Redundant CORDIC Timmermann (C)

20170203

Termination Algorithms Modified CORDIC CSD (Canonic Sign Digit) Encoding Booth Encoding

Copyright (c) 2015 - 2016 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Low Latency Time CORDIC Algorithms - Timmermann (1992) Redundant and on-line CORDIC - Ercegovac & Lang (1990)
Redundant and on-line CORDIC - Ercegovac & Lang (1990)

CSD (Canonic Signed Digit) like Booth encoding (not modified Booth) all non-zero digits are separated by zeros \Rightarrow $\sigma_i \sigma_{i+} = 0$ ·1-rm 0. = 0 - 1 = 0 (·0=0 ī·0=0 Iterative Reduction of 1-runs $\sigma_i \sigma_{i+1} = 0$ 0 T 6 0 0 1 0 1 Unique encoding Ο

$$T_{WO} \quad successive \quad iteration \quad steps$$

$$\begin{array}{c} x_{in} = x_{i} - m \ o_{1} \left(2^{-d(m_{i},i)} \right) y_{i} \\ y_{i+1} = y_{i} + o_{2} \left(2^{-d(m_{i},i)} \right) x_{i} \\ y_{i+1} = z_{i} - o_{2} \ \alpha_{m,i} \end{array}$$

$$(i) \quad \left(x_{in} \\ y_{im} \right) = \left(1 - m \ o_{1} 2^{i} \\ 0_{i} 2^{i} \\ 1 \end{array} \right) \left(\frac{x_{i}}{y_{i}} \right) = \left(1 - m \ o_{1} 2^{i} \\ 0_{i+1} 2^{i+1} \\ 1 \end{array} \right) \left(\frac{x_{i}}{y_{i}} \right) = \left(1 - m \ o_{1} 2^{i} \\ 0_{i+1} 2^{i+1} \\ 1 \end{array} \right) \left(\frac{x_{i}}{y_{i}} \right) = \left(1 - m \ o_{1} 2^{i} \\ 0_{i+1} 2^{i+1} \\ 1 \end{array} \right) \left(\frac{x_{i}}{y_{i}} \right) = \left(1 - m \ o_{1} 2^{i+1} \\ 0_{i+1} 2^{i+1} \\ 1 \end{array} \right) \left(\frac{x_{i}}{y_{i}} \right) = \left(1 - m \ o_{1} 2^{i+1} \\ 0_{i+1} 2^{i+1} \\ 1 \end{array} \right) \left(\frac{x_{i}}{y_{i}} \right) = \left(1 - m \ o_{1} 2^{i+1} \\ 0_{i+1} 2^{i+1} \\ 1 \end{array} \right) \left(\frac{x_{i}}{y_{i}} \right) = \left(1 - m \ o_{1} 2^{i+1} \\ 0_{i+1} 2^{i+1} \\ 1 \end{array} \right) \left(\frac{x_{i}}{y_{i}} \right) = \left(1 - m \ o_{1} 2^{i+1} \\ 0_{i+1} 2^{i+1} \\ 1 \end{array} \right) \left(\frac{x_{i}}{y_{i}} \right) \left(\frac{x_{i}}{y_{i}} \right) = \left(1 - m \ o_{1} 2^{i} + \frac{x_{i}}{y_{i}} 2^{-i+1} \\ 1 - m \ o_{1} 0_{i+1} 2^{-i+1} \\ 1 - m \ o_{1} 0_$$

m=1, S(m,i)=i

CSD

Cond	l€ o≤i	$\leq \frac{1}{4}(\eta - 3)$				
X _{i+1}	$= \chi_i -$	$\sigma_i 2^{-i} y_i$	Х _{ін}	$= \chi_i -$	- o i 2 ⁻ⁱ yi	
प्रिम	= 9i +	$\sigma_i 2^{-i} x_i$	Yc+	= <i>Yi</i> +	- ^o i 2 ⁻ⁱ Xi	
ZiH	= Zi -	$\sigma_i tan^{-1}(2^{-i})$	Zi+1	= Zi ~	\bullet \bullet_i tan ⁻¹ (2 ⁻ⁱ)	

