Relations (3A)

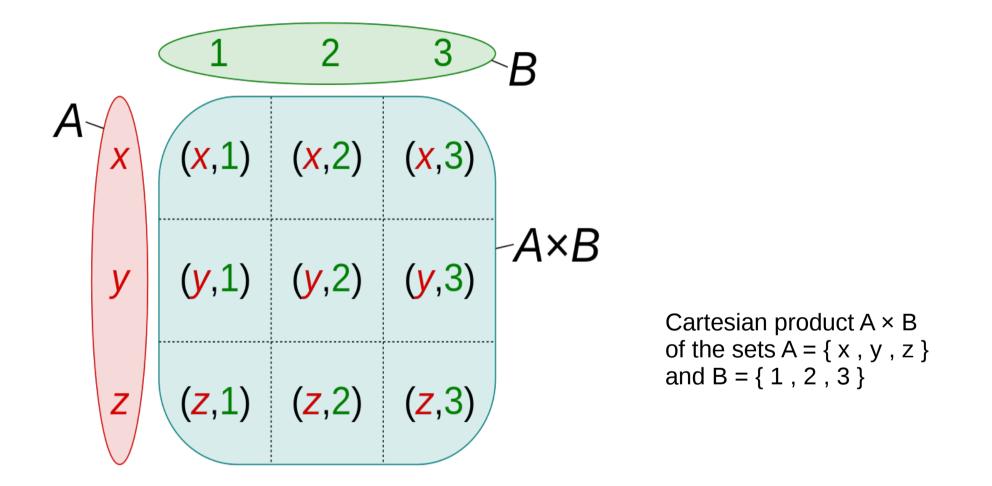
Young Won Lim 3/27/18 Copyright (c) 2015 – 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

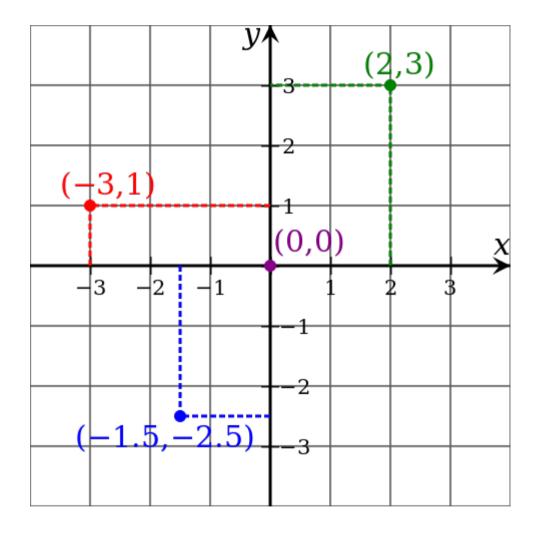
Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Cartesian Product



Cartesian Coordinates



Cartesian coordinates of example points

https://en.wikipedia.org/wiki/Cartesian_product

Cartesian Product

	1	2	3	4	5
1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)
2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)
3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)
4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)
5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)

https://en.wikipedia.org/wiki/Cartesian_product

Cartesian Product

	1	2	3	4	5
1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)
2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)
3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)
4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)
5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)

	1	2	3	4	5
1	1 R 1	1 R 2	1 R 3	1 R 4	1 R 5
2	2 R 1	2 R 2	2 R 3	2 R 4	2 R 5
3	3 R 1	3 R 2	3 R 3	3 R 4	3 R 5
4	1 R 1	4 R 2	4 R 3	4 R 4	4 R 5
5	5 R 1	5 R 2	5 R 3	5 R 4	5 R 5

https://en.wikipedia.org/wiki/Cartesian_product

6

Types of Relations (1)

x R x Reflexive Relation Symmetric Relation Transitive Relation $X R Y \leftrightarrow Y R X$ $\mathbf{X} \mathbf{R} \mathbf{V} \wedge \mathbf{V} \mathbf{R} \mathbf{Z} \rightarrow \mathbf{X} \mathbf{R} \mathbf{Z}$

https://en.wikipedia.org/wiki/Reflexive_relation

Definitions of Relations

Reflexive: for all \times in X it holds that $\times \mathbb{R} \times$.

```
Symmetric: for all x and y in X it holds that if xRy then yRx.
```

Antisymmetric: for all x and y in X, if xRy and yRx then x = y.

