Random Process Background

Young W Lim

Jun 09, 2023

Young W Lim Random Process Background

< 1 →

- ∢ ⊒ →

3) J

Copyright (c) 2023 - 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.

くロト く得ト くヨト くヨト

э

Based on Probability, Random Variables and Random Signal Principles, P.Z. Peebles, Jr. and B. Shi

Outline

Measurable Space

- Measurable Space
- Sigma Alebra
- Topological Space
- Open Set

Measurable Space **Topological Space**

Outline

1 Measurable Space

- Measurable Space
- Sigma Alebra
- Topological Space
- Open Set

< 17 ▶

Measurable Space Sigma Alebra Topological Space Open Set

Space (1)

• A space consists of

selected mathematical objects that are treated as points, and selected relationships between these points.

- the nature of the points can vary widely: for example, the points can be
 - elements of a set
 - functions on another space
 - subspaces of another space
- It is the relationships that define the nature of the space.

https://en.wikipedia.org/wiki/Space_(mathematics)

Measurable Space Sigma Alebra Topological Space Open Set

- While modern mathematics uses many types of **spaces**, such as
 - Euclidean spaces
 - linear spaces
 - topological spaces
 - Hilbert spaces
 - probability spaces
- it does <u>not</u> define the notion of **space** itself.

https://en.wikipedia.org/wiki/Space_(mathematics)

< 47 ►

Measurable Space Sigma Alebra Topological Space Open Set

Space (3)

a space is

a set (or a universe) with some added structure

- It is <u>not</u> always clear whether a given <u>mathematical object</u> should be considered as a geometric space, or an algebraic structure
- A general definition of **structure** embraces all common types of **space**

https://en.wikipedia.org/wiki/Space (mathematics)

< ロ > < 同 > < 三 > .

Measurable Space Sigma Alebra Topological Space Open Set

Mathematical objects (1)

- A mathematical object is an abstract concept arising in mathematics.
- an mathematical object is anything that has been (or could be) formally <u>defined</u>, and with which one may do
 - deductive reasoning
 - mathematical proofs

https://en.wikipedia.org/wiki/Mathematical object

< A ▶

Measurable Space Sigma Alebra Topological Space Open Set

Mathematical objects (2)

• Typically, a mathematical object

- can be a value that can be assigned to a variable
- therefore can be involved in formulas

https://en.wikipedia.org/wiki/Mathematical_object

< D > < A > < B > < B >

Measurable Space Sigma Alebra Topological Space Open Set

Mathematical objects (3)

• Commonly encountered mathematical objects include

- numbers
- sets
- functions
- expressions
- geometric objects
- transformations of other mathematical objects
- spaces

https://en.wikipedia.org/wiki/Mathematical_object

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Measurable Space Sigma Alebra Topological Space Open Set

Mathematical objects (4)

- Mathematical objects can be very complex;
 - for example, the followings are considered as mathematical objects in proof theory.
 - theorems
 - proofs
 - theories

https://en.wikipedia.org/wiki/Mathematical_object

< D > < A > < B > < B >

Measurable Space Sigma Alebra Topological Space Open Set

Structure (1)

• a structure is a set

endowed with some additional features on the set

- e.g. an operation
- relation
- metric
- topology
- Often, the *additional features* are attached or related to the set, so as to provide it with some *additional meaning* or *significance*.

https://www.localmaxradio.com/questions/what-is-a-mathematical-space

< □ > < 同 > < 回 >

Measurable Space Sigma Alebra Topological Space Open Set

Structure (2)

- A partial list of possible structures are
 - measures
 - algebraic structures (groups, fields, etc.)
 - topologies
 - metric structures (geometries)
 - orders
 - events
 - equivalence relations
 - differential structures
 - categories.

https://www.localmaxradio.com/questions/what-is-a-mathematical-space

< □ > < 同 > < 回 >

Measurable Space Sigma Alebra Topological Space Open Set

Mathematical space (1)

- A mathematical space is, informally, a collection of mathematical objects under consideration.
- The universe of mathematical objects within a space are *precisely* defined entities whose rules of *interaction* come baked into the rules of the space.

https://www.localmaxradio.com/questions/what-is-a-mathematical-space

Measurable Space Sigma Alebra Topological Space Open Set

Mathematical space (2)

- A space differs from a mathematical set in several important ways:
 - A mathematical set is also a collection of objects
 - but these objects are being pulled from a space (or universe) of objects where the rules and definitions have already been agreed upon

https://www.localmaxradio.com/questions/what-is-a-mathematical-space

< A >

Measurable Space Sigma Alebra Topological Space Open Set

Mathematical space (3)