Cond	$(1) \frac{1}{4}(n-3) < i \leq \frac{1}{2}(n+1)$	
o _i ŧ	0	$\sigma_i \neq 0$
Х _{ін}	$= \chi_i - \sigma_i 2^{-i} y_i$	$\chi_{i+2} = \chi_i - m\sigma_i 2^{-i} y_i - m\sigma_{i+1} 2^{-i-1} y_i$
Yc+1	$= \Im_i + \stackrel{\sigma_i}{\sim} 2^{-i} \chi_i$	$y_{i+2} = y_i + \frac{\sigma_i}{2} 2^{-i} x_i + \frac{\sigma_{i+1}}{2} 2^{-i} x_i$
Zifi	= $Z_i - O_i \tan^{-1}(2^{-i})$	$Z_{i+2} = Z_i - \sigma_i \alpha_{m,i} - \sigma_{i+1} \alpha_{m,i+1}$
∽i = 1	0	0 = j ⁰
I _{i11}	$= (x_i) + m \cdot 2^{-2i-1} (x_i)$	$\chi_{i+1} = (1 + m \cdot 2^{-2i-3} + m \cdot 2^{-2i-1}) \chi_i$
Yer	$= (y_i) + m 2^{-2i-1} (y_i)$	$\mathcal{Y}_{i+2} = (1 + m \cdot 2^{-2i-3} + m \cdot 2^{-2i-1}) \mathcal{Y}_i$
Zi+I	= Zi	Zim = Zi

Cond $\overline{m} \cdot \frac{1}{2}(n+1) < i$ $\sigma_{i} \neq \sigma$ $\chi_{i+1} = \chi_{i} - \sigma_{i} 2^{-i} y_{i}$ $y_{i+1} = y_{i} + \sigma_{i} 2^{-i} \chi_{i}$ $\sigma_i \neq 0 \text{ or } \sigma_i = 0$ $\begin{aligned} \mathcal{X}_{i+2} &= \mathcal{X}_{i} - m\sigma_{i} 2^{-i} y_{i} - m\sigma_{i+1} 2^{-i-1} y_{i} \\ y_{i+2} &= y_{i} + \sigma_{i} 2^{-i} \chi_{i} + \sigma_{i+1} 2^{-i-1} \chi_{i} \end{aligned}$ $\overline{c}_{i+1} = \overline{c}_i - \frac{\sigma_i}{c} \tan^{-1}(2^{-i})$ $Z_{i+2} = Z_i - \sigma_i \alpha_{m,i} - \sigma_{i+1} \alpha_{m,i+1}$ c₁ = 0 $\chi_{i+1} = \chi_i$ 9c+ = 9i Zi+1 = Zi

i ← i+1

i ← i+2

Low Latency Time CORDIC Algorithms - Timmerman (1992)

$$\begin{bmatrix} \chi_{in} \\ y_{in} \end{bmatrix} = \begin{bmatrix} 1 & -m \sigma_{i} 2^{i} \\ \sigma_{i} 2^{i} & 1 \end{bmatrix} \begin{bmatrix} \chi_{i} \\ y_{i} \end{bmatrix}$$

$$\begin{bmatrix} \chi_{in} \\ y_{in} \end{bmatrix} = \begin{bmatrix} 1 - m \sigma_{i} \sigma_{in} 2^{-1i-i} & -m (\sigma_{i} x^{i} + \sigma_{in} 2^{-1i-i}) \\ (\sigma_{i} 2^{i} + \sigma_{in} 2^{i+i}) & 1 - m \sigma_{i} \sigma_{in} 2^{-1i-i} \end{bmatrix} \begin{bmatrix} \chi_{i} \\ y_{i} \end{bmatrix}$$

$$\sigma_{i} = 0 \implies \sigma_{i} \sigma_{in} = 0$$

$$\begin{bmatrix} \chi_{in} \\ y_{in2} \end{bmatrix} = \begin{bmatrix} 1 & -m (\sigma_{i} x^{i} + \sigma_{in} 2^{-i-i}) \\ (\sigma_{i} 2^{i} + \sigma_{in} 2^{i+i}) & 1 \end{bmatrix} \begin{bmatrix} \chi_{i} \\ y_{i} \end{bmatrix}$$

$$\chi_{in2} = (\sigma_{i} 2^{i} + \sigma_{in} 2^{i+i}) & 1 \end{bmatrix} \begin{bmatrix} \chi_{i} \\ y_{i} \end{bmatrix}$$

$$\chi_{in2} = (\sigma_{i} 2^{i} + \sigma_{in} 2^{i+i}) \chi_{i} + y_{i}$$

$$\chi_{in2} = \chi_{i} - m \sigma_{i} x^{i} y_{i} - m \sigma_{in} 2^{-i-i} y_{i}$$

