Implication (6A)

Copyright (c) 2015-2018 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Material Implication \& Logical Implication

Given two propositions \mathbf{A} and \mathbf{B},
If $\mathbf{A} \Rightarrow \mathbf{B}$ is a tautology
It is said that A logically implies $B \quad(A \Rightarrow B)$

Material Implication $\mathbf{A} \Rightarrow \mathbf{B}$ (not a tautology)

$$
\begin{aligned}
& A \rightarrow B \\
& A \Rightarrow B
\end{aligned}
$$

Logical Implication $\quad \mathbf{A} \Rightarrow \mathbf{B} \quad$ (a tautology)

A	B	$\mathrm{A} \Rightarrow \mathrm{B}$
T	T	T
T	F	F
F	T	T
F	F	T

A	B	$\mathrm{A} \wedge \mathrm{B}$	$\mathrm{A} \wedge \mathrm{B} \Rightarrow \mathrm{A}$
T	T	T	T
T	F	F	T
F	T	F	T
F	F	F	T
	$\mathbf{A} \wedge \mathbf{B} \Rightarrow \mathbf{A}$		

Logic and Venn diagram (1)

	S		N
case (1)	T	T	T
case (2)	T	F	F
case (3)	F	T	T
case (4)	F	F	T

Logic and Venn diagram (2)

					p
case (1)	q	r	$p \rightarrow q$	\cdots	
	T	T	T	T	
case (2)	T	T	F	T	
case (3)	T	F	T	F	
case (4)	T	F	F	F	
case (5)	F	T	T	T	
case (6)	F	T	F	T	
case (7)	F	F	T	T	
case (8)	F	F	F	T	

Material Implication and Venn Diagram

When $S \Rightarrow N$ is True

When $S \Rightarrow N$ is a true statement

$\mathrm{S} \Rightarrow \mathrm{N}$ is True
cases (1)+(3)+(4)
if the conditional statement $(\mathbf{S} \Rightarrow \mathbf{N})$ is a true statement,
(1) then the consequent \mathbf{N} must be true if \mathbf{S} is true
(2) the antecedent \mathbf{S} can not be true without \mathbf{N} being true

$\mathbf{S} \subseteq \mathbf{N}$

if the conditional statement $(\mathbf{S} \Rightarrow \mathbf{N})$ is a true statement,
then the consequent \mathbf{N} must be true if \mathbf{S} is true

$$
\mathbf{S} \Rightarrow \mathbf{N}
$$

$\sim N \subseteq \sim S$

if the conditional statement $(S \Rightarrow N)$ is a true statement,
the antecedent \mathbf{S} can not be true without \mathbf{N} being true

Material Implication vs. Logical Consequence

Material Implication

$$
\mathrm{T} \Rightarrow \mathrm{~F} \text { exists }{ }^{(2)}
$$

Logical Consequences

Always True
(Tautology)
entailment

$$
\begin{array}{ll}
S \vdash N & \text { syntactic (proof) } \\
S \vDash N & \text { semantic (model) }
\end{array}
$$

Implication

If S, then N.
S implies N .
N whenever \mathbf{S}.
S is sufficient for N .

S only if N . not S if not N . not S without N .

N is necessary S .

Necessity and Sufficiency

condition that guarantees N sufficiency for N satisfied for \mathbf{S}	
S satisfies at least N necessity for \mathbf{S} \mathbf{N} if \mathbf{S}	without \mathbf{N}, it can't be \mathbf{S} \mathbf{S} only if \mathbf{N}

Logic (6A)	20
Implication	

Other Necessary Conditions

requirement 2

S only if N
not S if not N

http://philosophy.wisc.edu/hausman/341/Skill/nec-suf.htm`

Other Sufficient Conditions

http://philosophy.wisc.edu/hausman/341/Skill/nec-suf.htm`

Resolution (7A)

Copyright (c) 2015-2018 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Argument

$$
\begin{aligned}
&(p \vee q) \\
&(\neg p \vee r) \\
& \hline \boldsymbol{q} \vee r(p \vee q) \wedge(\neg p \vee r) \rightarrow q \vee r
\end{aligned}
$$