- A space differs from a mathematical set in several important ways:
 - A mathematical set has no internal structure,
 - whereas a **space** usually has some internal structure.

https://www.localmaxradio.com/questions/what-is-a-mathematical-space

4 A²
 ▶

Measurable Space Sigma Alebra Topological Space Open Set

Mathematical space (4)

- having some internal structure could mean a variety of things, but typically it involves
 - *interactions* and *relationships* between elements of the **space**
 - *rules* on how to *create* and *define new* elements of the **space**

https://www.localmaxradio.com/questions/what-is-a-mathematical-space

< A ▶

Measurable Space Sigma Alebra Topological Space Open Set

Measurable space (1)

- A measurable space is any space with a sigma-algebra which can then be equipped with a measure
 - collection of **subsets** of the **space** following certain **rules** with a way to assign sizes to those sets.

https://www.quora.com/What-is-a-measurable-space-and-probability-space-

intuitively-What-differences-do-they-have

Measurable Space Sigma Alebra Topological Space Open Set

Measurable space (2)

Intuitively,

certain **sets** belonging to a **measurable space** can be given a size in a *consistent way*.

consistent way means that certain axioms are met:

- the empty set is given a size of zero
- if a measurable set is contained inside another one, then its size is less than or equal to the size of the containing set
- the size of a disjoint union of sets is the sum of the individual sets' sizes

https://www.quora.com/What-is-a-measurable-space-and-probability-space-

intuitively-What-differences-do-they-have

- - < 同 ▶ - < 三 ▶

Measurable Space Sigma Alebra Topological Space Open Set

Probability space

- A probability space is simply a measurable space equipped with a probability measure.
- A probability measure has the special property of giving the entire **space** a size of **1**.
 - this then implies that the size of any <u>disjoint union</u> of sets (the <u>sum</u> of the sizes of the sets) in the **probability space** is less than or equal to 1

https://www.quora.com/What-is-a-measurable-space-and-probability-space-

intuitively-What-differences-do-they-have

< A >

- ∢ ⊒ →

Measurable Space Sigma Alebra **Topological Space**

Outline

1 Measurable Space

- Measurable Space
- Sigma Alebra
- Topological Space
- Open Set

< 日 ▶

Measurable Space Sigma Alebra Topological Space Open Set

Sigma algebra (1)

- We term the structures which allow us to use measure to be sigma algebras
- the only requirements for sigma algebras (on a set X) are:
 - the {} and X are in the **set**.
 - if A is in the **set**, complement(A) is in the **set**.
 - for any sets E_i in the set, $\bigcup_i E_i$ is in the set (for countable *i*).

https://medium.com/intuition/measure-theory-for-beginners-an-intuitive-approach-

f5cea0cc2e7

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Measurable Space Sigma Alebra Topological Space Open Set

Sigma algebra (2)

- The most intuitive way to think about a **sigma algebra** is that it is the kind of **structure** we can do probability on.
 - for example, we can assign <u>ratios</u> of <u>areas</u> and <u>length</u>, so the measure on such a set X tells something about the probability of its subsets.
 - we can find the probability of subsets A and B because we know their ratios with respect to a set X ;
 - we also know that
 - (the measure of) their complements are defined, and
 - their unions and intersections are defined,
 - so we know how to find the probability of things in this set X.

https://medium.com/intuition/measure-theory-for-beginners-an-intuitive-approach-

f5cea0cc2e7

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Measurable Space Sigma Alebra Topological Space Open Set

Sigma algebra (3)

- The sigma algebra which contains the standard topology on R (that is, *all* open sets on R) is called the Borel Sigma Algebra, and the elements of this set are called Borel sets.
- What this gives us, is the set of sets on which outer measure gives our list of dreams. That is, if we take a Borel set and we check that length follows translation, additivity, and interval length, it will always hold.

https://medium.com/intuition/measure-theory-for-beginners-an-intuitive-approach-

f5cea0cc2e7

Image: Image:

Measurable Space Sigma Alebra Topological Space Open Set

Sigma algebra (4)

- The set of Lebesgue measurable sets is the set of **Borel sets**, along with (union) all the sets which differ from a Borel set by a set of measure 0.
- More intuitively, it is all the sets we can normally measure, plus a bunch of stuff that <u>doesn't</u> affect our ideas of area or volume (think about the border of the circle above).

https://medium.com/intuition/measure-theory-for-beginners-an-intuitive-approach-

f5cea0cc2e7

- ₹ 🖹 🕨

< A ▶

Measurable Space Sigma Alebra Topological Space Open Set

Borel Sets (1-1)

- a Borel set is any set in a topological space that can be formed from open sets (or, equivalently, from closed sets) through the operations of
 - countable union,
 - countable intersection, and
 - relative complement.

https://en.wikipedia.org/wiki/Borel_set

< 47 ►

Measurable Space Sigma Alebra Topological Space Open Set

Borel Sets (1-2)

- For a topological space X, the collection of all Borel sets on X forms a σ-algebra, known as the Borel algebra or Borel σ-algebra.
- The Borel algebra on X is the smallest σ-algebra containing all open sets (or, equivalently, all closed sets).

https://en.wikipedia.org/wiki/Borel_set

< ロ > < 同 > < 三 > .