$$\chi_{in2} = y_{i} + \sigma_{i} 2^{i} \chi_{i} + \sigma_{in} 2^{i-i} y_{i}$$

$$\chi_{in2} = \chi_{i} - m \sigma_{i} x^{i} y_{i} + \sigma_{in} 2^{i-i} y_{i}$$

$$\chi_{in3} = y_{i} + \sigma_{i} 2^{i} \chi_{i} + \sigma_{in} 2^{i-i} y_{i}$$

$$\sigma_{i} = 0$$

$$\chi_{in2} = \chi_{i} - m \sigma_{i} x^{i} y_{i}$$

$$g_{in3} = y_{i} + \sigma_{i} 2^{i} \chi_{i}$$

$$\sigma_{i} = 0$$

$$\chi_{in3} = \chi_{i} - m \sigma_{i} x^{i} y_{i}$$

$$g_{in3} = y_{i} + \sigma_{i} 2^{i-i} y_{i}$$

$$g_{in4} = y_{i}$$

$$\varphi_{i} + \sigma_{i} 2^{i-i} \chi_{i}$$

$$\sigma_{i} = 0$$

$$\chi_{in4} = \chi_{i}$$

$$g_{in4} = \chi_{i}$$

$$g_{in4} = \chi_{i}$$

$$g_{in5} = 0$$

$$\chi_{in5} = \chi_{i}$$

$$g_{in5} = 0$$

$$\chi_{in5} = \chi_{i}$$

$$g_{in5} = 0$$

Cond $\boxed{1}$ $\frac{1}{4}$ $(n-3) < i \leq \frac{1}{2}$ (n+1)parallel ~i = 0 $\begin{array}{c} \chi_{i+1} = (| + m \cdot 2^{-2i-3} + m \cdot 2^{-2i-1}) \chi_{i+1} \\ \swarrow & \chi_{i+2} = (| + m \cdot 2^{-2i-3} + m \cdot 2^{-2i-1}) \chi_{i+2} \end{array}$ Parallel $\overline{2i+1} = \overline{2i}$ ~i = 0 - post phine this computation until the whole iteration process has been completed - Use a Wallace tree to implement this in parallel $\sigma_i \neq 0$ - executes a rotation by either am, i on am, i+1 - multiplex the different shifts, 4-to-2 cell

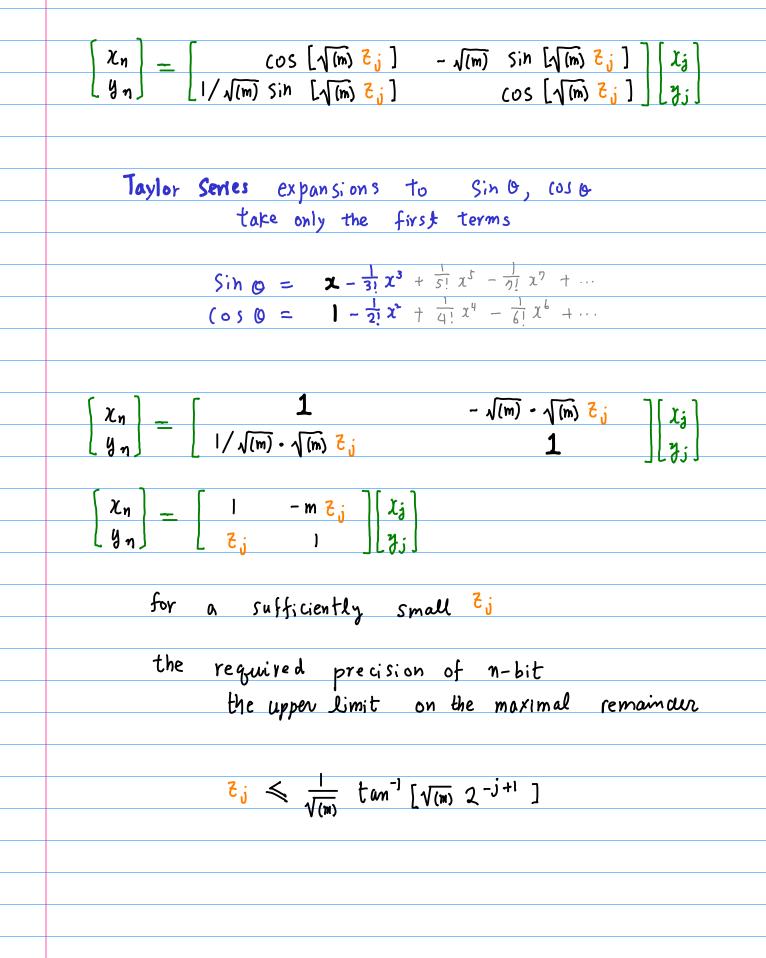
Cond (1)
$$\frac{1}{2}$$
 (n+1) < i
-analogous to the termination algorithm
- but improved design regularity
: tree structure are not becessary
- the original iterations and paired
always two subsequent iterations are
merged into a new single iteration
- a q-to-2 addee cell (Xi, bi)
0 3-to-2 addee cell (2i)
a 3:1 multiplexen
- 0 0
0 1
1 0

