Elementary Matrix

Copyright (c) 2012 Young W. Lim.

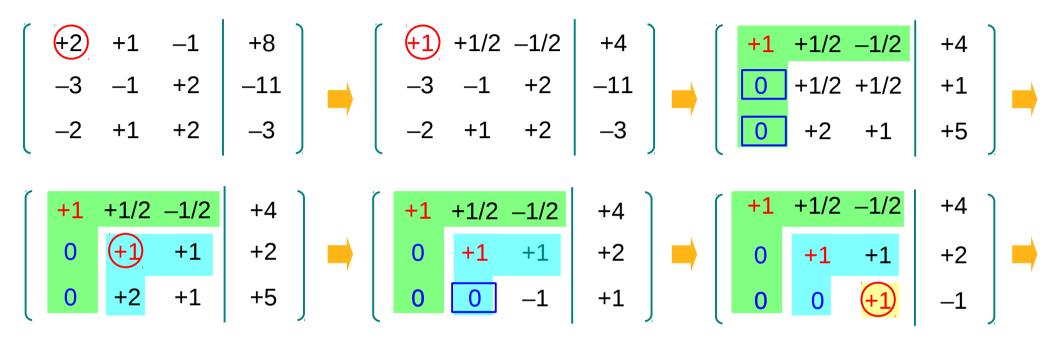
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

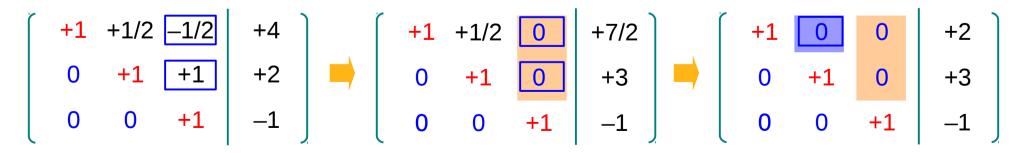
This document was produced by using OpenOffice and Octave.