Transitive: for all x, y and z in X it holds that if xRy and yRz then xRz.

https://en.wikipedia.org/wiki/Reflexive_relation

More Definitions of Relations

A relation **R** on a set **A** is called **reflexive** if $(a, a) \in \mathbf{R}$ for every element $a \in \mathbf{A}$.

A relation **R** on a set **A** is called **symmetric** if $(b, a) \in \mathbf{R}$ whenever $(a, b) \in \mathbf{R}$, for all $a, b \in \mathbf{A}$

A relation **R** on a set **A** such that for all a, b in **R**, if $(a, b) \in \mathbf{R}$ and $(b, a) \in \mathbf{R}$, then a = b is called **anti-symmetric**.

A relation **R** on a set **A** is called **transitive** if whenever $(a, b) \in \mathbf{R}$ and $(b, c) \in \mathbf{R}$, then $(a, c) \in \mathbf{R}$, for all $a, b, c \in \mathbf{A}$

https://en.wikipedia.org/wiki/Reflexive_relation

Relation Examples (1)

 $x \ge y$

	1	2	3	4	5
1	(1,1)				
2	(2,1)	(2,2)			
3	(3,1)	(3,2)	(3,3)		
4	(4,1)	(4,2)	(4,3)	(4,4)	
5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)

x > y

	1	2	3	4	5
1					
2	(2,1)				
3	(3,1)	(3,2)			
4	(4,1)	(4,2)	(4,3)		
5	(5,1)	(5,2)	(5,3)	(5,4)	

Relation Examples (2)

$$x = y$$

	1	2	3	4	5
1	(1,1)				
2		(2,2)			
3			(3,3)		
4				(4,4)	
5					(5,5)

$$x = y + 1$$

	1	2	3	4	5
1					
2	(2,1)				
3		(3,2)			
4			(4,3)		
5				(5,4)	

Relation Examples (3)