Termination Algorithm quit the iteration process as early as possible termination algorithm - T.C. Chen IBM Journal of Research and Development 1912 Automatic computation of exponentials lugarithms, tatios, and square roots - Timmermann Modified CORDIC algorithms the 2nd half of the niterations - can be substituted by 2 multications in panallel A fully parallel M-bit wallace tree multiplier - 2 log₂ (n) FA time units algorithm + prediction + termination $(n+1) + 2\log_2(\frac{n}{2}) + \log_2(n) = n + 3\log_2(n) - 1$

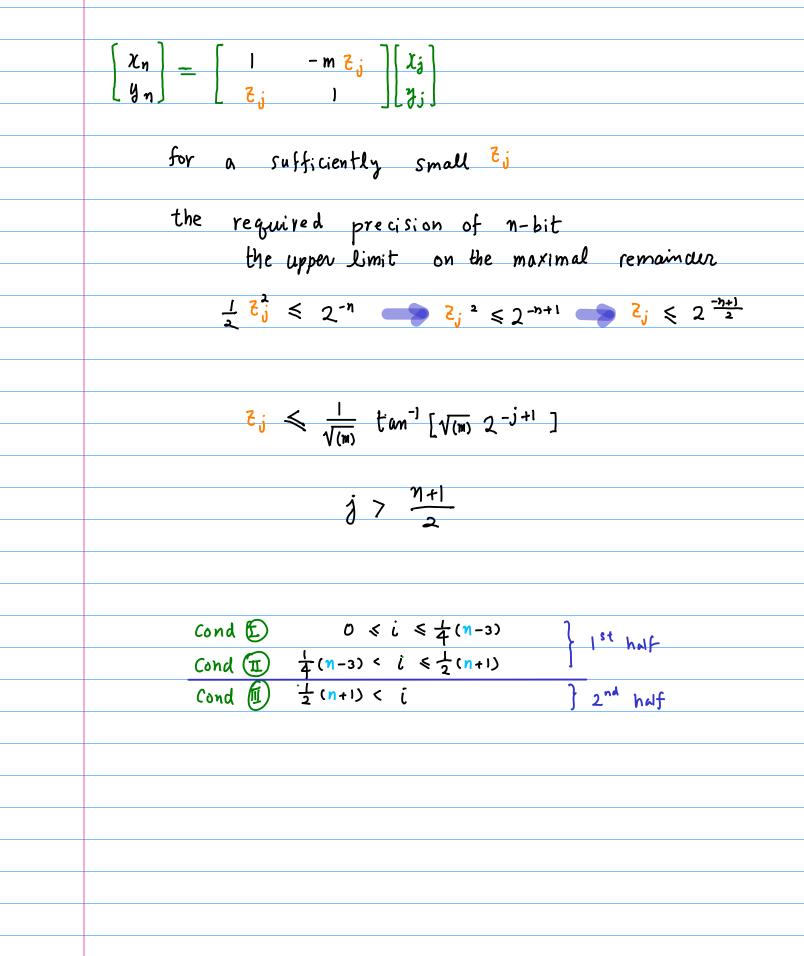
Modified CORPLC
Timmermann [989 Electronics Letters

$$2n = k_m \{ x_n (os [\sqrt{10} \times 1 - \sqrt{10}, y_n sin [\sqrt{10}, \infty] \} \\ y_n = k_m \{ 1/\sqrt{10}, x_n sin [\sqrt{10}, \infty] + y_n (os [\sqrt{10}, \infty] \} \\ z_n = z_0 + \infty$$

 $k_m : the scaling factor
 $m : the (cordinate system (0, 1, +1))$
 $\alpha : the rotation angle
 $\begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}$: the initial values depends on the iteratron goal
Data dependency across iteration
 $\Rightarrow CSA$ no besefit$$