Gauss-Jordan Elimination

Forward Phase - Gaussian Elimination



Backward Phase



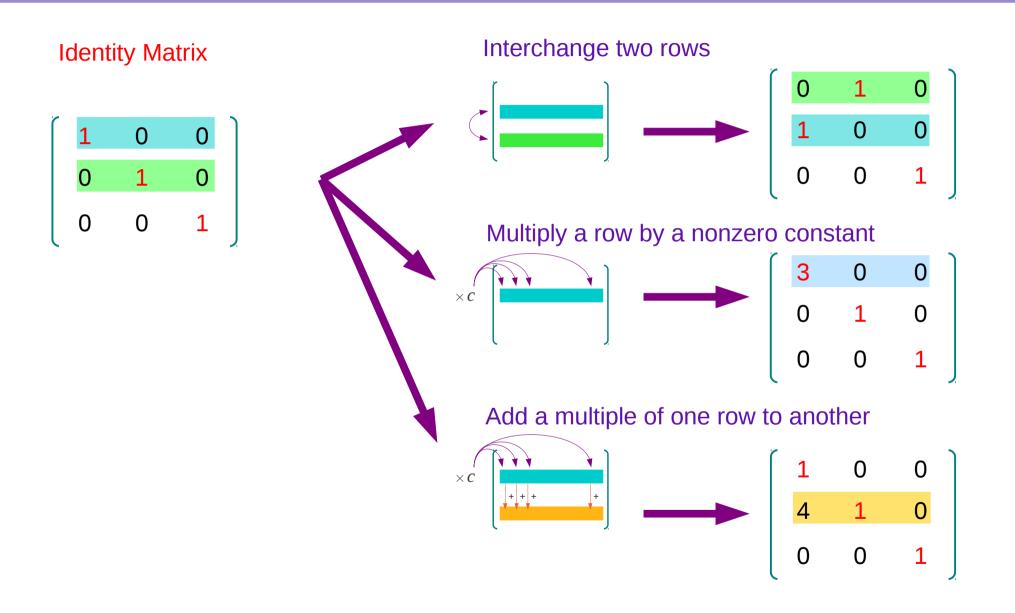
Elementary Row Operation

Interchange two rows

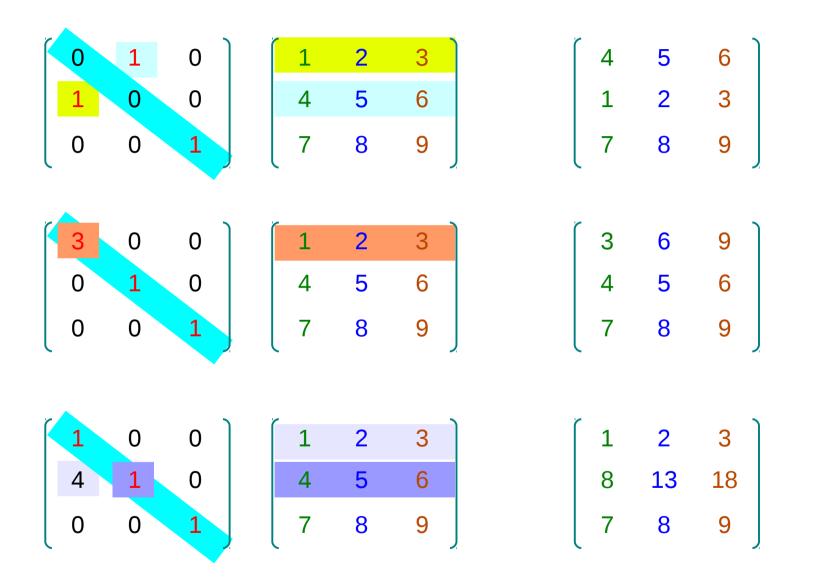
Multiply a row by a nonzero constant

Add a multiple of one row to another

Elementary Matrix



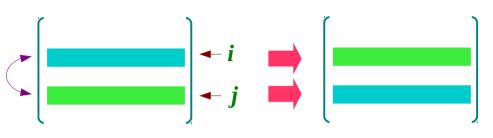
Multiplication by an Elementary Matrix



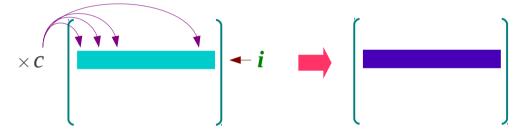
Elementary Matrix (4A)

Elementary Matrix

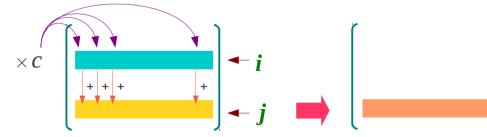
Interchange two rows

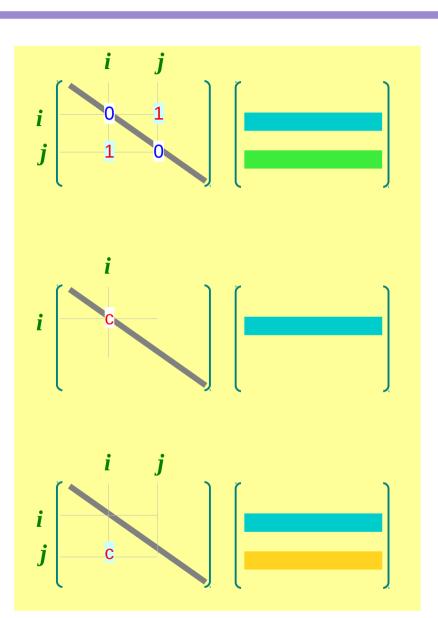


Multiply a row by a nonzero constant



Add a multiple of one row to another





Elementary Matrix (4A)

8

$$\begin{array}{c} +1x_{1} + \frac{1}{2}x_{2} - \frac{1}{2}x_{3} = +4 & (L_{1}) \\ -3x_{1} - x_{2} + 2x_{3} = -11 & (L_{2}) \\ -2x_{1} + x_{2} + 2x_{3} = -3 & (L_{3}) \end{array} \qquad \left[\begin{array}{c} +1 & +1/2 & -1/2 \\ -3 & -1 & +2 \\ -2 & +1 & +2 \\ -2 & +1 & +2 \\ \end{array} \right]$$

$$\begin{array}{c} E_{3} \\ E_{3} \\ E_{3} \\ E_{3} \\ E_{2} \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \\ \end{array} \qquad \left[\begin{array}{c} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right]$$

$$\begin{array}{c} \left[\begin{array}{c} +1 & +1/2 & -1/2 \\ -2 & +1 & +2 \\ \end{array} \right]$$

$$\begin{array}{c} +1 & +1/2 & -1/2 \\ -3 \\ -2 & +1 & +2 \\ \end{array} \right]$$