Measurable Space Sigma Alebra Topological Space Open Set

Borel Sets (1-3)

- Borel sets are important in measure theory, since any measure defined on the open sets of a space, or on the closed sets of a space, must also be defined on all Borel sets of that space.
- Any measure defined on the Borel sets is called a **Borel measure**.
- Borel sets and the associated Borel hierarchy also play a fundamental role in descriptive set theory.

https://en.wikipedia.org/wiki/Borel set

Image: A matrix A

Measurable Space Sigma Alebra Topological Space Open Set

Borel Sets (2)

- Borel sets are those obtained from intervals by means of the operations allowed in a σ-algebra. So we may construct them in a (transfinite) "sequence" of steps:
- ... And again and again.

https://math.stackexchange.com/questions/220248/understanding-borel-sets

< □ > < 同 > < 回 >

Measurable Space Sigma Alebra Topological Space Open Set

Borel Sets (3-1)

- Start with finite unions of closed-open intervals. These sets are completely elementary, and they form an algebra.
- 2. Adjoin countable unions and intersections of elementary sets. What you get already includes open sets and closed sets, intersections of an open set and a closed set, and so on. Thus you obtain an algebra, that is still <u>not</u> a σ -algebra.

https://math.stackexchange.com/questions/220248/understanding-borel-sets

Measurable Space Sigma Alebra Topological Space Open Set

Borel Sets (3)

3. Again, adjoin countable unions and intersections to 2. Observe that you get a strictly larger class, since a countable intersection of countable unions of intervals is <u>not</u> <u>necessarily</u> included in 2.

Explicit examples of sets in 3 but not in 2 include F_{σ} sets, like, say, the set of *rational numbers*.

4. And do the same again.

https://math.stackexchange.com/questions/220248/understanding-borel-sets

< D > < A > < B > < B >

Measurable Space Sigma Alebra Topological Space Open Set

Borel Sets (4-1)

• And even after a sequence of steps we are not yet finished. Take, say, a countable union of a set constructed at step 1, a set constructed at step 2, and so on. This union may very well not have been constructed at any step yet. By axioms of σ -algebra, you should include it as well - if you want, as step ∞

https://math.stackexchange.com/questions/220248/understanding-borel-sets

Measurable Space Sigma Alebra Topological Space Open Set

Borel Sets (4-2)

- (or, technically, the first infinite ordinal, if you know what that means).
- And then continue in the same way until you reach the first uncountable ordinal. And only then will you finally obtain the generated σ -algebra.

https://math.stackexchange.com/questions/220248/understanding-borel-sets

(日) (同) (三) (

Measurable Space **Topological Space**

Outline

1 Measurable Space

- Measurable Space
- Sigma Alebra
- Topological Space
- Open Set

< 17 ▶

Measurable Space Sigma Alebra Topological Space Open Set

Topology

topology

from the Greek words $\tau \delta \pi \circ \varsigma$, 'place, location', and $\lambda \delta \omega \circ \varsigma$ 'ctudu'

and λόγος, '<mark>study</mark>'

is concerned with the properties of a geometric object

- that are *preserved* under <u>continuous</u> deformations, such as stretching, twisting, crumpling, and bending;
- that is, without closing holes, opening holes, tearing, gluing, or passing through itself.

https://en.wikipedia.org/wiki/Topology

- - < 同 ▶ - < 三 ▶

Measurable Space Sigma Alebra Topological Space Open Set

Topological space (1)

 a topological space is, roughly speaking, a geometrical space in which closeness is defined but <u>cannot</u> necessarily be measured by a numeric distance.

https://en.wikipedia.org/wiki/Borel_set

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Measurable Space Sigma Alebra Topological Space Open Set

Topological space (2)

- More specifically, a topological space is
- a set whose elements are called points,
- along with an additional structure called a topology,
 - which can be defined as
 - a set of neighbourhoods for each point
 - that satisfy some axioms
 - formalizing the concept of <u>closeness</u>.

https://en.wikipedia.org/wiki/Borel_set

< /□ > < □ >

Measurable Space Sigma Alebra Topological Space Open Set

Topological space (3)

• There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate.

