Graph (1A)

.

Young Won Lim 4/19/18 Copyright (c) 2015 – 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Complete graph

A complete graph is a graph in which each pair of vertices is joined by an edge. A complete graph contains all possible edges.

Connected graph

In an undirected graph, an unordered pair of vertices $\{x, y\}$ is called connected if a path leads from x to y. Otherwise, the unordered pair is called disconnected.

Bipartite graph

A bipartite graph is a graph in which the vertex set can be partitioned into two sets, W and X, so that no two vertices in W share a common edge and no two vertices in X share a common edge. Alternatively, it is a graph with a chromatic number of 2.

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)

Complete Graphs

https://en.wikipedia.org/wiki/Complete_graph

Graph (5A)

4

Connected Graphs

This graph becomes disconnected when the right-most node in the gray area on the left is removed

This graph becomes disconnected when the dashed edge is removed. With vertex 0 this graph is disconnected, the rest of the graph is connected.

https://en.wikipedia.org/wiki/Connectivity_(graph_theory)

Graph (5A)

5

2

 \mathcal{V}

Example of a bipartite graph without cycles

A complete bipartite graph with m = 5 and n = 3 A graph with an odd cycle transversal of size 2: removing the two blue bottom vertices leaves a bipartite graph.

https://en.wikipedia.org/wiki/Bipartite_graph

Complete Graphs

 K_1

 K_3

 K_4

https://en.wikipedia.org/wiki/Gallery_of_named_graphs

Complete Bipartite Graphs

https://en.wikipedia.org/wiki/Gallery_of_named_graphs

Star Graphs

https://en.wikipedia.org/wiki/Gallery_of_named_graphs

Wheel Graphs

https://en.wikipedia.org/wiki/Gallery_of_named_graphs

Planar graph

A planar graph is a graph whose vertices and edges can be drawn in a plane such that no two of the edges intersect.

Cycle graph

A cycle graph or circular graph of order $n \ge 3$ is a graph in which the vertices can be listed in an order v1, v2, ..., vn such that the edges are the {vi, vi+1} where i = 1, 2, ..., n - 1, plus the edge {vn, v1}. Cycle graphs can be characterized as connected graphs in which the degree of all vertices is 2.

If a cycle graph occurs as a subgraph of another graph, it is a cycle or circuit in that graph.

Tree

A tree is a connected graph with no cycles.

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)

A planar graph and its dual

https://en.wikipedia.org/wiki/Planar_graph

Cycle Graphs

https://en.wikipedia.org/wiki/Cycle_graph https://en.wikipedia.org/wiki/Gallery_of_named_graphs

Truc

https://en.wikipedia.org/wiki/Cycle_graph

Hypercube

A hypercube can be defined by increasing the numbers of dimensions of a shape:

0 - A point is a hypercube of dimension zero.

1 - If one moves this point one unit length, it will sweep out a line segment, which is a unit hypercube of dimension one.

2 – If one moves this line segment its length in a perpendicular direction from itself; it sweeps out a 2-dimensional square.

3 – If one moves the square one unit length in the direction perpendicular to the plane it lies on, it will generate a 3-dimensional cube.

4 – If one moves the cube one unit length into the fourth dimension, it generates a 4dimensional unit hypercube (a unit tesseract).

Tesseract

https://en.wikipedia.org/wiki/Hypercube

0 . 3 _ per cubo •

Gray Code

The graph pictured above has this adjacency list representation:		
а	adjacent to	b, c
b	adjacent to	a,c
с	adjacent to	a,b

https://en.wikipedia.org/wiki/Adjacency_list

https://en.wikipedia.org/wiki/Incidence_matrix

https://en.wikipedia.org/wiki/Adjacency_matrix

Hamiltonian Path

A hypercube graph showing a Hamiltonian path in red, and a longest induced path in bold black.

One possible Hamiltonian cycle through every vertex of a dodecahedron is shown in red – like all platonic solids, the dodecahedron is Hamiltonian

https://en.wikipedia.org/wiki/Path_(graph_theory)

Minimum Spanning Tree

 $\begin{array}{c|c} A & 1 & B & C \\ \hline 4 & 3 & 4 & 2 & 4 & 5 \\ \hline D & 4 & E & 7 & F \end{array}$

MST

ch

 $\begin{pmatrix} 2 \\ 4 \\ 4 \end{pmatrix}^{5} \end{pmatrix}^{16}$

This figure shows there may be more than one minimum spanning tree in a graph. In the figure, the two trees below the graph are two possibilities of minimum spanning tree of the given graph.

https://en.wikipedia.org/wiki/Minimum_spanning_tree

Graph (5A)

2

Seven Bridges of Königsberg

The problem was to devise a walk through the city that would cross each of those bridges once and only once.

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

Shortest path problem

https://en.wikipedia.org/wiki/Shortest_path_problem

Traveling salesman problem (Typ

https://en.wikipedia.org/wiki/Travelling_salesman_problem

References