$$\begin{array}{c} +1 & +1/2 & -1/2 \\ -3 \\ -2 & +1 & +2 \\ \end{array}$$

$$\begin{array}{c} +1\,x_{1} + \frac{1}{2}x_{2} - \frac{1}{2}x_{3} = +4 & (L_{1}) \\ 0\,x_{1} + \frac{1}{2}x_{2} + \frac{1}{2}x_{3} = +1 & (L_{2}) \\ 0\,x_{1} + 2\,x_{2} + 1\,x_{3} = +5 & (L_{3}) \end{array} \qquad \left[\begin{array}{c} +1 & +1/2 & -1/2 \\ 0 & (+1/2) & +1/2 \\ 0 & +2 & +1 \\ \end{array} \right] +5 \end{array}$$

$$\begin{array}{c} +1x_{1} + \frac{1}{2}x_{2} - \frac{1}{2}x_{3} = +4 & (L_{1}) \\ 0x_{1} + 1x_{2} + 1x_{3} = +2 & (L_{2}) \\ 0x_{1} + 2x_{2} + 1x_{3} = +5 & (L_{3}) \end{array} \qquad \left[\begin{array}{c} +1 & +1/2 & -1/2 \\ 0 & +1 & +1 \\ 0 & +1 & +1 \\ 0 & +2 & +1 \\ \end{array} \right] \\ \begin{array}{c} E_{5} \\ F_{5} \\$$

Elementary Matrix (4A)

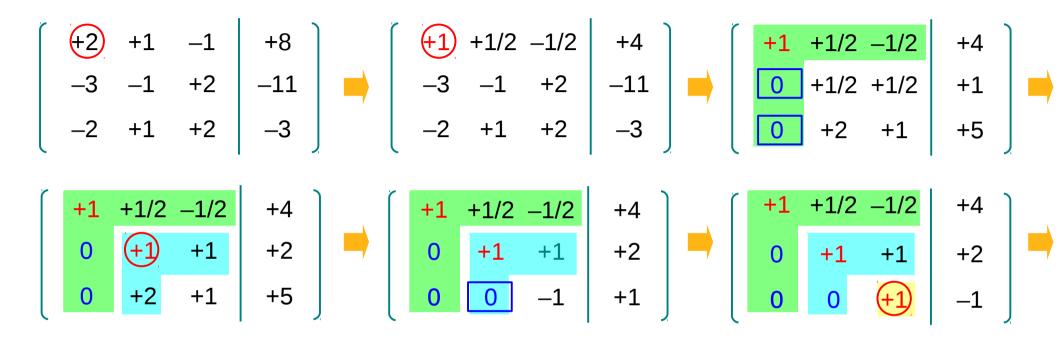
$$+ 1x_{1} + \frac{1}{2}x_{2} - \frac{1}{2}x_{3} = + 4 \qquad (L_{1}) 0x_{1} + 1x_{2} + 1x_{3} = + 2 \qquad (L_{2}) 0x_{1} + 0x_{2} - 1x_{3} = + 1 \qquad (L_{3})$$

E ₆			
1	0	0	
0	1	0	
0	0	-1	

ſ	+1	+1/2	-1/2	+4
	0	+1	+1	+2
	0	0		+1

+ 1 x_1 + $\frac{1}{2}x_2 - \frac{1}{2}x_3 = +4$	(L_1)	ſ	+1	+1/2	-1/2	+4
$0x_1 + 1x_2 + 1x_3 = +2$	(L_2)					+2
$0x_1 + 0x_2 + 1x_3 = -1$	$(-1 \times L_3)$					-1