Truth Table

p	q	r	$p \vee q$
T	T	T	T
T	T	F	T
T	F	T	T
T	F	F	T
F	T	T	T
F	T	F	T
F	F	T	F
F	F	F	F

p	q	r	$\neg p$	$\neg p \vee r$
T	T	T	F	T
T	T	F	F	F
T	F	T	F	T
T	F	F	F	F
F	T	T	T	T
F	T	F	T	T
F	F	T	T	T
F	F	F	T	T

p	q	r	$(p \vee q) \wedge(\neg p \vee r)$	$q \vee r$
T	T	T	T	T
T	T	F	F	T
T	F	T	T	T
T	F	F	F	F
F	T	T	T	T
F	T	F	T	T
F	F	T	F	T
F	F	F	F	F

$(p \vee q) \wedge(\neg p \vee r) \rightarrow q \vee r$

Interpretation of this truth table

				$p \vee q$	A			B	
	p	q	r		$\neg p \vee r$	$(p \vee q) \wedge(\neg p$	$p \vee r)$	$q \vee r$	$A \rightarrow B$
case (1)	T	T	T	T	T	T	-	$\rightarrow T$	T
case (2)	T	T	F	T	F	F	-	T	T
case (3)	T	F	T	T	T	T		T	T
case (4)	T	F	F	T	F	F		F	T
case (5)	F	T	T	T	T	T	-	T	T
case (6)	F	T	F	T	T	T	-	T	T
case ${ }^{7}$	F	F	T	F	T	F	-	- T	T
case (8)	F	F	F	F	T	F	-	- F	T

Whenever $\quad p \vee q$ and $\neg p \vee r$ are true, $q \vee r$ is true

$$
(p \vee q) \wedge(\neg p \vee r) \rightarrow q \vee r
$$

Venn diagram for $\boldsymbol{p} \vee \boldsymbol{q}$

$$
p \vee q
$$

	p	q	r	$p \vee q$
	case (1)	T	T	T
T				
case (2)	T	T	F	T
case (3)	T	F	T	T
case (4)	T	F	F	T
case (5)	F	T	T	T
case (6)	F	T	F	T
case (7)	F	F	T	F
case (8)	F	F	F	F

Venn diagram for $\neg \boldsymbol{p} \vee \boldsymbol{r}$

$\neg p \vee r$

	p	q	r	$\neg p$	$\neg p \vee q$
case (1)	T	T	T	F	T
case (2)	T	T	F	F	F
case (3)	T	F	T	F	T
case (4)	T	F	F	F	F
case (5)	F	T	T	T	T
case (6)	F	T	F	T	T
case (7)	F	F	T	T	T
case (8)	F	F	F	T	T

When $(\boldsymbol{p} \vee \boldsymbol{q}) \wedge(\neg \boldsymbol{p} \vee \boldsymbol{r})$ is true

When $p \vee q$ is true and $\neg p \vee r$ is true
$(p \vee q) \wedge(\neg p \vee r)$
cases ${ }^{(1)+(3)+(5)+(6)}$

When $(\boldsymbol{p} \vee \boldsymbol{q}) \wedge(\neg \boldsymbol{p} \vee \boldsymbol{r})$ is true, $\boldsymbol{q} \vee \boldsymbol{r}$ is also true

Argument

Case 1: \boldsymbol{p} is false

$F \vee q$
$T \vee r$
q

when \boldsymbol{p} is false, q must be true.

Case 2: \boldsymbol{p} is true

$T \vee q$
$F \vee r$
r

when \boldsymbol{p} is true, r must be true.

Therefore regardless of truth value of \boldsymbol{p}, If both premises hold, then the conclusion $\boldsymbol{q} \vee \boldsymbol{r}$ is true

Resolution Examples

$p \vee q$
$\neg p \vee r$
$q \vee r$

$$
\begin{gathered}
\not p \vee q \\
\neg p \vee \vee r
\end{gathered}
$$

$$
\begin{gathered}
\not p \vee q \\
\neg \not p \vee r \\
q \vee r
\end{gathered}
$$

$p \vee q$
$\neg p$
q

p
$\neg p \vee r$
r

Resolution in Prolog

Conjunctive Norm Form (CNF) is assumed

$$
(\cdots \vee \cdots) \wedge(\cdots \vee \cdots \vee \cdots) \wedge(\cdots \vee \cdots)
$$

the variables $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, and E are in conjunctive normal form:

```
\negA^(B\veeC)
(A\veeB)^(\negB\veeC\vee\negD)^(D\vee 龙)
AvB
A^B
```