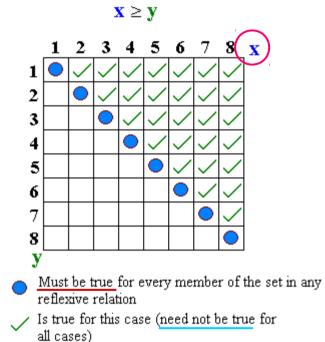
$$x + y = 4$$

	1	2	3	4	5
1			(1,3)		
2		(2,2)			
3	(3,1)				
4					
5					

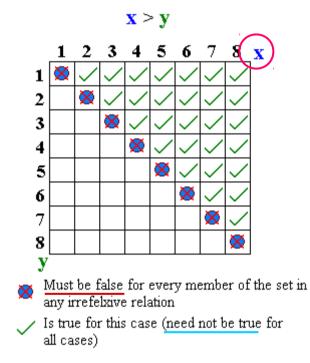
$$x + y \le 4$$

	1	2	3	4	5
1	(1,1)	(1,2)	(1,3)		
2	(2,1)	(2,2)			
3	(3,1)				
4					
5					

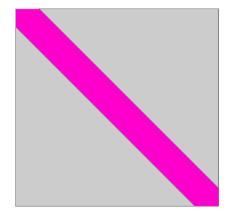
Reflexive Relation Examples



Reflexive Relation



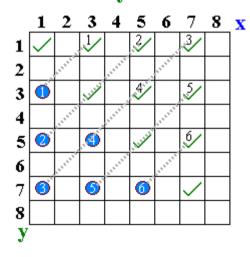
Irreflexive Relation



https://en.wikipedia.org/wiki/Reflexive_relation

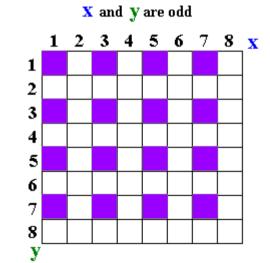
Symmetric Relation Examples

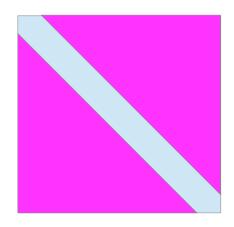
X and Y are odd



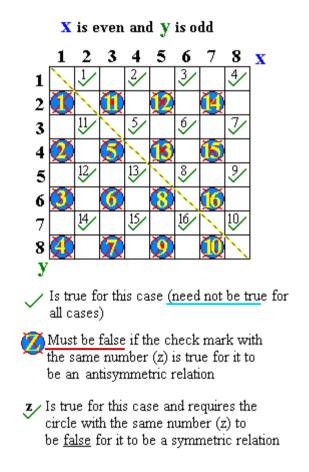
- ✓ Is true for this case (<u>need not be true</u> for all cases)
- Must be true if the check mark with the same number (z) is true for it to be a symmetric relation
- ✗✓ Is true for this case and requires the circle with the same number (z) to also be true for it to be a symmetric relation
 - Symmetric Relation

https://en.wikipedia.org/wiki/Cartesian_product

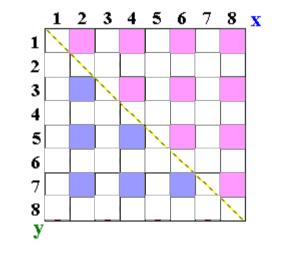


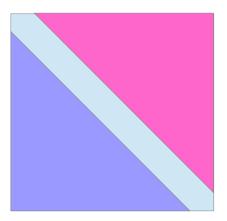


Anti-Symmetric Relation Examples



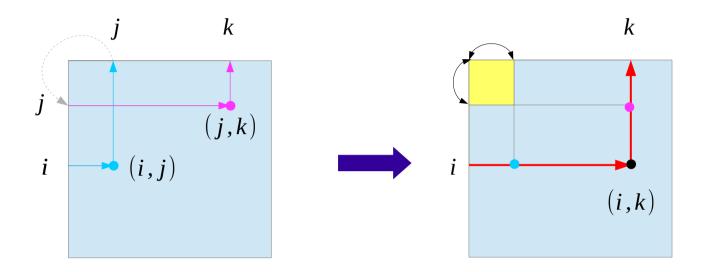
X is even and Y is odd





https://en.wikipedia.org/wiki/Cartesian_product

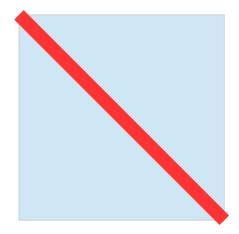
Transitive Relation Examples



 $(iRj) \land (jRk)$ (iRk)