Forward Phase

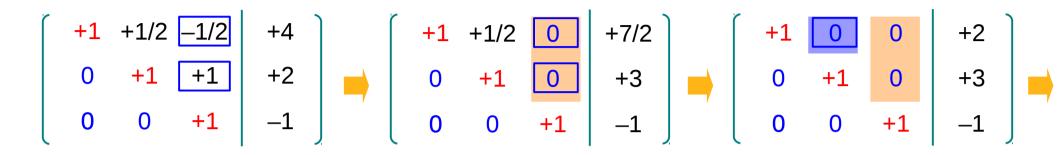


Forward Phase - Gaussian Elimination

$$\begin{array}{c} +1 x_{1} + \frac{1}{2} x_{2} - \frac{1}{2} x_{3} = +4 & (L_{1}) \\ 0 x_{1} + 1 x_{2} + 1 x_{3} = +2 & (L_{2}) \\ 0 x_{1} + 0 x_{2} + 1 x_{3} = -1 & (L_{3}) \end{array} \left[\begin{array}{c} +1 & +1/2 & -1/2 \\ 0 & +1 & +1 \\ 0 & 0 & +1 \\ \end{array} \right] \begin{array}{c} +2 \\ 0 & 0 & +1 \\ \end{array} \right] \\ \begin{array}{c} E_{8} \end{array} \left[\begin{array}{c} 1 & 0 & 1/2 \\ 0 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \\ \end{array} \right] \left[\begin{array}{c} 1 & 0 & 1/2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right] \left[\begin{array}{c} +1 & +1/2 & -1/2 \\ -1 \\ \end{array} \right] \begin{array}{c} +4 \\ 0 & +1 & +1 \\ \end{array} \right] \\ \begin{array}{c} +1 & +1/2 & -1/2 \\ \end{array} \left[\begin{array}{c} +1 & +1/2 & -1/2 \\ 0 & 0 & +1 \\ \end{array} \right] \\ \begin{array}{c} +1 & +1/2 & -1/2 \\ \end{array} \right] \left[\begin{array}{c} +1 & +1/2 & -1/2 \\ \end{array} \right] \\ \begin{array}{c} +1 & +1/2 & -1/2 \\ \end{array} \right] \left[\begin{array}{c} +1 & +1/2 & -1/2 \\ \end{array} \right] \\ \begin{array}{c} +1 & +1/2 & -1/2 \\ \end{array} \right] \\ \begin{array}{c} +1 & +1/2 & -1/2 \\ \end{array} \right] \\ \begin{array}{c} +1 & +1/2 & 0 \\ \end{array} \\ \begin{array}{c} +1 & +1/2 & 0 \\ \end{array} \\ \begin{array}{c} -1 & -1 \\ \end{array} \right] \\ \begin{array}{c} +1 & +1/2 & 0 \\ \end{array} \\ \begin{array}{c} -1 & -1 \\ \end{array} \\ \begin{array}{c} 0 & 0 & +1 \\ \end{array} \\ \begin{array}{c} -1 & -1 \\ \end{array} \end{array} \right] \end{array}$$

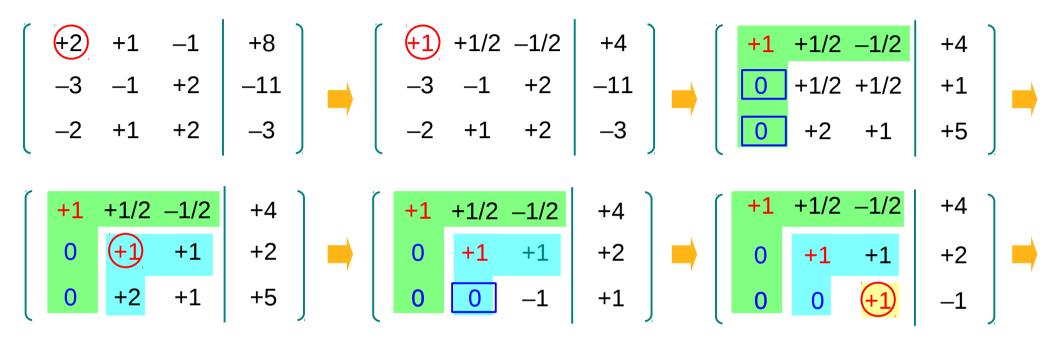
Elementary Matrix (4A)