The following formulas are not in conjunctive normal form:

```
\neg(B\veeC)
(A^B)\veeC
A^(B\vee(D^E))
```


Example A

$\left.\begin{array}{l}\left(\begin{array}{l}p \vee q \\ p \vee \neg r \\ \neg p \vee q \\ \neg q \vee r\end{array}\right. \\ \hline \begin{array}{l}q \\ p \vee \neg r \\ \neg q \vee r\end{array} \\ \hline p \vee \neg r \\ r\end{array}\right)$

$$
\begin{aligned}
& (p \vee q) \wedge(p \vee \neg r) \wedge(\neg p \vee q) \wedge(\neg q \vee r) \\
\vdash & (p \vee q) \wedge(p \vee \neg r) \wedge(\neg p \vee q) \wedge(\neg q \vee r) \wedge(q) \\
\vdash & (p \vee q) \wedge(p \vee \neg r) \wedge(\neg p \vee q) \wedge(\neg q \vee r) \wedge(q) \wedge(r) \\
\vdash & (p \vee q) \wedge(p \vee \neg r) \wedge(\neg p \vee q) \wedge(\neg q \vee r) \wedge(q) \wedge(r) \wedge(p)
\end{aligned}
$$

Example B - (1)

$p \rightarrow q \vee r$	$p \rightarrow q \vee r$
$p \vee \neg q$	$p \vee \neg q$
$\vee r \vee q$	
$\neg p \vee q \vee r$	$r \vee q$
$r \vee q$	$\neg p \vee q \vee r$
$q \vee \neg q \vee r$	$p \vee \neg q$
$r \vee q$	
$r \vee \neg q \vee r=T \vee r=T$	$p \vee q$
$r \vee q$	

Example B - (2)

$p \rightarrow q \vee r$
$p \vee \neg q$
$r \vee q$
$p \rightarrow q \vee r$
$\neg p \rightarrow \neg q$
$q \vee r$
$p \rightarrow q \vee r$
$q \rightarrow p$
$q \vee r$
$p \vee r$

Truth Table

p	q	r	$\neg p$	$\neg p \vee q \vee r$
T	T	T	F	T
T	T	F	F	T
T	F	T	F	T
T	F	F	F	F
F	T	T	T	T
F	T	F	T	T
F	F	T	T	T
F	F	F	T	T

p	q	r	$\neg q$	$p \vee \neg q$
T	T	T	F	T
T	T	F	F	T
T	F	T	T	T
T	F	F	T	T
F	T	T	F	F
F	T	F	F	F
F	F	T	T	T
F	F	F	T	T

p	q	r	$q \vee r$
T	T	T	T
T	T	F	T
T	F	T	T
T	F	F	F
F	T	T	T
F	T	F	T
F	F	T	T
F	F	F	F

| p | q | r | $\neg p \vee q \vee r$ | $p \vee \neg q$ | $q \vee r$ | $H 1 \wedge H 2 \wedge H 3$ | $p \vee r$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T |
T	T	F	T	T	T	T	T
T	F	T	T	T	T	T	T
T	F	F	F	T	F	F	T
F	T	T	T	F	T	F	T
F	T	F	T	F	T	F	F
F	F	T	T	T	T	T	T
F	F	F	T	T	F	F	F

$H 1=\neg p \vee q \vee r$
$H 2=p \vee \neg q$
$H 3=q \vee r$

$H 1 \wedge H 2 \wedge H 3 \rightarrow H 3$
$H 1 \wedge H 2 \wedge H 3 \rightarrow H 2$
$H 1 \wedge H 2 \wedge H 3 \rightarrow H 1$
$H 1 \wedge H 2 \wedge H 3 \rightarrow(p \vee r)$

References

[1] http://en.wikipedia.org/
[2]

Functions (4A)

Copyright (c) 2015 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Function

A function f takes an input x, and returns a single output $f(x)$. One metaphor describes the function as a "machine" or "black box" that for each input returns a corresponding output.

A function that associates any of the four colored shapes to its color.

Function

The above diagram represents a function with domain $\{1,2,3\}$, codomain $\{A, B, C, D\}$ and set of ordered pairs $\{(1, D),(2, C),(3, C)\}$. The image is $\{C, D\}$.