Reflexive Relation

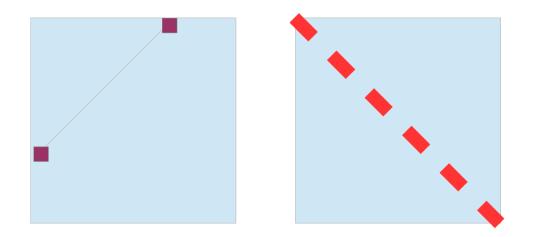
$\forall x \ (x, x) \in R$



All diagonal relations <u>must</u> exist

Symmetric Relation

 $\forall x, \forall y [(x, y) \in R \rightarrow (y, x) \in R]$



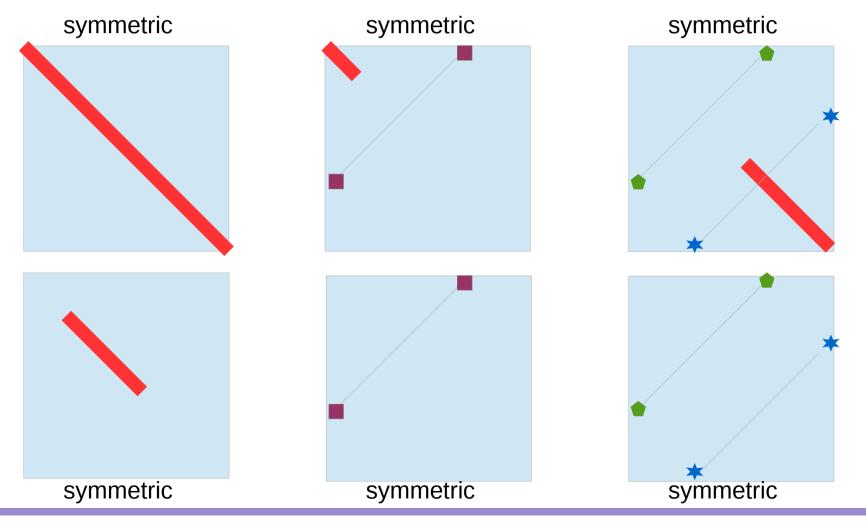
no relation is mandatory

but for any relation, its symmetric relation must exist including diagonal relations

symmetric

Symmetric Relation Examples

$$\forall x, \forall y [(x, y) \in R \rightarrow (y, x) \in R$$



Not Symmetric Relation

$$\neg \{ \forall x, \forall y [(x, y) \in R] \Rightarrow [(y, x) \in R] \}$$

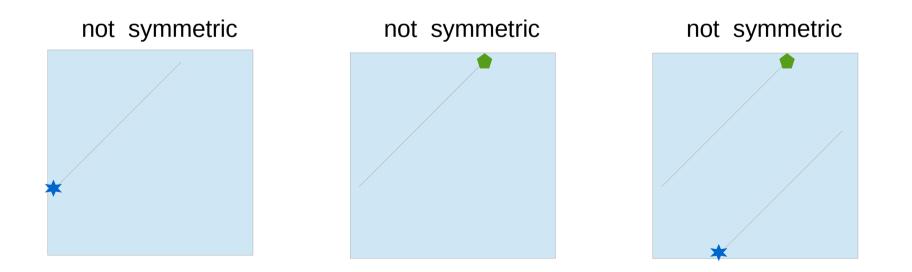
$$\exists x, \exists y \neg \{ [(x, y) \in R] \Rightarrow [(y, x) \in R] \}$$

$$\exists x, \exists y \neg \{ \neg [(x, y) \in R] \lor [(y, x) \in R] \}$$

$$\exists x, \exists y [(x, y) \in R] \land \neg [(y, x) \in R]$$

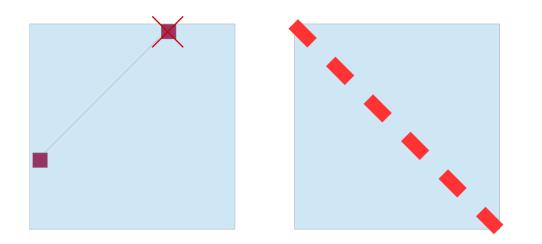
$$\exists x, \exists y [(x, y) \in R] \land \neg [(y, x) \notin R]$$

