Coding (1C)

Copyright (c) 2011-2013 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Coding

A code is a rule for converting a piece of information (for example, a letter, word, phrase, or gesture) into another form or representation (one sign into another sign), not necessarily of the same type.

In communications and information processing, encoding is the process by which information from a source is converted into symbols to be communicated. Decoding is the reverse process, converting these code symbols back into information understandable by a receiver.

International Morse Code

1. The length of a dot is one unt.
2. A dash is three urits
3. The space between letters is three units
4. The arace between words is seven units.

Character Coding

ASCII code

definitions for 128 characters:
33 non-printing control characters (many now obsolete)
95 printable charactersi

BCD (Binary Coded Decimal)

Number characters (0-9)

Decimal Digit	$\mathbf{8 4 2 \mathbf { 1 }}$
$\mathbf{0}$	0000
$\mathbf{1}$	0001
$\mathbf{2}$	0010
$\mathbf{3}$	0011
$\mathbf{4}$	0100
$\mathbf{5}$	0101
$\mathbf{6}$	0110
$\mathbf{7}$	0111
$\mathbf{8}$	1000
$\mathbf{9}$	1001

Representation of Numbers

Fixed Point Number

| | representation |
| :--- | :--- | | - 2 2's complement | |
| :--- | :--- |
| +1234 | |
| 0 | - 1's complement |
| -582978 | coding |

Floating Point Number

+23.84380
-1.388E+08

representation

- 2's complement
- 1's complement
- sign-magnitude

Representation of Signals

 discrete time, continuous values.

Quantized signal: continuous time, 5 discrete values.

Digital signal (sampled,
quantized): discrete time, discrete values.

Analog to Digital Converter

Fig. 1. An 8 -level ADC coding scheme.

Angular Position Sensors

 measuring devices marked in 3-bit binary-reflected Gray code (BRGC)

The first few steps of the reflect-and-prefix method.

Dec	Gray	Binary
0	000	000
1	001	001
2	011	010
3	010	011
4	110	100
5	111	101
6	101	110
7	100	111

Gray code
by bit
width

| 2-bit | 4-bit |
| :--- | :--- | :--- |
| 00 | 0000 |
| 01 | 0001 |
| 11 | 0011 |
| 10 | 0010 |
| | 0110 |
| 3-bit | 0111 |
| 000 | 0101 |
| 001 | 1100 |
| 011 | 1101 |
| 010 | 1111 |
| 110 | 1110 |
| 111 | 1010 |
| 101 | 1011 |
| 100 | 1001 |
| | 1000 |

Encoder and Decoder

Event 0 Event 1 Event 2 Event 3

Priority Encoder

Priority Encoder?

Laplace Equation

References

[1] http://en.wikipedia.org/
[2] http://planetmath.org/
[3] M.L. Boas, "Mathematical Methods in the Physical Sciences"

