Graph (1A)

Copyright (c) 2015-2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Some class of graphs (1)

Complete graph

A complete graph is a graph in which each pair of vertices is joined by an edge. A complete graph contains all possible edges.

Connected graph

In an undirected graph, an unordered pair of vertices $\{x, y\}$ is called connected if a path leads from x to y. Otherwise, the unordered pair is called disconnected.

Bipartite graph

A bipartite graph is a graph in which the vertex set can be partitioned into two sets, W and X, so that no two vertices in W share a common edge and no two vertices in X share a common edge. Alternatively, it is a graph with a chromatic number of 2.

Complete Graphs

https://en.wikipedia.org/wiki/Complete_graph

Connected Graphs

$V=\left\{v_{1}, \cdots-v_{n}\right\} \quad|E|=m$
$E=\left\{e_{n}, \cdots\right.$,

$$
V_{1} v_{2} \quad e d g e
$$

This graph becomes disconnected when the right-most node in the gray area on the left is removed

This graph becomes disconnected when the dashed edge is removed.

With vertex 0 this graph is disconnected, the rest of the graph is connected.

(Binartite Graphs

2

Example of a bipartite graph without cycles

,

- \quad complete bipartite graph with $\mathrm{m}=5$ and $\mathrm{n}=3$

A graph with an odd cycle transversal of size 2: removing the two blue bottom vertices leaves a bipartite graph.

Complete Graphs

Complete Bipartite Graphs

Star Graphs

Wheel Graphs

Some class of graphs (2)

Planar graph

A planar graph is a graph whose vertices and edges can be drawn in a plane such that no two of the edges intersect.

Cycle graph

A cycle graph or circular graph of order $\mathrm{n} \geq 3$ is a graph in which the vertices can be listed in an order v1, v2, ..., vn such that the edges are the $\{v i, v i+1\}$ where $i=1,2, \ldots, n-1$, plus the edge $\{v n, v 1\}$.
Cycle graphs can be characterized as connected graphs in which the degree of all vertices is 2 .
If a cycle graph occurs as a subgraph of another graph, it is a cycle or circuit in that graph.

Tree

A tree is a connected graph with no cycles.

Planar Graphs

A planar graph and its dual

Cycle Graphs

Tree Graphs Grayh Truce

A labeled tree with 6 vertices and 5
edges.

https://en.wikipedia.org/wiki/Cycle_graph

Hypercube

A hypercube can be defined by increasing the numbers of dimensions of a shape:

0 - A point is a hypercube of dimension zero.
1 - If one moves this point one unit length, it will sweep out a line segment, which is a unit hypercube of dimension one.

2 - If one moves this line segment its length in a perpendicular direction from itself; it sweeps out a 2-dimensional square.

3 - If one moves the square one unit length in the direction perpendicular to the plane it lies on, it will generate a 3-dimensional cube.

4 - If one moves the cube one unit length into the fourth dimension, it generates a 4dimensional unit hypercube (a unit tesseract).

Tesseract
$\sqrt[2]{2}$
Hipe
E
H

Gray Code

Adjacency Lists

The graph pictured above has this adjacency list representation:					
a	adjacent to		b, c	b	adjacent to
:---	:---				

Adjacency Matrix

Hamiltonian Path

A hypercube graph showing a \quad a Hamiltonian path in red, and a longest induced path in bold black.

One possible Hamiltonian cycle through every vertex of a dodecahedron is shown in red - like all platonic solids, the dodecahedron is Hamiltonian

Minimum SpanningTree

MST

Seven Bridges of Königsberg

The problem was to devise a walk through the city that would cross each of those bridges once and only once.

Shortest path problem

Traveling salesman problem

References

[1] http://en.wikipedia.org/
[2]