However, this second diagram does not represent a function. One reason is that 2 is the first element in more than one ordered pair. In particular, (2, B) and (2, C) are both elements of the set of ordered pairs. Another reason, sufficient by itself, is that 3 is not the first element (input) for any ordered pair. A third reason, likewise, is that 4 is not the first element of any ordered pair.

Domain, Codomain, and Range

X : domain Y : domain

Function condition : One emanating arrow

Each, one starting
arrow

Function (O)
Relation (O)

Some, no starting arrow

Function (X)
Relation (O)

Some, two starting arrows

Function (X)
Relation (O)

Composite Function

A composite function $g(f(x))$ can be visualized as the combination of two "machines". The first takes input x and outputs $\mathrm{f}(\mathrm{x})$. The second takes as input the value $f(x)$ and outputs $\mathrm{g}(\mathrm{f}(\mathrm{x})$).

Injective Function

An injective nonsurjective function (injection, not a bijection)

An injective surjective function (bijection)

A non-injective surjective function (surjection, not a bijection)

Injective Function

In mathematics, an injective function or injection or one-to-one function is a function that preserves distinctness:
it never maps distinct elements of its domain to the same element of its codomain.
every element of the function's codomain is the image of at most one element of its domain.

The term one-to-one function must not be confused with one-to-one correspondence (a.k.a. bijective function), which uniquely maps all elements in both domain and codomain to each other.

Surjective Function

A surjective function from domain X to codomain Y . The function is surjective because every point in the codomain is the value of $f(x)$ for at least one point x in the domain.

A non-surjective function from domain X to codomain Y . The smaller oval inside Y is the image (also called range) of f. This function is not surjective, because the image does not fill the whole codomain. In other words, Y is colored in a two-step process: First, for every x in X , the point $f(x)$ is colored yellow; Second, all the rest of the points in Y , that are not yellow, are colored blue. The function f is surjective only if there are no blue points.

Surjective Functions

Range = Codomain
Every, arriving arrow(s)

Surjective (O)

Surjective (X)

Surjective (X)

Injective Functions

Every, Less than one arriving arrow

Injective (O)

Injective (O)

Injective (X)

Surjective Function

A surjective function is a function whose image is equal to its codomain.
a function f with domain X and codomain Y is surjective if for every y in Y there exists at least one x in X with $f(x)=y$.

Surjective Functions

Surjective composition: the first function need not be surjective.

Another surjective function. (This one happens to be a bijection)

A non-surjective function. (This one happens to be an injection)

Types of Functions

References

[1] http://en.wikipedia.org/
[2]

Set Operations (15A)

Copyright (c) 2017-2018 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Unions

Two sets can be "added" together. The union of A and B, denoted by $A \cup B$, is the set of all things that are members of either A or B.
Examples:

- $\{1,2\} \cup\{1,2\}=\{1,2\}$.
- $\{1,2\} \cup\{2,3\}=\{1,2,3\}$.
- $\{1,2,3\} \cup\{3,4,5\}=\{1,2,3,4,5\}$

Properties of Unions

- $A \cup B=B \cup A$.
- $A \cup(B \cup C)=(A \cup B) \cup C$.
- $A \subseteq(A \cup B)$.
- $A \cup A=A$.
- $A \cup U=U$.
- $A \cup \varnothing=A$.
- $A \subseteq B$ if and only if $A \cup B=B$.

Intersections

A new set can also be constructed by determining which members two sets have "in common". The intersection of A and B, denoted by $A \cap B$, is the set of all things that are members of both A and B. If $A \cap B=\varnothing$, then A and B are said to be disjoint.

Properties of Intersections

- $A \cap B=B \cap A$.
- $A \cap(B \cap C)=(A \cap B) \cap C$.
- $A \cap B \subseteq A$.
- $A \cap A=A$.
- $A \cap U=A$.
- $A \cap \varnothing=\varnothing$.
- $A \subseteq B$ if and only if $A \cap B=A$.

Complements

Two sets can also be "subtracted". The relative complement of B in A (also called the set-theoretic difference of A and B), denoted by $A \backslash B$ (or $A-B$), is the set of all elements that are members of A but not members of B. Note that it is valid to "subtract" members of a set that are not in the set, such as removing the element green from the set $\{1,2,3\}$; doing so has no effect.

Complements

In certain settings all sets under discussion are considered to be subsets of a given universal set U. In such cases, $U \backslash A$ is called the absolute complement or simply complement of A, and is denoted by A^{\prime}.