st half iterrations : the most significant contribution the rotation angle $\alpha_i = \frac{1}{\sqrt{(m)}} \tan^{-1} \left[\sqrt{(m)} 2^{-s(m,i)} \right]$ S(m,i) the iteration shift values α'_i decreases with the increasing Iteration index i Iteration index i und half iterrations : can improve the accuracy only by one bit each $cond (i) = \frac{1}{4}(n-3) < i \le \frac{1}{2}(n+1)$ $cond (i) = \frac{1}{4}(n+1) < i = \frac{1}{2}n^4$ half		
A decreases with the increasing Iteration index i and half iterations : can improve the accuracy only by one bit each (and f) $0 \le i \le \pm (n-3)$	5	st half iterrations : the most significant contribution
And half iterations : can improve the accuracy only by one bit each		the rotation angle $\alpha_i = \frac{1}{\sqrt{m}} \tan^{-1} \left[\sqrt{m} 2^{-S(m,i)}\right]$
Iteration index i and half iterations : can improve the accuracy only by one bit each $(and f(x)) = 0 \le i \le \pm (n-3)$		S(m, i) the iteration shift values
Iteration index i and half iterations : can improve the accuracy only by one bit each $(and f(x)) = 0 \le i \le \pm (n-3)$		decreases with the increasing
(and $f(x) = 0 \le i \le \frac{1}{2}(x-3)$) at		
(and $f(x) = 0 \le i \le \frac{1}{2}(x-3)$) at		
(and $f(x) = 0 \le i \le \frac{1}{2}(x-3)$) at	า	and healf the already of the state of the st
(and ff.) $0 \le i \le \pm (n-3)$]	7	
Cond (1) $0 \le i \le \frac{1}{4}(n-3)$ } 1 st half Cond (1) $\frac{1}{4}(n-3) \le i \le \frac{1}{2}(n+1)$ Cond (1) $\frac{1}{2}(n+1) \le i$ } 2 nd half		only by one bit each
Cond (1) $0 \le i \le \frac{1}{4}(n-3)$ } 1 st half Cond (1) $\frac{1}{4}(n-3) \le i \le \frac{1}{2}(n+1)$ Cond (1) $\frac{1}{2}(n+1) \le i$ } 2 nd half		
Cond (1) $0 \le i \le \frac{1}{4}(n-3)$ 1^{st} halfCond (1) $\frac{1}{4}(n-3) \le i \le \frac{1}{2}(n+1)$ 1^{st} halfCond (1) $\frac{1}{2}(n+1) \le i$ 2^{nd} half		
Cond (1) $\frac{1}{4}(n-3) < i \le \frac{1}{2}(n+1)$ Cond (1) $\frac{1}{2}(n+1) < i$ $\frac{1}{2}n^{d}$ half		Cond () $0 \le i \le \frac{1}{4}(n-3)$] istruction
Cond $(n+1) < i$ } 2^{nd} half		Cond (I) $\frac{1}{4}(n-3) < i \leq \frac{1}{2}(n+1)$
		Cond (1) $\frac{1}{2}(n+1) < i$ $\frac{1}{2}(n+1) < i$


Modified CORDIC rotation $E_n \rightarrow 0$ $\chi_n = k_m \left\{ \qquad \chi_{\circ} \left(os \left[\sqrt{(m)} \, \alpha \right] - \sqrt{(m)} \, y_{\circ} \, sin \left[\sqrt{(m)} \, \alpha \right] \right\}$ $y_n = k_m \left\{ \frac{1}{\sqrt{m}} \mathcal{I}_{\delta} \sin\left[\sqrt{m} \propto \right] + y_{\delta} \cos\left[\sqrt{m} \propto \right] \right\}$ Vectoring yn→0 $\chi_n = k_m \sqrt{\chi_0^2 + m y_0^2}$ $2n = 2_0 + 1/\sqrt{(m)} \tan^{-1} \left[\sqrt{(m)} y_0 / x_1\right]$

2nd half iterations: can improve the accuracy only by one bit each replace these iterations by <u>a single rotation</u> after the remaining rotation angle has been reduced Using a fixed number of pure corple iterations this truncation reduces the latency time and saves area although the truncation requires extra handware the necessary minimum number of iterations

Rotation mode (Z->o) after j corpic rotations have been performed (lj, Jj) the 2 path contains the remaining rotation angle (Z; $\begin{array}{c} \chi_{n} \\ - \left[\begin{array}{c} \cos\left[\sqrt{(m)} \ \overline{c}_{j}\right] \\ \eta_{n} \end{array}\right] \\ - \sqrt{(m)} \ \sin\left[\sqrt{(m)} \ \overline{c}_{j}\right] \\ - \sqrt{(m)} \ \cos\left[\sqrt{(m)} \ \overline{c}_{j}\right] \\ - \sqrt{$ $\chi_n = k_m \left\{ \chi_0 \left(os \left[\sqrt{m} \right] \times \left[- \sqrt{m} \right] \right\} \right\}$ $y_n = k_m \left\{ \frac{1}{\sqrt{m}} \mathcal{I}_{\circ} \sin\left[\sqrt{m} \propto \right] + y_{\circ} \cos\left[\sqrt{m} \propto \right] \right\}$ $z_n = z_0 + \alpha$ assume km = 1 + 2nd half iteration does not affect scaling factors