https://en.wikipedia.org/wiki/Borel_set

< □ > < 同 > < 回 >

Measurable Space Sigma Alebra Topological Space Open Set

Topological space (4)

- A **topological space** is the most general type of a mathematical space that <u>allows</u> for the definition of
 - limits,
 - continuity, and
 - connectedness.
- Common types of topological spaces include
 - Euclidean spaces,
 - metric spaces and
 - manifolds.

https://en.wikipedia.org/wiki/Borel_set

▲ 🗇 🕨 🔺 🖻 🕨

Measurable Space Sigma Alebra Topological Space Open Set

Topological space (5)

• Although very general,

the concept of **topological spaces** is fundamental, and used in virtually every branch of modern mathematics.

 The study of topological spaces in their own right is called point-set topology or general topology.

https://en.wikipedia.org/wiki/Borel_set

< /₽ ► < Ξ ►

Measurable Space Sigma Alebra Topological Space Open Set

Open set (1)

- an open set is a generalization of an open interval in the real line.
- a **metric space** is a set along with a distance defined between any two points
- in a metric space,

an **open set** is a set that, along with every point P, contains all points that are sufficiently near to P

• all points whose distance to *P* is less than some value depending on *P*

https://en.wikipedia.org/wiki/Open set

< /₽ ► < Ξ ►

Measurable Space Sigma Alebra Topological Space Open Set

Open set (2)

- More generally, an open set is
 - a member of a given collection of subsets of a given set,
 - a collection that has the property of containing
 - every union of its members
 - every finite intersection of its members
 - the empty set
 - the whole set itself

https://en.wikipedia.org/wiki/Open_set

▲ □ ▶ ▲ □ ▶

Measurable Space Sigma Alebra Topological Space Open Set

Open set (2)

- A set in which such a collection is given is called a **topological space**, and the collection is called a **topology**.
- These conditions are very loose, and allow enormous flexibility in the choice of open sets.
- For example,
 - every subset can be open (the discrete topology), or
 - <u>no</u> subset can be open (the indiscrete topology) except
 - the space itself and
 - the empty set .

https://en.wikipedia.org/wiki/Open_set

Measurable Space Sigma Alebra Topological Space Open Set

Open set (3)

Example:

- The *circle* represents the set of points (x, y) satisfying $x^2 + y^2 = r^2$.
- The *disk* represents the set of points (x, y) satisfying $x^2 + y^2 < r^2$.
- The circle set is an open set,
- the disk set is its boundary set, and
- the union of the *circle* and *di*sk sets is a **closed set**.

https://en.wikipedia.org/wiki/Open_set

4 A²
 ▶

Measurable Space Sigma Alebra Topological Space Open Set

Open set (4)

- A set is a collection of distinct objects.
- Given a set A, we say that a is an element of A if a is one of the distinct objects in A, and we write a ∈ A to denote this
- Given two sets A and B, we say that A is a subset of B if every element of A is also an element of B write A ⊆ B to denote this.

https://ximera.osu.edu/mooculus/calculusE/continuityOfFunctionsOfSeveralVariables/digInOpenAndOpen

< ロ > < 向 > < 回 > <

Measurable Space Sigma Alebra Topological Space Open Set

Open set (5) Open Balls

- We give these definitions in general, for when one is working in Rⁿ since they are really not all that different to define in Rⁿ than in R²
- An open ball $B_r(a)$ in \mathbb{R}^n <u>centered</u> at $a = (a_1, \dots a_n) \in \mathbb{R}^n$ with <u>radius</u> ris the set of all points $\mathbf{x} = (x_1, \dots x_n) \in \mathbb{R}^n$ such that the <u>distance</u> between x and \mathbf{a} is less than r
- In \mathbb{R}^2 an open ball is often called an open disk

https://ximera.osu.edu/mooculus/calculusE/continuityOfFunctionsOfSeveralVariables/digInOpenAndVariables/digI

< ロ > < 同 > < 三 > .

Measurable Space Sigma Alebra Topological Space Open Set

Open set (6) Interior points

- Suppose that $S \subseteq \mathbb{R}^n$.
- A point *p* ∈ S is an interior point of S if there exists an open ball B_r(*p*) ⊆ S.
- Intuitively, *p* is an interior point of S if we can squeeze an entire open ball centered at *p* within S

https://ximera.osu.edu/mooculus/calculusE/continuityOfFunctionsOfSeveralVariables/digInOpenAndOpen

< ロ > < 同 > < 三 > .