Backward Phase

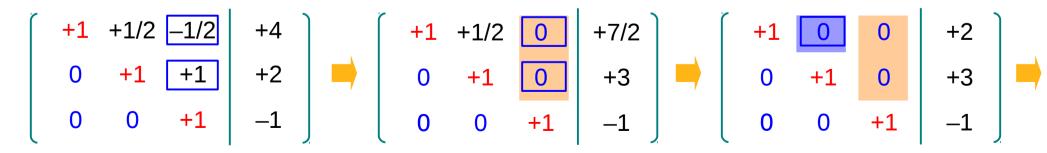


Gauss-Jordan Elimination

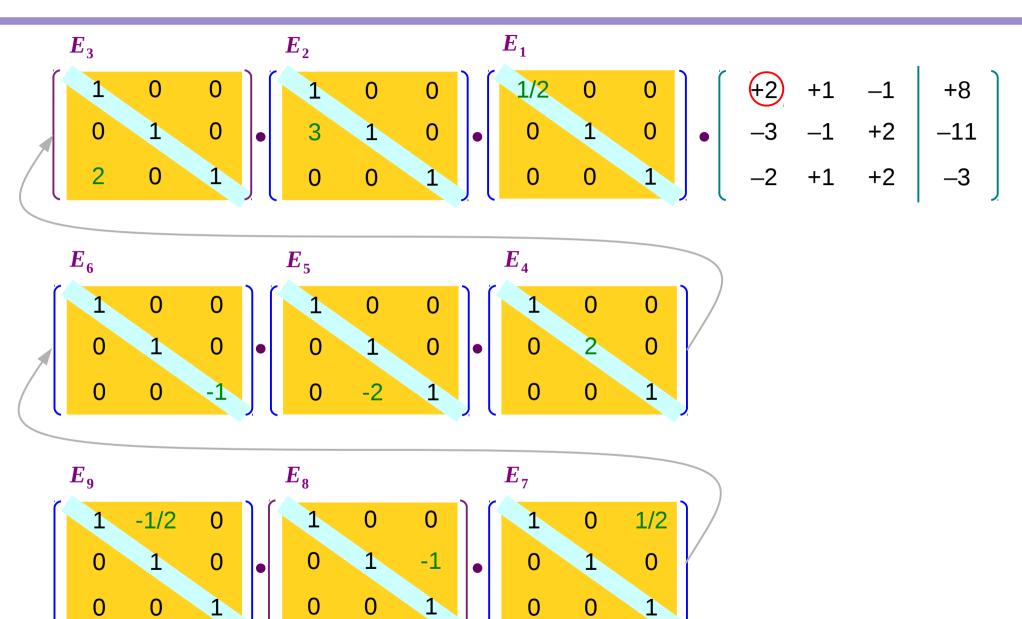
Forward Phase - Gaussian Elimination



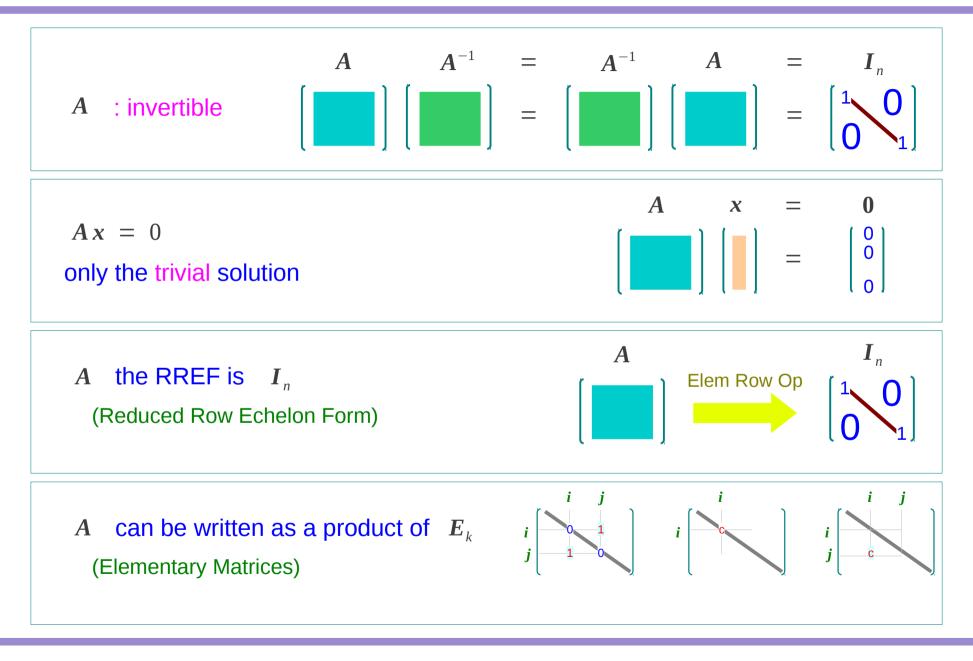
Backward Phase



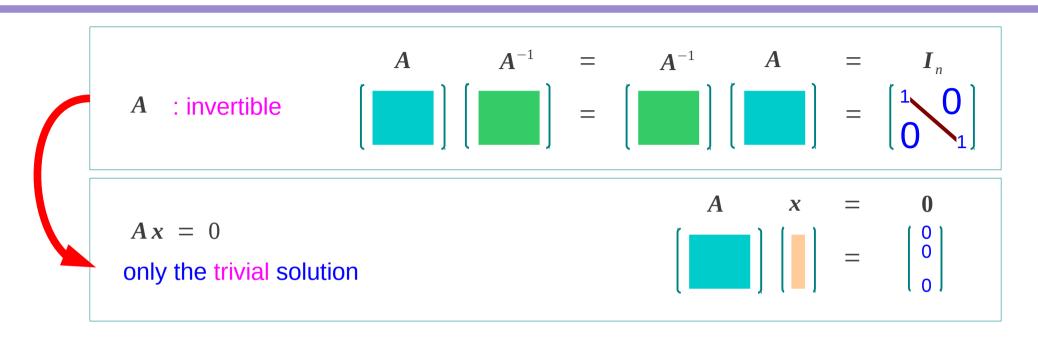