Modified CORDIC

Rotation mode $\chi_n = \chi_j - m Z_j Y_j (j > (n+1)/2)$ $Y_n = Z_j \chi_j + Y_j (j > (n+1)/2)$ Vectoring mode $\chi_n = z_j$ $z_n = z_j + \frac{y_j}{x_j}$ $\frac{y_j}{x_j}$ $\frac{y_j}{x_$ the prediction algorithm : rotation mode (OK) vectoring mode (X) 2nd half of the n iterations in rotation mode ~ replaced by 2 multiplications in panallul { Zj * Xj | Zj * 9j A fully panallel n-bit Wallace tree multiplier : 2 logs (n) FA time unit prediction + termination.

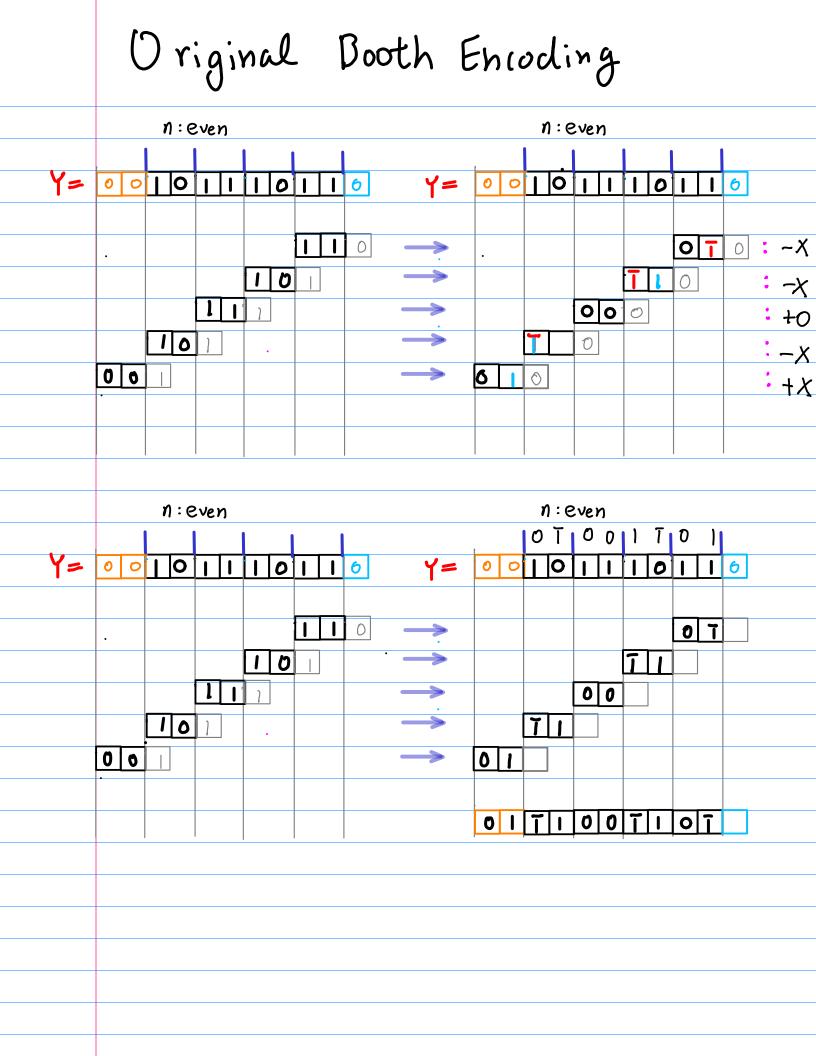
the Truncated. CORDIC Algorithm - reduces the number of CORPIC iterations - Multiplication (division handware Booth Technique halves the amount of partial products Carry Save Architecture km + 1 => multiplication => multiplier anyway