Measurable Space Sigma Alebra Topological Space Open Set

Open set (7) Boundary points

- A point *p* ∈ ℝⁿ is a boundary point of S if all open balls centered at *p* contain both points in S and points not in S.
- The boundary of S is the set ∂S that consists of all of the boundary points of S.

https://ximera.osu.edu/mooculus/calculusE/continuityOfFunctionsOfSeveralVariables/digInOpenAndOpen

Measurable Space Sigma Alebra Topological Space Open Set

Open set (8) Open and Closed Sets

- A set O ⊆ ℝⁿ is open if every point in O is an interior point.
- A set C ⊆ ℝⁿ is closed if it contains all of its boundary points.

https://ximera.osu.edu/mooculus/calculusE/continuityOfFunctionsOfSeveralVariables/digInOpenAndVariables/digI

< A ▶

Measurable Space Sigma Alebra Topological Space Open Set

Open set (8) Bounded and Unbounded

• A set S is bounded if there is an open ball $B_M(0)$ such that

$S \subseteq B$.

- intuitively, this means that we can <u>enclose</u> all of the set S <u>within</u> a large enough ball centered at the origin.
- A set that is not bounded is called unbounded

https://ximera.osu.edu/mooculus/calculusE/continuityOfFunctionsOfSeveralVariables/digInOpenAnd

< ロ > < 同 > < 三 > .

Measurable Space **Topological Space** Open Set

Outline

1 Measurable Space

- Measurable Space
- Sigma Alebra
- Topological Space
- Open Set

< 17 ▶

Measurable Space Sigma Alebra Topological Space **Open Set**

Topologically distinguishable points (1)

- Intuitively, an open set provides a *method* to *distinguish* two points.
- two points in a topological space, there exists an open set
 - containing one point but
 - not containing the other (distinct) point
 - the two points are topologically distinguishable.

https://en.wikipedia.org/wiki/Open_set

Measurable Space Sigma Alebra Topological Space **Open Set**

Topologically distinguishable points (2)

- In this manner, one may speak of whether two points, or more generally two subsets, of a topological space are "near" without concretely defining a distance.
- Therefore, topological spaces may be seen as a generalization of spaces equipped with a notion of distance, which are called metric spaces.

https://en.wikipedia.org/wiki/Open_set

Measurable Space Sigma Alebra Topological Space **Open Set**

Topologically distinguishable points (3)

- In the set of all real numbers, one has the natural Euclidean metric; that is, a function which measures the distance between two real numbers: d(x,y) = |x - y|.
- Therefore, given a real number x, one can speak of the set of all points <u>close</u> to that real number x; that is, within ε of x.
- In essence, points within ε of x approximate x to an accuracy of degree ε.
- Note that ɛ > 0 always, but as ɛ becomes smaller and smaller, one obtains points that approximate x to a higher and higher degree of accuracy.

https://en.wikipedia.org/wiki/Open set

Measurable Space Sigma Alebra Topological Space **Open Set**

Topologically distinguishable points (4)

- For example, if x = 0 and ε = 1, the points within ε of x are precisely the points of the interval (-1,1); that is, the set of all real numbers between -1 and 1.
- However, with $\varepsilon = 0.5$, the points within ε of x are precisely the points of (-0.5, 0.5).
- Clearly, these points <u>approximate</u> x to a greater degree of accuracy than when ε = 1.

https://en.wikipedia.org/wiki/Open_set

< □ > < □ >

Measurable Space Sigma Alebra Topological Space **Open Set**

Topologically distinguishable points (5)

- The previous discussion shows, for the case x = 0, that one may <u>approximate</u> x to *higher* and *higher* degrees of accuracy by defining ε to be *smaller* and *smaller*.
- In particular, sets of the form (-ε, ε) give us a lot of information about points close to x = 0.
- Thus, rather than speaking of a <u>concrete</u> <u>Euclidean metric</u>, one may use <u>sets</u> to describe points <u>close</u> to *x*.

https://en.wikipedia.org/wiki/Open_set

Topologically distinguishable points (6)

- This innovative idea has far-reaching consequences; in particular, by defining different collections of sets containing 0 (distinct from the sets (-ε,ε)), one may find different results regarding the distance between 0 and other real numbers.
- For example, if we were to define R as the only such set for "measuring distance", all points are close to 0 since there is only one possible degree of accuracy one may achieve in approximating 0: being a member of R.

https://en.wikipedia.org/wiki/Open_set

- 4 同 6 4 日 6 4 日 6

Measurable Space Sigma Alebra Topological Space **Open Set**

Topologically distinguishable points (7)

- Thus, we find that in some sense, every real number is distance 0 away from 0.
- It may help in this case to think of the measure as being a binary condition: all things in *R* are equally close to 0,

while any item that is not in R is not close to 0.

