Characteristics of Multiple Random Variables

Young W Lim

June 27, 2019

Copyright (c) 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.

Based on
Probability, Random Variables and Random Signal Principles, P.Z. Peebles,Jr. and B. Shi

Outline

(1) Transformation of Multiple Random Variables

Bivariate Gaussian Density

one function

Definition

The probability distribution and probability density functions of $\mathrm{Y}=\mathrm{g}\left(\mathrm{X} _1, \ldots, \mathrm{X} _\mathrm{N}\right)$
The probability distribution

$$
F_{Y}(y)=P\{Y \leq y\}=P\left\{g\left(X_{1}, \ldots, X_{N}\right) \leq y\right\}
$$

this probability is associated with all points in the $\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ hyperspace that map such that $g\left(X_{1}, \ldots, X_{N}\right) \leq y$ for any y integrate all such points according to

$$
\begin{gathered}
F_{Y}(y)=P\left\{g\left(X_{1}, \ldots, X_{N}\right) \leq y\right\} \\
=\int \cdots \int_{g\left(X_{1}, \ldots, x_{N}\right) \leq y} f_{x_{1}, \cdots, x_{N}}\left(x_{1}, \cdots, x_{N}\right) d x_{1} \cdots d x_{N}
\end{gathered}
$$