Modified Booth Encoding

 $\begin{bmatrix} \chi_{i+2} \\ \eta_{i+2} \end{bmatrix} = \begin{bmatrix} 1 - m \underbrace{\sigma_i \ \sigma_{i+1}}_{i+1} 2^{-2i-1} \\ (\sigma_i \ 2^{-i} + \sigma_{i+1} 2^{-i-1}) \end{bmatrix} \begin{bmatrix} \chi_i \\ \eta_i \end{bmatrix}$ $\begin{array}{c} \mathcal{X}_{i+2} \\ \mathcal{Y}_{i+2} \end{array} = \begin{bmatrix} \mathbf{I} \\ \mathbf{I} \\$ $\begin{array}{rcl} \chi_{i+2} &=& \chi_{i} & -m \ \overline{\sigma_{i}} \ 2^{-i} \ y_{i} & -m \ \overline{\sigma_{i+1}} \ 2^{-i-1} \ y_{i} \\ y_{i+2} &=& y_{i} \ + \ \overline{\sigma_{i}} \ 2^{-i} \ \chi_{i} & + \ \overline{\sigma_{i+1}} \ 2^{-i-1} \ \chi_{i} \end{array}$ $\chi_{i+2} = (\chi_i - m \sigma_i \chi^{-i} y_i - m \sigma_{i+1} \chi^{-i+1} y_i)$ $(1 + \lambda(\sigma_{i}) + 2^{-2i-1} x_{i} + \lambda(\sigma_{i+1}) + 2^{-2i-3} x_{i}$ $y_{in} = (y_i + \sigma_i 2^{-i} x_i + \sigma_{in} 2^{-i-1} x_i)$ $(|+ \lambda(\sigma_i) m 2^{-3i-1} y_i + \lambda(\sigma_{i+1}) m 2^{-3i-3} y_i)$ In Timmermann's paper, the modified Booth encoding \$ refers to CSD (Canonic Signed Digit) $\overline{O_i O_{iH}} = 0$ not the generally known modified Booth encoding.

$$\begin{bmatrix} \chi_{in} \\ y_{in} \end{bmatrix} = \begin{bmatrix} 1 - m \left[\overline{0}_{i} \frac{1}{2} e^{-kt-1} & -m \left(\overline{0}_{i} \frac{1}{2} e^{-kt-1} \right) \right] \\ \left[\left(\overline{0}_{i} \frac{1}{2} e^{-kt} + \overline{0}_{i+1} \frac{1}{2} e^{-kt} \right) & 1 - m \left[\overline{0}_{i} \overline{0}_{in} \frac{1}{2} e^{-kt-1} \right] \\ \chi_{in} \end{bmatrix} \begin{bmatrix} \chi_{i} \\ y_{in} \end{bmatrix} \\ \begin{bmatrix} \chi_{in} \\ z_{inn} \end{bmatrix} = \begin{pmatrix} \chi_{i} & -m \\ \overline{0}_{i} \frac{1}{2} e^{-kt} \chi_{i} \end{bmatrix} + \begin{bmatrix} m \\ \overline{0}_{in} 2^{-kt-1} \\ \chi_{i} + \overline{0}_{i} 2^{-k} \chi_{i} \end{bmatrix} + \begin{bmatrix} \overline{0}_{i} e^{-kt} \frac{1}{2} e^{-kt-1} \\ \chi_{i} + \overline{0}_{in} 2^{-kt-1} \\ \chi_{i} \end{bmatrix} + \begin{bmatrix} \chi_{i} \\ y_{inn} \end{bmatrix} + \begin{bmatrix} \chi_{i} \\ \chi_{inn} \end{bmatrix} + \begin{bmatrix} \chi_{in} \\ \chi_{inn} \end{bmatrix} + \begin{bmatrix} \chi_{in} \\ \chi_{inn} \end{bmatrix} + \begin{bmatrix} \chi_{in} \\ \chi_{inn} \end{bmatrix} + \begin{bmatrix} \chi_{inn} \\ \chi_$$

	$(1 + \lambda(\sigma_{i}) + 2^{-2i-1} x_{i} + \lambda(\sigma_{i+1}) + 2^{-2i-3} x_{i})$
$y_{i+2} = [y_i + \sigma_i 2^{-i} x_i + \sigma_{i+1} 2^{-i-1} x_i]$	$(1 + \lambda(\sigma_i) + 2^{-\lambda i - 3} y_i + \lambda(\sigma_{i+1}) + 2^{-\lambda i - 3} y_i)$
rotation by Km, i or Km, i+1	Timmermann's constant scaling factor
multiplex the diff. shifts	for n-bit precision.
→ 4-to-2 cells 2in, 9i+2	
3-to-2 cells ziz	late evaluation
	after all Itenations
	Wallace Tree