- $A^{\prime}=U \backslash A$

The complement of A
in U

Complements

An extension of the complement is the symmetric difference, defined for sets A, B as
$A \Delta B=(A \backslash B) \cup(B \backslash A)$.
For example, the symmetric difference of $\{7,8,9,10\}$ and $\{9,10,11,12\}$ is the set $\{7,8,11,12\}$. The power set of any set becomes a Boolean ring with symmetric difference as the addition of the ring (with the empty set as neutral element) and intersection as the multiplication of the ring.

The symmetric difference of A and B

Inclusion and Exclusion

The inclusion-exclusion principle is a counting technique that can be used to count the number of elements in a union of two sets, if the size of each set and the size of their intersection are known. It can be expressed symbolically as

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

A more general form of the principle can be used to find the cardinality of any finite union of sets:

De Morgan's Law

If A and B are any two sets then,

- $(\mathbf{A} \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$

The complement of A union B equals the complement of A intersected with the complement of B.

- $(\mathbf{A} \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$

The complement of A intersected with B is equal to the complement of A union to the complement of B.

The Same Cardinality

References

[1] http://en.wikipedia.org/
[2]

Copyright (c) 2015-2018 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Row Vector, Column Vector, Square Matrix

Name	Size	Example	Description
Row vector	$1 \times n$	$\left[\begin{array}{lll}3 & 7 & 2\end{array}\right]$	A matrix with one row, sometimes used to represent a vector
Column vector	$n \times 1$	$\left[\begin{array}{l}4 \\ 1 \\ 8\end{array}\right]$	A matrix with one column, sometimes used to represent a vector
Square matrix	$n \times n$	$\left[\begin{array}{ccc}9 & 13 & 5 \\ 1 & 11 & 7 \\ 2 & 6 & 3\end{array}\right]$	A matrix with the same number of rows and columns, sometimes used to represent a linear transformation from a vector space to itself, such as reflection, rotation, or shearing.

https://en.wikipedia.org/wiki/Matrix_(mathematics)

Matrix Notation

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]=\left(\begin{array}{rrrr}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)=\left(a_{i j}\right) \in \mathbb{R}^{m \times n} . \\
& \mathbf{A}=\left[\begin{array}{cccc}
0 & -1 & -2 & -3 \\
1 & 0 & -1 & -2 \\
2 & 1 & 0 & -1
\end{array}\right] \quad \begin{array}{l}
a_{i, j}=f(i, j) . \\
a_{i j}=i-j .
\end{array}
\end{aligned}
$$

Matrix Addition

Addition	The sum $\mathbf{A}+\mathbf{B}$ of two m-by- n matrices \mathbf{A} and \mathbf{B} is calculated entrywise: $(\mathbf{A}+\mathbf{B})_{i, j}=\mathbf{A}_{i, j}+\mathbf{B}_{i, j,}$, where 1 $\leq i \leq m$ and $1 \leq j \leq n$.

$$
\left[\begin{array}{lll}
1 & 3 & 1 \\
1 & 0 & 0
\end{array}\right]+\left[\begin{array}{lll}
0 & 0 & 5 \\
7 & 5 & 0
\end{array}\right]=\left[\begin{array}{lll}
1+0 & 3+0 & 1+5 \\
1+7 & 0+5 & 0+0
\end{array}\right]=\left[\begin{array}{lll}
1 & 3 & 6 \\
8 & 5 & 0
\end{array}\right]
$$

Scalar Multiplication

	The product $c \mathbf{A}$ of a number c (also called a scalar in the parlance of abstract algebra) and a matrix \mathbf{A} is computed by multiplying every entry of \mathbf{A} by $c:$ $(c \mathbf{A})_{i, j}=c \cdot \mathbf{A}_{i, j}$.		
Scalar			
multiplication		\quad	This operation is called scalar multiplication, but its result
:---			
is not named "scalar product" to avoid confusion, since			
"scalar product" is sometimes used as a synonym for			
"inner product".			

