Stationarity

Young W Lim

August 31, 2019

First-Order Stationary Processes Correlation and Covariance Functions

Copyright (c) 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.

Based on Probability, Random Variables and Random Signal Principles, P.Z. Peebles, Jr. and B. Shi

Outline

First-Order Stationary Processes

2 Correlation and Covariance Functions

First Order Stationary N Gaussian random variables

Definition

if the first order density function does not change with a shift in time origin

$$f_X(x_1; t_1) = f_X(x_1; t_1 + \Delta)$$

must be true for any time t_1 and any real number Δ if X(t) is to be a first-order stationary

Consequences of stationarity N Gaussian random variables

Definition

 $f_X(x, t_1)$ is independent of t_1 the process mean value is a constant

$$m_X(t) = \overline{X} = constant$$

the process mean value N Gaussian random variables

$$m_X(t) = \overline{X} = constant$$

$$m_X(t_1) = \int_{-\infty}^{\infty} x f_X(x;t_1) dx$$

$$m_X(t_2) = \int_{-\infty}^{\infty} x f_X(x; t_2) dx$$

$$m_X(t_1) = m_X(t_1 + \Delta)$$

Second-Order Stationary Process

N Gaussian random variables

Definition

if the second order density function does not change with a shift in time origin

$$f_X(x_1,x_2;t_1,t_2) = f_X(x_1,x_2;t_1+\Delta,t_2+\Delta)$$

must be true for any time t_1, t_2 and any real number Δ if X(t) is to be a second-order stationary

Auto-correlation function

$$R_{XX}(t, t+\tau) = E[X(t)X(t+\tau)] = R_{XX}(\tau)$$

Nth-order Stationary Processes N Gaussian random variables

Definition

if the second order density function does not change with a shift in time origin

$$f_X(x_1,\dots,x_N;t_1,\dots,t_N)=f_X(x_1,\dots,x_N;t_1+\Delta,\dots,t_N+\Delta)$$

must be true for any time $t_1,...,t_N$ and any real number Δ if X(t) is to be a second-order stationary

Wide Sense Stationary Process N Gaussian random variables

$$m_X(t) = \overline{X} = constant$$

$$E[X(t)X(t+\tau)] = R_{XX}(\tau)$$

The properties of autocorrelation functions (1)

N Gaussian random variables

$$|R_{XX}(\tau)| \leq R_{XX}(0)$$

$$R_{XX}(-\tau) = R_{XX}(\tau)$$

$$R_{XX}(0) = E\left[X^2(t)\right]$$

$$P[|X(t+\tau)-X(t)|>\varepsilon]=\frac{2}{\varepsilon^2}(R_{XX}(0)-R_{XX}(\tau))$$

The properties of autocorrelation functions (2)

N Gaussian random variables

Definition

if $X(t) = \overline{X} + N(t)$ where N(t) is WSS, is zero-mean, and has autocorrelation function $R_{NN}(\tau) \to 0$ as $|\tau| \to \infty$, then

$$\lim_{|\tau|\to\infty}R_{XX}(\tau)=\overline{X}^2$$

if X(t) is mean square periodic, i.e, there exists a $T \neq 0$ such that $E\left[(X(t+T)-X(t))^2\right]=0$ for all t, then $R_{XX}(t)$ will have a periodic component with the same period $R_{XX}(\tau)$ cannot have an arbitrary shape

Crosscorrelation functions (1)

N Gaussian random variables

Definition

$$R_{XY}(t_1, t_2) = E[X(t_1)Y(t_2)]$$

$$R_{XY}(t,t+\tau) = E[X(t)Y(t+\tau)] = R_{XY}(\tau)$$

if

$$R_{XY}(t,t+\tau)=0$$

then X(t) and Y(t) are called orthogonal processes

Crosscorrelation functions (2)

N Gaussian random variables

Definition

if X(t) and Y(t) are statistically independent

$$R_{XY}(t,t+\tau) = E[X(t)Y(t+\tau)] = m_X(t)m_X(t+\tau)$$

if X(t) and Y(t) are stistically independent and are at least WSS,

$$R_{XY}(\tau) = \overline{XY}$$

which is constant

The properties of crosscorrelation functions (1) N Gaussian random variables

$$R_{XY}(\tau) = R_{XY}(-\tau)$$

$$|R_{XY}(\tau)| = \sqrt{R_{XX}(0)R_{YY}(0)}$$

$$|R_{XY}(\tau)| \le \frac{1}{2} [R_{XX}(0) + R_{YY}(0)]$$

The properties of crosscorrelation functions (2) N Gaussian random variables

Definition

$$R_{YX}(-\tau) = E[Y(t)X(t-\tau)] = E[Y(s+t)X(s)] = R_{XY}(\tau)$$

$$E\left[\left\{Y(t+\tau)+\alpha X(t)\right\}^2\right]\geq 0$$

the geometric mean of two positive numbers cannot exceed their arithmetic mean

The properties of crosscorrelation functions (3)

N Gaussian random variables

$$|R_{XY}(\tau)| \leq \frac{1}{2} [R_{XX}(0) + R_{YY}(0)]$$

$$\sqrt{R_{XX}(0)R_{YX}(0)} \le \frac{1}{2} [R_{XX}(0) + R_{YY}(0)]$$

Covariance Functions

N Gaussian random variables

$$C_{XX}(t, t + \tau) = E[\{X(t) - m_X(t)\} \{X(t + \tau) - m_X(t + \tau)\}]$$

$$C_{XY}(t, t + \tau) = E[\{X(t) - m_X(t)\} \{Y(t + \tau) - m_Y(t + \tau)\}]$$

$$C_{XX}(t, t + \tau) = R_{XX}(t, t + \tau) - m_X(t)m_X(t + \tau)$$

$$C_{XY}(t, t + \tau) = R_{XY}(t, t + \tau) - m_X(t)m_Y(t + \tau)$$
at least jointly WSS

$$C_{XX}(\tau) = R_{XX}(\tau) - \overline{X}^2$$

$$C_{XY}(\tau) = R_{XY}(\tau) - \overline{XY}$$

The properties of covariance functions

N Gaussian random variables

Definition

For a WSS process, variance does not depend on time and if au=0

$$C_{XX}(0) = R_{XX}(0) - \overline{X}^2$$

$$\sigma_X^2 = E\left[\{X(t) - E[X(t)]\}^2 \right] = C_{XX}(0)$$

it the two random processes uncorrelated

$$C_{XY}(t, t + \tau) = R_{XY}(t, t + \tau) - m_X(t)m_Y(t + \tau) = 0$$

$$R_{XY}(t, t+\tau) = m_X(t)m_Y(t+\tau)$$