Product of Elementary Matrices



Equivalent Statements

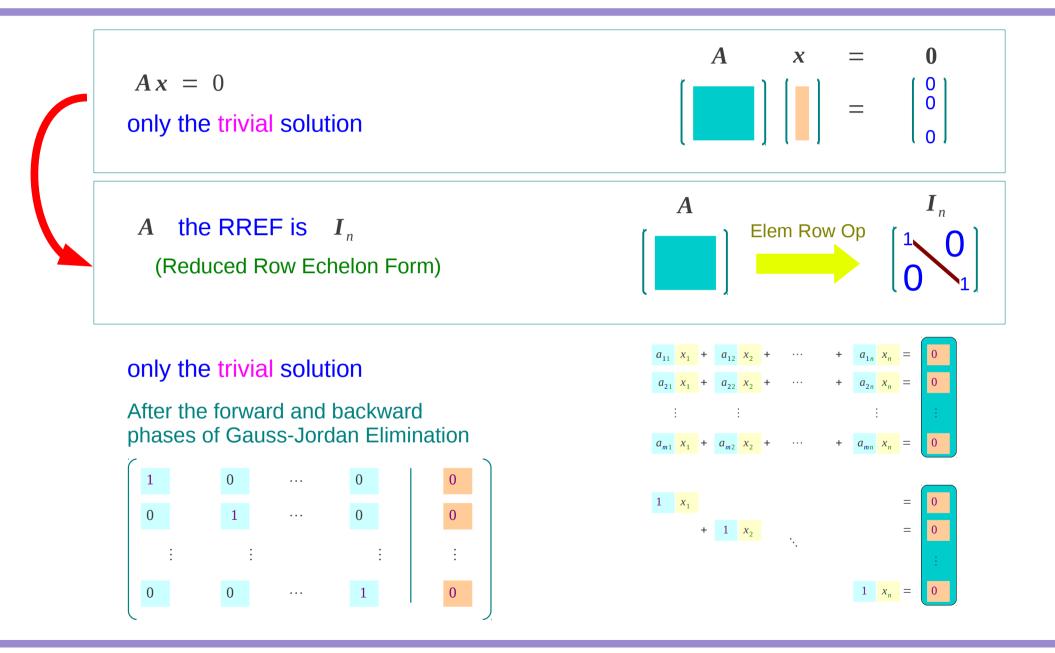


Proof (1)



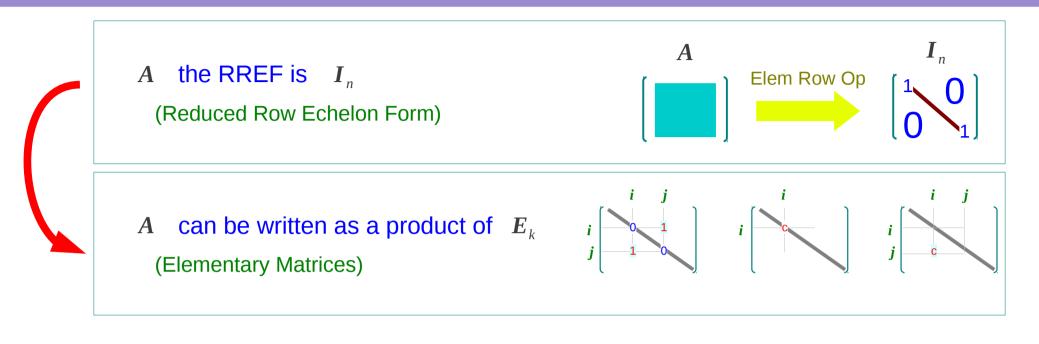
A : invertible x_0 a solution of Ax = 0 $A^{-1}Ax_0 = A^{-1}0$ $I_nx_0 = 0$ $x_0 = 0$ trivial