counter example



Anti-symmetric Relation

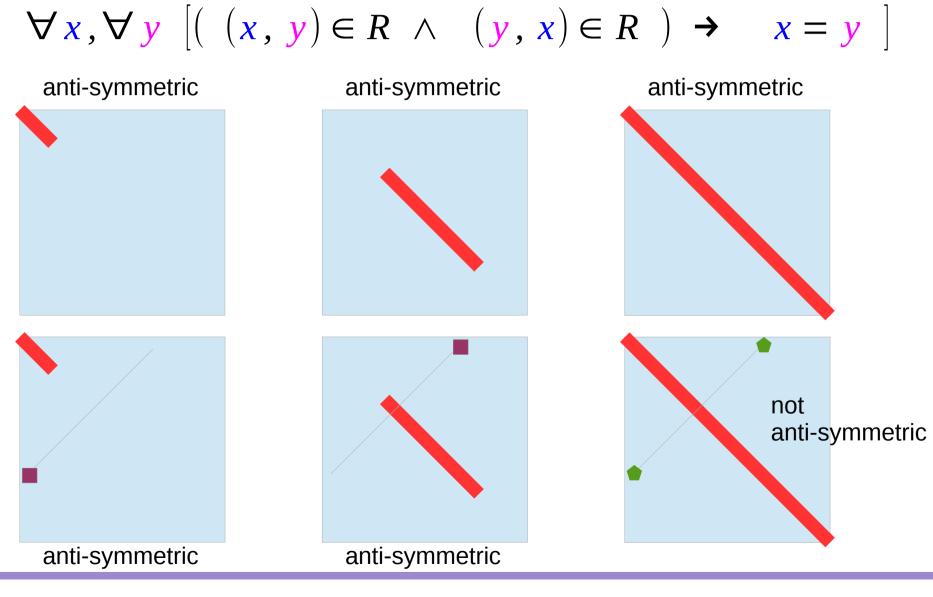
$\forall x, \forall y \ \left[((x, y) \in R \land (y, x) \in R) \rightarrow x = y \right]$



no relation is mandatory

but for any relation, its symmetric relation must <u>NOT</u> exist <u>excluding</u> diagonal relations

Anti-symmetric Relation Examples



Relations (4B)

Young Won Lim 3/27/18

Not Anti-symmetric Relation

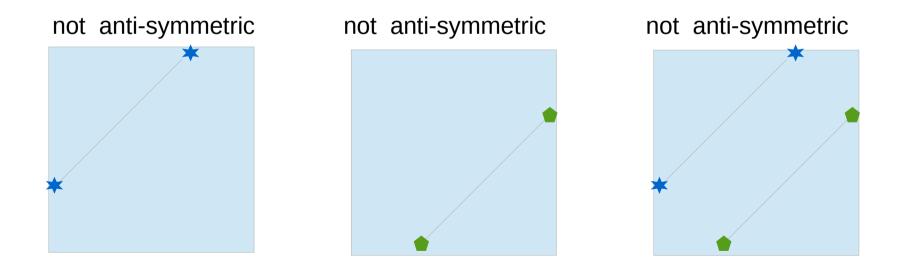
$$\neg \{ \forall x, \forall y \ [\ (x, y) \in R \land (y, x) \in R \] \Rightarrow [x = y] \}$$

$$\exists x, \exists y \neg \{ \ [\ (x, y) \in R \land (y, x) \in R \] \Rightarrow [x = y] \}$$

$$\exists x, \exists y \neg \{ \neg [(x, y) \in R \land (y, x) \in R \] \lor [x = y] \}$$

$$\exists x, \exists y \{ \ [(x, y) \in R \land (y, x) \in R \] \land \neg [x = y] \}$$

$$\exists x, \exists y \{ \ [(x, y) \in R \land (y, x) \in R \] \land [x \neq y] \}$$
 counter example



Not Symmetric vs Not Anti-Symmetric Relation

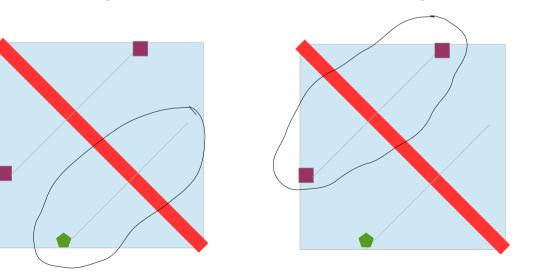
$$\neg \{ \forall x, \forall y [(x, y) \in R] \rightarrow [(y, x) \in R] \}$$

$$\exists x, \exists y [(x, y) \in R] \land [(y, x) \notin R]$$

$$\neg \{\forall x, \forall y [(x, y) \in R \land (y, x) \in R] \rightarrow [x = y] \}$$