Oi's and recoded in panallel # of mon-zero oi's at most half of max value w/o recoding $\overline{\sigma_i \sigma_{i+1}} = 0$ $\sigma_i \delta_{i+1}$ $(|+m2^{-2i+})(|+m2^{-2i-3}) = |+m2^{-2i+} + m2^{-2i-3}$ $\frac{1}{\prod_{j=0}^{n} (1 + m \lambda^{-2i-2j-1})} = 1 + \sum_{j=0}^{n} m \lambda^{-2i-2j-1}$ $([+m\lambda^{-2i^{-0}-1})([+m\lambda^{-2i^{-2}-1})([+m\lambda^{-2i^{-4}-1})([+m\lambda^{-2i^{-6}-1})\cdots] + m\lambda^{-2i^{-0}-1} + m\lambda^{-2i^{-6}-1} +$

$$\begin{array}{c}
\text{No dified Booth Encoding} \\
\lambda(t) = 1 \quad for |t| = 0 \\
\lambda(t) = 0 \quad for |t| = 1 \quad \{1, \overline{1}\}
\end{array}$$

$$\begin{array}{c}
\text{In the set of the set$$

Modified Booth Encoding

	2' 20			
2-bit encoding	TT	scale factor		
all zero's	$\bigcirc \bigcirc $	$O^{-}\lambda + O = + O$	40	
end of 1's	$\bigcirc \bigcirc 1 \longrightarrow \bigcirc 1 \bigcirc$	$\mathbf{O}^{\mathbf{i}}2+1=\mathbf{+1}$	+ χ	
isolated 1	$\bigcirc \downarrow \bigcirc \longrightarrow \downarrow \top \bigcirc$	1:2+T =+1	+ X	
end of l's	$\bigcirc 1 \land \longrightarrow 1 \circ \circ$	1=2+0 =+2	+2×	
start of 1's	$1 0 0 \longrightarrow T 0 0$	$T^{2} = -2$	<u>-2χ</u>	
isolated O		$T^{i}\lambda + = -1$	~ X	
start of 1's		© [€] 2+ T = -	- X	
all i's	$1 \rightarrow \circ \circ \circ$	0:2+0 = 0	† 0	
		7		
	scale factor {	$0, \pm 1, \pm 2$		
not	the one Timmermann	's page ve	fers to	

After the 1 st Pass
$\bigcirc \bigcirc \bigcirc$
 possible boundary cases
$\bigcirc 1 \frown 1 $

Pass 2 Operation 01 iterative application 0 T $\widehat{} \longrightarrow 2 \longrightarrow$ 0 0 0 С С O С Т 10 0 10 ī Ø Ø С 0 0 0 0 1 0 0 1 T 1 G Ø 0 TO Ø 0 T Ø Ø Ø Ø 0 0 0 0 0) — Ť ĭ 0 G 0 G 0 G Ø Ι T Ø Ø I Ø ΟΤ Ø Ø OT O 0 Т T Т $\overline{\mathfrak{o}_{i}} \, \overline{\mathfrak{o}_{i+1}} = 0$

ł	the 2 nd pass	
	Y= 00101110110	
	0 Ţ 0 0 Ţ 0 Ţ 0 0 Ţ 0 0 Ţ 0 Ţ	
	T T 0 1 T 0 0 0	
	0 Ţ 0 0 0 T 0 Ţ 0 0 0 Ţ 0 0 0 T 0 Ţ	
	0 1 0 T 0 0 T 0 T	$\sigma_{i} \sigma_{i} = 0$

CSD	approach	Efficient canonic signed digit recoding Gustavo A. Ruiz n , Mercedes Granda Microelectronics Journal 42 (2011)	
<u> </u>		Iterative Reduction of I-runs	
 0010		$\sigma_{i} \delta_{i+1} = 0$	
• • 0			
	000T0T0	Unique encoding	
		unique encouring	
0101	000T0T0		
1			_
0116			
<u>`</u>			
	6		
100T	6		
	-1-1		
1000			
01111	1 6		
	0016		_
	<u> </u>		

Verification 2⁹ 2⁶ 2⁵ 2⁴ 2³ 2¹ 2¹ 2⁰ ○ 1 0 1 1 1 0 1 1 6 $2^{\circ} + 2^{\circ} + 2^{\circ} + 2^{\circ} + 2^{\circ} + 2^{\circ} + 2^{\circ} = |28 + 32 + 16 + 8 + 2 + 1 = 187$ 0 $2^8 - 2^7 + 2^4 - 2^3 + 2^2 - 2^6 = 256 - 128 + 64 - 8 + 4 - 1 = 187$ 0 | T | 0 0 T | 0 T 0 1 0 T 0 0 0 T 0 T $2^8 - 2^6 - 2^2 - 2^{\circ} = 25^{\circ} - 64 - 4 - 1 = 187$ $2^{8} - 2^{6} - 2^{2} - 2^{\circ} = 25^{6} - 64 - 4 - 1 = 187$ T 0 0 0 0 0 6 0

001010110
$\bigcirc 10707070$

Canonical Signed Digit (CSD) (1) the number of non-zero digits is minimal (2) no two consecutive digits are both non-zero two non-zero digits are not adjacent