$2 \cdot\left[\begin{array}{ccc}1 & 8 & -3 \\ 4 & -2 & 5\end{array}\right]=\left[\begin{array}{ccc}2 \cdot 1 & 2 \cdot 8 & 2 \cdot-3 \\ 2 \cdot 4 & 2 \cdot-2 & 2 \cdot 5\end{array}\right]=\left[\begin{array}{ccc}2 & 16 & -6 \\ 8 & -4 & 10\end{array}\right]$
https://en.wikipedia.org/wiki/Matrix_(mathematics)

Transposition

Transposition	The transpose of an m-by- n matrix \mathbf{A} is the n-by- m matrix \mathbf{A}^{\top} (also denoted $\mathbf{A}^{\text {tr }}$ or ${ }^{\mathrm{t}} \mathbf{A}$) formed by turning rows into columns and vice versa: $\left(\mathbf{A}^{\top}\right)_{i, j}=\mathbf{A}_{j, i}$.

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -6 & 7
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{cc}
1 & 0 \\
2 & -6 \\
3 & 7
\end{array}\right]
$$

Matrix Multiplication

Multiplication of two matrices is defined if and only if the number of columns of the left matrix is the same as the number of rows of the right matrix. If \mathbf{A} is an m-by- n matrix and \mathbf{B} is an n-by- p matrix, then their matrix product $\mathbf{A B}$ is the m-by- p matrix whose entries are given by dot product of the corresponding row of \mathbf{A} and the corresponding column of \mathbf{B} :

$$
[\mathbf{A B}]_{i, j}=A_{i, 1} B_{1, j}+A_{i, 2} B_{2, j}+\cdots+A_{i, n} B_{n, j}=\sum_{r=1}^{n} A_{i, r} B_{r, j},
$$

where $1 \leq i \leq m$ and $1 \leq j \leq p .{ }^{[13]}$ For example, the underlined entry 2340 in the product is calculated as $(2 \times 1000)+(3 \times 100)+(4 \times 10)=2340$:

$$
\left[\begin{array}{lll}
\underline{2} & \underline{3} & \underline{4} \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{cc}
0 & \underline{1000} \\
1 & \underline{100} \\
0 & \underline{10}
\end{array}\right]=\left[\begin{array}{ll}
3 & \underline{2340} \\
0 & 1000
\end{array}\right] .
$$

Schematic depiction of the $\quad \square$ matrix product $\mathbf{A B}$ of two matrices \mathbf{A} and \mathbf{B}.

Properties

Matrix multiplication satisfies the rules $(\mathbf{A B}) \mathbf{C}=\mathbf{A}(\mathbf{B C})$ (associativity), and $(\mathbf{A}+\mathbf{B}) \mathbf{C}=\mathbf{A C}+\mathbf{B C}$ as well as $\mathbf{C}(\mathbf{A}+\mathbf{B})=\mathbf{C A}+\mathbf{C B}$ (left and right distributivity), whenever the size of the matrices is such that the various products are defined. ${ }^{[14]}$ The product $\mathbf{A B}$ may be defined without $\mathbf{B A}$ being defined, namely if \mathbf{A} and \mathbf{B} are m-by- n and n-by- k matrices, respectively, and $m \neq k$. Even if both products are defined, they need not be equal, that is, generally

$$
\mathbf{A B} \neq \mathbf{B A},
$$

that is, matrix multiplication is not commutative, in marked contrast to (rational, real, or complex) numbers whose product is independent of the order of the factors. An example of two matrices not commuting with each other is:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 3
\end{array}\right]
$$

whereas

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{ll}
3 & 4 \\
0 & 0
\end{array}\right]
$$

Matrix Types

Name	Example with $\boldsymbol{n}=\mathbf{3}$
Diagonal matrix	$\left[\begin{array}{ccc}a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{33}\end{array}\right]$
Lower triangular matrix	$\left[\begin{array}{ccc}a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33}\end{array}\right]$
Upper triangular matrix	$\left[\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33}\end{array}\right]$

https://en.wikipedia.org/wiki/Matrix_(mathematics)

Identity Matrix

Identity matrix [edit]

Main article: Identity matrix
The identity matrix \mathbf{I}_{n} of size n is the n-by- n matrix in which all the elements on the main diagonal are equal to 1 and all other elements are equal to 0 , for example,

$$
I_{1}=[1], I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \cdots, I_{n}=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

It is a square matrix of order n, and also a special kind of diagonal matrix. It is called an identity matrix because multiplication with it leaves a matrix unchanged:

$$
\mathbf{A l}_{n}=\mathbf{I}_{m} \mathbf{A}=\mathbf{A} \text { for any } m \text {-by- } n \text { matrix } \mathbf{A} .
$$