https://en.wikipedia.org/wiki/Open_set

<ロト < 同ト < 三ト <

Measurable Space Sigma Alebra Topological Space **Open Set**

Topologically distinguishable points (8)

- In general, one refers to the family of sets containing 0, used to <u>approximate</u> 0, as a neighborhood basis;
 a member of this neighborhood basis
 is referred to as an **open set**.
- In fact, one may generalize these notions to an <u>arbitrary</u> set (X); rather than just the real numbers.
- In this case, given a point (x) of that set, one may define a collection of sets
 "around" (that is, containing) x, used to approximate x.

https://en.wikipedia.org/wiki/Open_set

Measurable Space Sigma Alebra Topological Space **Open Set**

Topologically distinguishable points (9)

- Of course, this collection would have to satisfy certain properties (known as axioms) for otherwise we may not have a well-defined method to measure distance.
- For example, every point in X should approximate x to some degree of accuracy.
- Thus X should be in this family.
- Once we begin to define "smaller" sets containing x, we tend to approximate x to a greater degree of accuracy.
- Bearing this in mind, one may <u>define</u> the remaining axioms that the family of sets about x is required to satisfy.

https://en.wikipedia.org/wiki/Open_set

Measurable Space Sigma Alebra Topological Space **Open Set**

Definitions (1) Euclidean space

- A subset U of the Euclidean n-space Rⁿ is open if, for every point x in U, there exists a positive real number ε (depending on x) such that any point in Rⁿ whose Euclidean distance from x is smaller than ε belongs to U
- Equivalently, a subset U of ℝⁿ is open if every point in U is the center of an open ball contained in U
- An example of a subset of ℝ that is not open is the closed interval [0,1], since neither 0 − ε nor 1 + ε belongs to [0,1] for any ε > 0, no matter how small.

```
https://en.wikipedia.org/wiki/Open_set
```

Measurable Space Sigma Alebra Topological Space **Open Set**

Definitions (2) Metric space

- A subset U of a metric space (M, d) is called open if, for any point x in U, there exists a real number ε > 0 such that any point y ∈ M satisfying d(x,y) < ε belongs to U.
- Equivalently, *U* is **open** if every point in *U* has a neighborhood contained in *U*.
- This generalizes the Euclidean space example, since Euclidean space with the Euclidean distance is a metric space.

https://en.wikipedia.org/wiki/Open set

< D > < A > < B > < B >

Measurable Space Sigma Alebra Topological Space **Open Set**

Definitions (3) Topological space

• A topology τ on a set X is

a set of subsets of X with the *properties* below. Each member of τ is called an open set.[3]

- $X \in \tau$ and $arnothing \in au$
- Any union of sets in τ belong to τ : if $\{U_i : i \in I\} \subseteq \tau$ then

$$\bigcup_{i\in I}U_i\in\tau$$

• Any finite intersection of sets in τ belong to τ : if $U_1, \ldots, U_n \in \tau$ then

 $U_1 \cap \cdots \cap U_n \in \tau$

• X together with τ is called a **topological space**.

https://en.wikipedia.org/wiki/Open_set

< ロ > < 同 > < 三 > .

Measurable Space Sigma Alebra Topological Space **Open Set**

Definitions (4) Topological space

- Infinite intersections of open sets need not be open.
- For example, the intersection of all intervals of the form (-1/n, 1/n), where *n* is a positive integer, is the set $\{0\}$ which is not open in the real line.
- A metric space is a topological space, whose topology consists of the collection of all subsets that are unions of open balls.
- There are, however, topological spaces that are not metric spaces.

https://en.wikipedia.org/wiki/Open set

< D > < A > < B > < B >

Measurable Space Sigma Alebra Topological Space **Open Set**

Topological space via neighborhoods (1)

- This axiomatization is due to Felix Hausdorff.
- Let X be a set;
- the elements of X are usually called points, though they can be any mathematical object.
- We allow X to be empty.
- Let \mathcal{N} be a function assigning to each x (point) in X a non-empty collection $\mathcal{N}(x)$ of subsets of X.
- The elements of $\mathcal{N}(x)$ will be called neighbourhoods of x with respect to \mathcal{N} (or, simply, neighbourhoods of x).
- The function ${\mathscr N}$ is called a neighbourhood topology if the axioms below[8] are satisfied; and
- then X with \mathcal{N} is called a topological space.

https://en.wikipedia.org/wiki/Topological_space

Measurable Space Sigma Alebra Topological Space **Open Set**

Topological space via neighborhoods (2)