$$\exists x, \exists y \{ [(x, y) \in R \land (y, x) \in R] \land [x \neq y] \}$$

not anti-symmetric
neither
symmetric nor
anti-symmetric

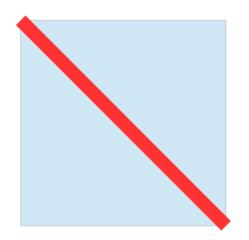


Reflexive, Symmetric, Anti-symmetric

$$\forall x \quad (x, x) \in R$$

$$\forall x, \forall y \ \left[\ (x, y) \in R \ \right] \rightarrow \left[\ (y, x) \in R \ \right]$$

$$\forall x, \forall y \ \left[\ (x, y) \in R \land (y, x) \in R \ \right] \rightarrow \left[\ x = y \ \right]$$



Reflexive	
Also, symmetric	(no relation for (x, y) where x≠y)
Also, anti-symmetric	(no relation for (x, y) where x≠y)

Not Anti-symmetric Relation

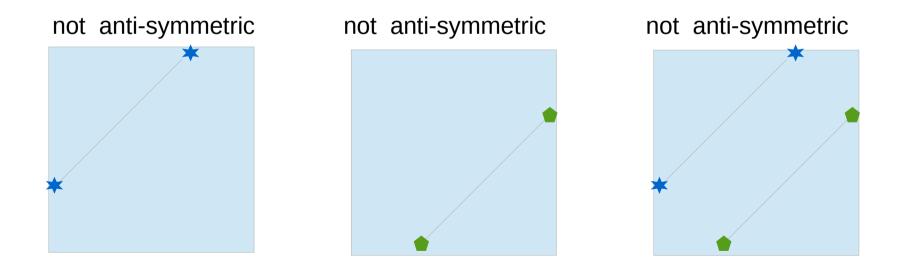
$$\neg \{ \forall x, \forall y \ [\ (x, y) \in R \land (y, x) \in R \] \Rightarrow [x = y] \}$$

$$\exists x, \exists y \neg \{ \ [\ (x, y) \in R \land (y, x) \in R \] \Rightarrow [x = y] \}$$

$$\exists x, \exists y \neg \{ \neg [(x, y) \in R \land (y, x) \in R \] \lor [x = y] \}$$

$$\exists x, \exists y \{ \ [(x, y) \in R \land (y, x) \in R \] \land \neg [x = y] \}$$

$$\exists x, \exists y \{ \ [(x, y) \in R \land (y, x) \in R \] \land [x \neq y] \}$$
 counter example

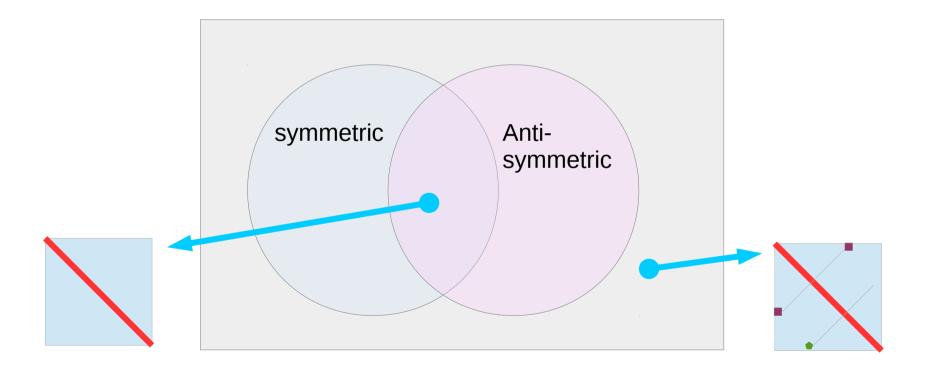


Relations (4B)

26

Symmetric vs Anti-Symmetric Relation

not symmetric≠anti-symmetricnot anti-symmetric≠symmetric



References