Inverse Matrix

In relation to its adjugate [edit]

The adjugate of a matrix A can be used to find the inverse of A as follows:
If A is an $n \times n$ invertible matrix, then

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)
$$

In relation to the identity matrix [edit]

It follows from the theory of matrices that if

$$
\mathbf{A B}=\mathbf{I}
$$

for finite square matrices \mathbf{A} and \mathbf{B}, then also

$$
\mathbf{B A}=\mathbf{I}^{[1]}
$$

Inverse Matrix Examples

Consider the following 2-by-2 matrix:

$$
\mathbf{A}=\left(\begin{array}{cc}
-1 & \frac{3}{2} \\
1 & -1
\end{array}\right)
$$

The matrix \mathbf{A} is invertible. To check this, one can compute that $\operatorname{det} \mathbf{A}=-1 / 2$, which is non-zero.

As an example of a non-invertible, or singular, matrix, consider the matrix

$$
\mathbf{B}=\left(\begin{array}{cc}
-1 & \frac{3}{2} \\
\frac{2}{3} & -1
\end{array}\right)
$$

The determinant of \mathbf{B} is 0 , which is a necessary and sufficient condition for a matrix to be non-invertible.

Solving Linear Equations

A set of linear equations

If the inverse matrix exists

$$
\begin{aligned}
& \begin{array}{l}
a x+b y=e \\
c x+d y=f \\
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c \neq 0 \\
\left|\begin{array}{ll}
e & b \\
f & d
\end{array}\right|=d e-b f \\
\left|\begin{array}{ll}
a & e \\
c & f
\end{array}\right|=a f-c e
\end{array}
\end{aligned}
$$

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
e \\
f
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}\left[\begin{array}{l}
e \\
f
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]\left[\begin{array}{l}
e \\
f
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\frac{1}{a d-b c}\left[\begin{array}{c}
d e-b f \\
-c e+a f
\end{array}\right]
$$

Cramer's Rule

$$
x=\frac{\left|\begin{array}{ll}
e & b \\
f & d
\end{array}\right|}{\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|} \quad y=\frac{\left|\begin{array}{ll}
a & e \\
c & f
\end{array}\right|}{\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|}
$$

Rule of Sarrus (1)

Determinant of order 3 only

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}
$$

Copy and concatenate

Rule of Sarrus

$$
\begin{aligned}
& +a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32} \quad-a_{13} a_{22} a_{31}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}
\end{aligned}
$$

Linear Equations

$\left(\right.$ Eq 1) $\Rightarrow a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1}$
$($ Eq 2$) \Rightarrow a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2}$
$\left(\right.$ Eq 3) $\Rightarrow a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}$

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right) \quad \boldsymbol{A x}=\boldsymbol{b}
$$

Cramer's Rule (1) - solutions

$$
\begin{aligned}
& \begin{array}{c}
\boldsymbol{A} \\
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
\boldsymbol{x} \\
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)= \\
=\left(\begin{array}{c}
\boldsymbol{b} \\
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)
\end{array} \\
& \begin{array}{c}
\boldsymbol{A}_{1} \\
\left(\begin{array}{cccc}
b_{1} & a_{12} & \cdots & a_{1 n} \\
b_{2} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
b_{n} & a_{n 2} & \cdots & a_{n n}
\end{array}\right) \quad\left[\begin{array}{cccc}
a_{11} & b_{1} & \cdots & a_{1 n} \\
a_{21} & b_{2} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & b_{n} & \cdots & a_{n n}
\end{array}\right) \quad \boldsymbol{A}_{n} \\
\left.\hline \begin{array}{cccc}
a_{11} & a_{12} & \cdots & b_{1} \\
a_{21} & a_{22} & \cdots & b_{2} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & b_{n}
\end{array}\right)
\end{array} \\
& x_{1}=\frac{\operatorname{det}\left(\boldsymbol{A}_{1}\right)}{\operatorname{det}(\boldsymbol{A})} \quad x_{2}=\frac{\operatorname{det}\left(\boldsymbol{A}_{2}\right)}{\operatorname{det}(\boldsymbol{A})} \quad x_{n}=\frac{\operatorname{det}\left(\boldsymbol{A}_{n}\right)}{\operatorname{det}(\boldsymbol{A})}
\end{aligned}
$$

References

[1] http://en.wikipedia.org/
[2]