- If N is a neighbourhood of x (i.e., N ∈ N(x)), then x ∈ N. In other words, each point belongs to every one of its neighbourhoods.
- If N is a subset of X and includes a neighbourhood of x, then N is a neighbourhood of x. I.e., every superset of a neighbourhood of a point x ∈ X is again a neighbourhood of x.
- The intersection of two neighbourhoods of x x is a neighbourhood of x.
- Any neighbourhood \mathcal{N} of x includes a neighbourhood \mathcal{M} of x such that \mathcal{N} is a neighbourhood of each point of M.

https://en.wikipedia.org/wiki/Topological_space

Measurable Space Sigma Alebra Topological Space **Open Set**

Topological space via neighborhoods (3)

- The first three axioms for neighbourhoods have a clear meaning.
- The fourth axiom has a very important use in the structure of the theory, that of linking together the neighbourhoods of different points of X.
- A standard example of such a system of neighbourhoods is for the real line ℝ, where a subset N of ℝ is defined to be a neighbourhood of a real number x if it includes an open interval containing x.

https://en.wikipedia.org/wiki/Topological_space

<ロト < 同ト < 三ト <

Measurable Space Sigma Alebra Topological Space **Open Set**

Topological space via open sets (1)

- A topology on a set X may be defined as a collection τ of subsets of X, called open sets and satisfying the following axioms:
 - The empty set and X itself belong to τ .
 - Any arbitrary (finite or infinite) union of members of τ belongs to τ .
 - The intersection of any finite number of members of τ belongs to τ .

https://en.wikipedia.org/wiki/Topological_space

Measurable Space Sigma Alebra Topological Space **Open Set**

Topological space via open sets (2)

- As this definition of a topology is the most <u>commonly used</u>, the set τ of the open sets is commonly called a **topology** on X.
- A subset $C \subseteq X$ is said to be closed in (X, τ) if its complement $X \setminus C$ is an open set.

https://en.wikipedia.org/wiki/Topological_space

Measurable Space Sigma Alebra Topological Space **Open Set**

Topological space via neighborhoods (4)

- Given such a structure, a subset U of X is defined to be **open** if U is a neighbourhood of all points in U.
- The **open sets** then satisfy the axioms given below.
- Conversely, when given the open sets of a topological space, the neighbourhoods satisfying the above axioms can be recovered by defining N to be a neighbourhood of x if N includes an open set U such that x ∈ U.

https://en.wikipedia.org/wiki/Topological_space

(日) (同) (三) (

Measurable Space Sigma Alebra Topological Space **Open Set**

Examples of topoloy (1)

• Given $X = \{1, 2, 3, 4\},$

the trivial or indiscrete topology on X is the family $\tau = \{\{\}, \{1, 2, 3, 4\}\} = \{\emptyset, X\}$ consisting of only the two subsets of X required by the axioms forms a topology of X.

• Given
$$X = \{1, 2, 3, 4\}$$
,
the family $\tau = \{\{\}, \{2\}, \{1, 2\}, \{2, 3\}, \{1, 2, 3\}, \{1, 2, 3, 4\}\}$
 $= \{\emptyset, \{2\}, \{1, 2\}, \{2, 3\}, \{1, 2, 3\}, X\}$
of six subsets of X forms another topology of X.

https://en.wikipedia.org/wiki/Topological space

(4 同) (ヨ) (ヨ)

Measurable Space Sigma Stochatic Process Topol

Measurable Space Sigma Alebra Topological Space **Open Set**

Examples of topoloy (2)

• Given $X = \{1, 2, 3, 4\}$,

the discrete topology on X is the power set of X, which is the family $\tau = \mathscr{O}(X)$ consisting of all possible subsets of X. In this case the topological space (X, τ) is called a discrete space.

```
Given X = Z, the set of integers,
the family τ of all finite subsets
of the integers plus Z itself
is not a topology,
because (for example) the union of all finite sets
not containing zero is not finite
but is also not all of Z, and so it cannot be in τ.
```

https://en.wikipedia.org/wiki/Topological_space

Measurable Space Stochatic Process Open) Measurable Space Sigma Alebra Topological Space Open Set

• (Open and Closed Sets)

https://en.wikipedia.org/wiki/Topological_space

э

《口》《聞》《臣》《臣》

Stochastic Process (1)

In probability theory and related fields, a **stochastic** (/stoʊ'kæstık/) or **random** process is a mathematical object usually defined as a family of **random variables**.

The word stochastic in English was originally used as an adjective with the definition "pertaining to **conjecturing**", and stemming from a Greek word meaning "to <u>aim</u> at a mark, <u>guess</u>", and the Oxford English Dictionary gives the year 1662 as its earliest occurrence.

