‘>174I7i1rg

Applications of Pointers

2-D Array Dynamic Memory Allocation (1)

int ** d

d = (int **) malloc (4 * size of (int *));
for (i=0: i<4; ++i)
d[i] = (int *) malloc(4 * sizeof(int));

(int **) d e-

\

(int *) d[O]
(int *) d[1]
(int *) d[2]
(int *) d[3]

Series : 5. 59 Young Won Lim
Applications of Pointers 4/4/18

2-D Array Dynamic Memory Allocation (2)

int ** d

d = (int **) malloc (4 * size of (int *));
for (i=

0:i<4;: ++1i)
dli] = (int *) malloc(4 * sizeof(int));

(int) d[O][O]

(int) d[O]1]

(int) d[0][2]

(int) d

[O][3!

(int) d

[1][0!

\

&d

(int **)

d e

Series : 5.
Applications of Pointers

N

(int*) d[0]s

(int *) dl1]

(int*) d[2] o

(int *) d[3]e

60

(int) d

[1][1

(int) d

[1][2]

(int) d

[1]

(int) d

2][0]

(int) d

2]

(int) d

Al

(int) d

[2]]

(int) d

[31I

\ \

(int) d

[3][

(int) d

[31I

(int) d

(311

Young Won Lim

4/4/18

References

[1] Essential C, Nick Parlante

[2] Efficient C Programming, Mark A. Weiss

[3] C A Reference Manual, Samuel P. Harbison & Guy L. Steele Jr.
[4] C Language Express, I. K. Chun

Young Won Lim
4/4/18

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