Proof (2)



Elementary Matrix (4A)

Proof (3)



$$E_{k} \cdots E_{2} E_{1} A = I_{n}$$

$$E_{k-1} \cdots E_{2} E_{1} A = E_{k}^{-1}$$

$$E_{k-1} \cdots E_{2} E_{1} A = E_{k}^{-1}$$

$$E_{k-1}^{-1} E_{k-1} \cdots E_{2} E_{1} A = E_{k-1}^{-1} E_{k}^{-1}$$

$$E_{k-1}^{-1} E_{k-1} \cdots E_{2} E_{1} A = E_{k-1}^{-1} E_{k}^{-1}$$

$$E_{k-1}^{-1} E_{k-1} \cdots E_{2} E_{1} A = E_{k-1}^{-1} E_{k}^{-1}$$

$$E_{k-1}^{-1} E_{k-1} \cdots E_{2} E_{1} A = E_{k-1}^{-1} E_{k}^{-1}$$

$$E_{k-1}^{-1} E_{k-1} \cdots E_{2} E_{1} A = E_{k-1}^{-1} E_{k-1}^{-1}$$

$$E_{k-1}^{-1} E_{k-1} \cdots E_{2} E_{1} A = E_{k-1}^{-1} E_{k-1}^{-1}$$

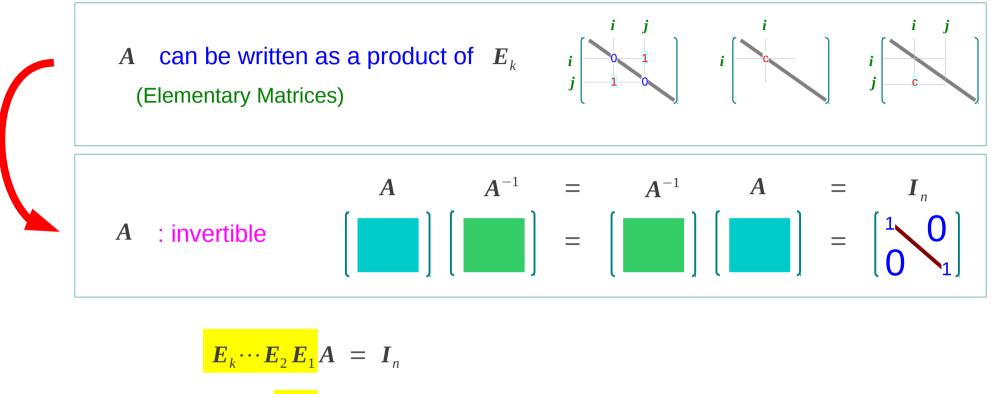
$$E_{k-1}^{-1} E_{k-1} \cdots E_{2} E_{1} A = E_{k-1}^{-1} E_{k-1}^{-1}$$

$$E_{k-1}^{-1} E_{k-1} \cdots E_{2} E_{1} A = E_{k-1}^{-1} E_{k-1}^{-1}$$

$$E_{k-1}^{-1} E_{k-1} \cdots E_{2} E_{1} A = E_{k-1}^{-1} E_{k-1}^{-1}$$

Elementary Matrix (4A)