From Ancient Greek στοχαστικός (stokhastikós), from στοχάζομαι (stokházomai, "aim at a target, guess"), from στόχος (stókhos, "an aim, a guess").

https://en.wikipedia.org/wiki/Stochastic https://en.wiktionary.org/wiki/stochastic

< 口 > < 同 > < 三 > < 三

Stochastic Process (2)

The definition of a **stochastic process** varies, but a **stochastic process** is *traditionally* defined as a collection of **random variables** indexed by some set.

The terms **random process** and **stochastic process** are considered <u>synonyms</u> and are used <u>interchangeably</u>, without the **index set** being precisely specified.

Both "collection", or "family" are used while instead of "index set", sometimes the terms "parameter set" or "parameter space" are used.

Stochastic Process (3)

The term **random function** is also used to refer to a **stochastic** or **random process**, though sometimes it is only used when the stochastic process takes <u>real values</u>.

This term is also used when the **index sets** are **mathematical spaces** other than the **real line**,

while the terms **stochastic process** and **random process** are usually used when the **index set** is interpreted as time,

and other terms are used such as **random field** when the **index set** is *n*-dimensional **Euclidean space** \mathbb{R}^n or a manifold

Stochastic Process (4)

A stochastic process can be denoted, by $\{X(t)\}_{t\in T}$, $\{X_t\}_{t\in T}$, $\{X(t)\}$, $\{X_t\}$ or simply as X or X(t), although X(t) is regarded as an abuse of function notation.

For example, X(t) or X_t are used to refer to the **random variable** with the **index** t, and not the entire **stochastic process**.

If the **index set** is $T = [0, \infty)$, then one can write, for example, $(X_t, t \ge 0)$ to denote the **stochastic process**.

Stochastic Process Definition (1)

A stochastic process is defined as a <u>collection</u> of **random variables** defined on a common **probability space** (Ω, \mathcal{F}, P) ,

- Ω is a sample space,
- \mathscr{F} is a σ -algebra,
- P is a probability measure;
- the random variables, indexed by some set T,
- all take values in the same **mathematical space** S, which must be **measurable** with respect to some σ -algebra Σ

Stochastic Process Definition (2)

In other words, for a given probability space (Ω, \mathscr{F}, P) and a measurable space (S, Σ) , a stochastic process is a collection of S-valued random variables, which can be written as:

 $\{X(t):t\in T\}.$

Stochastic Process Definition (3)

Historically, in many problems from the natural sciences a point $t \in T$ had the meaning of time, so X(t) is a **random variable** representing a value observed at time t.

A stochastic process can also be written as $\{X(t, \omega) : t \in T\}$ to reflect that it is actually a function of two variables, $t \in T$ and $\omega \in \Omega$.

Stochastic Process Definition (4)

There are <u>other</u> ways to consider a stochastic process, with the above definition being considered the traditional one.

For example, a stochastic process can be interpreted or defined as a S^{T} -valued **random variable**, where S^{T} is the space of all the possible functions from the set T into the space S.

However this alternative definition as a "function-valued random variable" in general requires additional regularity assumptions to be well-defined.

Index set (1)

The set T is called the **index set** or **parameter set** of the **stochastic process**.

Often this set is some <u>subset</u> of the <u>real line</u>, such as the natural numbers or an interval, giving the set T the interpretation of time.

Index set (2)

In addition to these sets, the index set T can be another set with a **total order** or a more general set, such as the Cartesian plane R^2 or *n*-dimensional **Euclidean space**, where an element $t \in T$ can represent a point in space.

That said, many results and theorems are only possible for **stochastic processes** with a **totally ordered index set**.

State space

The mathematical space S of a stochastic process is called its state space.

This mathematical space can be defined using integers, real lines, *n*-dimensional Euclidean spaces, complex planes, or more abstract mathematical spaces.

The **state space** is defined using elements that reflect the <u>different</u> values that the **stochastic process** can <u>take</u>.

Sample function (1)

A sample function is a <u>single</u> outcome of a stochastic process, so it is formed by taking a <u>single</u> <u>possible value</u> of each random variable of the stochastic process.

More precisely, if $\{X(t, \omega) : t \in T\}$ is a stochastic process, then for any point $\omega \in \Omega$, the mapping $X(\cdot, \omega) : T \to S$, is called a sample function, a realization, or, particularly when T is interpreted as <u>time</u>, a sample path of the stochastic process $\{X(t, \omega) : t \in T\}$.

https://en.wikipedia.org/wiki/Stochastic_process

Sample function (2)

This means that for a fixed $\omega \in \Omega$, there exists a **sample function** that maps the **index set** T to the **state space** S.

Other names for a **sample function** of a **stochastic process** include **trajectory**, **path function** or **path**

Young W Lim Random Process Background

< ロ > < 部 > < き > < き > <</p>

Ξ.