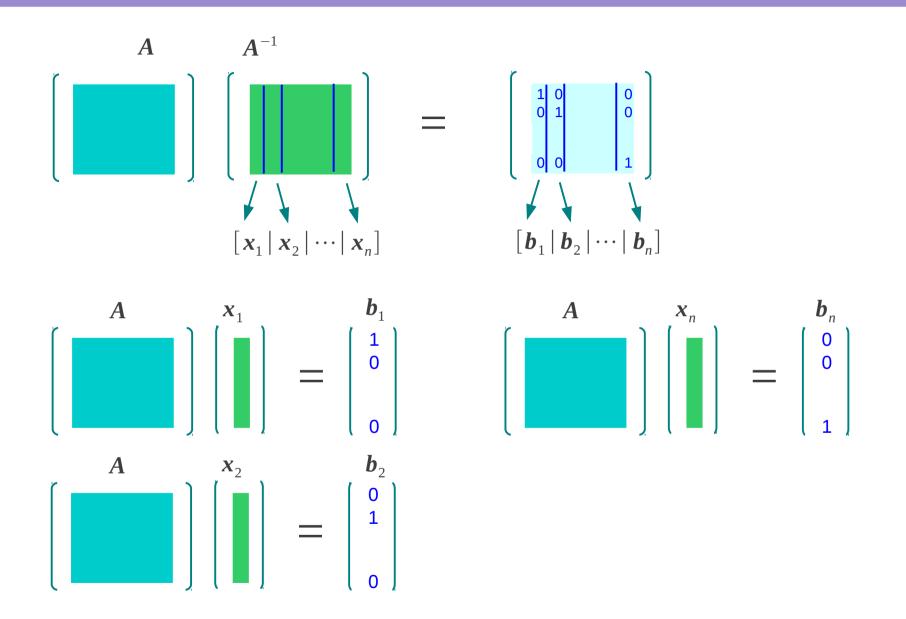
Proof (4)



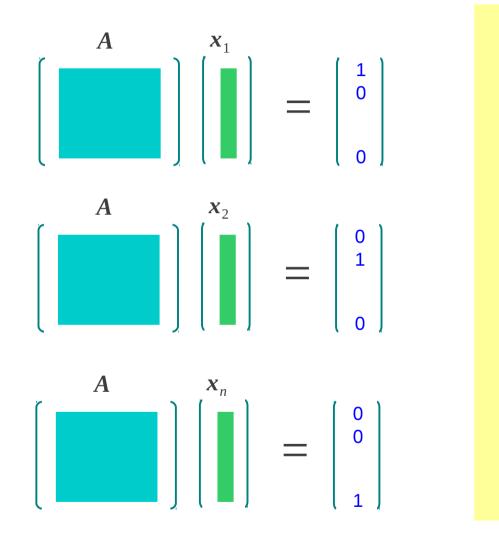
$$A^{-1}A = I_n$$

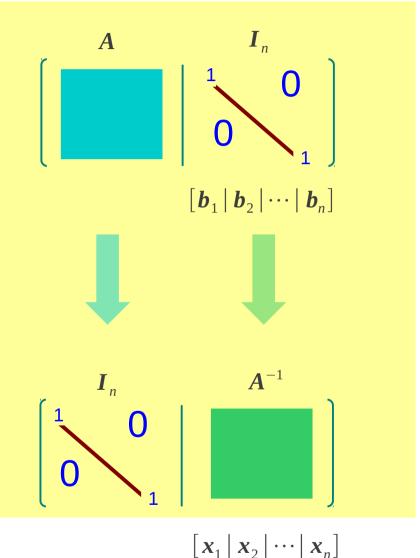
$$\boldsymbol{A}^{-1} = \boldsymbol{E}_k \cdots \boldsymbol{E}_2 \boldsymbol{E}_1$$

Inversion Algorithm (1)



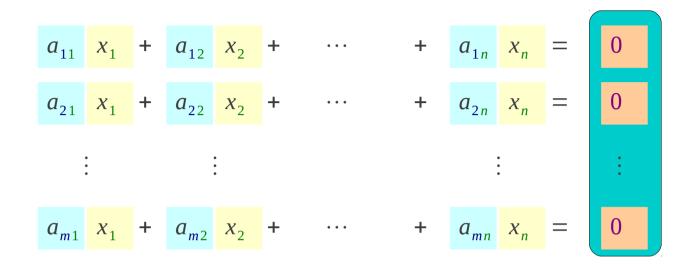
Inversion Algorithm (2)





Elementary Matrix (4A)

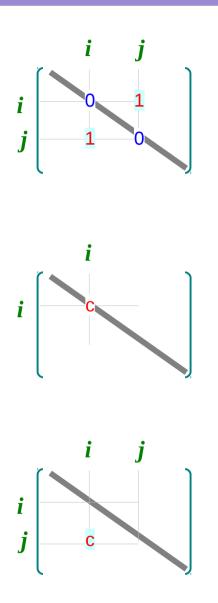
Homogeneous System



All constant terms are zero

Homogeneous System

All constant terms are zero



Elementary Matrix (4A)

29

References

- [1] http://en.wikipedia.org/
- [2] Anton & Busby, "Contemporary Linear Algebra"