
Young Won Lim
10/22/20

●

●

OpenMP Examples (1A)

Young Won Lim
10/22/20

 Copyright (c) 2020 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

mailto:youngwlim@hotmail.com

OpenMP Hello World
(1A)

3 Young Won Lim
10/22/20

Installation

STEP 1: Check the GCC version of the compiler
gcc –version

STEP 2: Configuring OpenMP
echo | cpp -fopenmp -dM |grep -i open
sudo apt install libomp-dev

STEP 3: Setting the number of threads
export OMP_NUM_THREADS=8

https://www.geeksforgeeks.org/openmp-introduction-with-installation-guide/

OpenMP Hello World
(1A)

4 Young Won Lim
10/22/20

Parallel regions

// OpenMP header
#include <omp.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char* argv[])
{

int nthreads, tid;

// Begin of parallel region
#pragma omp parallel private(nthreads, tid)
{

// Getting thread number
tid = omp_get_thread_num();
printf("Welcome to GFG from thread = %d\n", tid);
if (tid == 0) {

// Only master thread does this
nthreads = omp_get_num_threads();
printf("Number of threads = %d\n", nthreads);

}
}

}

https://www.geeksforgeeks.org/openmp-introduction-with-installation-guide/

OpenMP Hello World
(1A)

5 Young Won Lim
10/22/20

Private variables

#include <omp.h>

main(int argc, char *argv[]) {

int nthreads, tid;

/* Fork a team of threads with each thread having a private tid variable */
#pragma omp parallel private(tid)
{

/* Obtain and print thread id */
tid = omp_get_thread_num();
printf("Hello World from thread = %d\n", tid);

/* Only master thread does this */
if (tid == 0) {

nthreads = omp_get_num_threads();
printf("Number of threads = %d\n", nthreads);

}

} /* All threads join master thread and terminate */

 }

https://computing.llnl.gov/tutorials/openMP/#Compiling

OpenMP Hello World
(1A)

6 Young Won Lim
10/22/20

OpenMP Code Structure

#include <omp.h>

main () {
int var1, var2, var3;
Serial code
…

Beginning of parallel region. Fork a team of threads.
Specify variable scoping

#pragma omp parallel private(var1, var2) shared(var3)
{

Parallel region executed by all threads
Other OpenMP directives
Run-time Library calls
All threads join master thread and disband

}

Resume serial code
...

}

https://computing.llnl.gov/tutorials/openMP/

OpenMP Hello World
(1A)

7 Young Won Lim
10/22/20

OpenMP Directives

#pragma omp parallel [clause ...] newline
 if (scalar_expression)
 private (list)
 shared (list)
 default (shared | none)
 firstprivate (list)
 reduction (operator: list)
 copyin (list)
 num_threads (integer-expression)

 structured_block

https://computing.llnl.gov/tutorials/openMP/

OpenMP Hello World
(1A)

8 Young Won Lim
10/22/20

OpenMP Directives

Directive name
A valid OpenMP directive.
Must appear after the pragma and before any clauses.

[clause, …]
Optional.
Clauses can be in any order, and repeated as necessary
unless otherwise restricted.

Newline
Required.
Precedes the structured block
which is enclosed by this directive.

https://computing.llnl.gov/tutorials/openMP/

OpenMP Hello World
(1A)

9 Young Won Lim
10/22/20

Installation

Compile:
gcc -fopenmp test.c

Execute:
./a.out

https://www.geeksforgeeks.org/openmp-introduction-with-installation-guide/

OpenMP Hello World
(1A)

10 Young Won Lim
10/22/20

Number of cores

grep processor /proc/cpuinfo | wc -l

sysconf(_SC_NPROCESSORS_CONF)
sysconf(_SC_NPROCESSORS_ONLN)

grep -c ^processor /proc/cpuinfo

grep -c ^cpu /proc/stat # subtract 1 from the result

https://stackoverflow.com/questions/150355/programmatically-find-the-number-of-cores-on-a-machine

OpenMP Hello World
(1A)

11 Young Won Lim
10/22/20

OpenMP API Overview

The OpenMP 3.1 API is comprised of three distinct components:

● Compiler Directives
● Runtime Library Routines
● Environment Variables

https://computing.llnl.gov/tutorials/openMP/#API

OpenMP Hello World
(1A)

12 Young Won Lim
10/22/20

Compiler Directives

● Spawning a parallel region
● Dividing blocks of code among threads
● Distributing loop iterations between threads
● Serializing sections of code
● Synchronization of work among threads

https://computing.llnl.gov/tutorials/openMP/#API

OpenMP Hello World
(1A)

13 Young Won Lim
10/22/20

Runtime Library Routines

● Setting and querying the number of threads
● Querying a thread's unique identifier (thread ID),

a thread's ancestor's identifier, the thread team size
● Setting and querying the dynamic threads feature
● Querying if in a parallel region, and at what level
● Setting and querying nested parallelism
● Setting, initializing and terminating locks and nested locks
● Querying wall clock time and resolution

https://computing.llnl.gov/tutorials/openMP/#API

OpenMP Hello World
(1A)

14 Young Won Lim
10/22/20

Environment Variables

● Setting the number of threads
● Specifying how loop iterations are divided
● Binding threads to processors
● Enabling/disabling nested parallelism;

setting the maximum levels of nested parallelism
● Enabling/disabling dynamic threads
● Setting thread stack size
● Setting thread wait policy

https://computing.llnl.gov/tutorials/openMP/#API

OpenMP Hello World
(1A)

15 Young Won Lim
10/22/20

Examples

Compiler Directive Examples

#pragma omp parallel
#pragma omp parallel private(partial_Sum) shared(total_Sum)
#pragma omp parallel private(thread_id)
#pragma omp barrier
#pragma omp for
#pragma omp critical

Runtime Library Routine Examples

omp_get_thread_num();
omp_get_max_threads();

https://stackoverflow.com/questions/150355/programmatically-find-the-number-of-cores-on-a-machine

OpenMP Hello World
(1A)

16 Young Won Lim
10/22/20

Hello

#include <stdio.h>
#include <omp.h>

int main(int argc, char** argv) {

 printf(“Hello from process: %d\n”, omp_get_thread_num());

 return 0;
}

// only one thread giving us a Hello statement
// must use the #pragma omp parallel { … } directive
// for multiple threads

https://curc.readthedocs.io/en/latest/programming/OpenMP-C.html#parallel-hello-world-program

OpenMP Hello World
(1A)

17 Young Won Lim
10/22/20

Hello

#include <stdio.h>
#include <omp.h>

int main(int argc, char** argv){
 int thread_id;

 #pragma omp parallel
 {
 printf(“Hello from process: %d\n”, omp_get_thread_num());
 }
 return 0;
}

https://curc.readthedocs.io/en/latest/programming/OpenMP-C.html#parallel-hello-world-program

OpenMP Hello World
(1A)

18 Young Won Lim
10/22/20

Private clauses

The PRIVATE clause declares variables in its list
to be private to each thread.

● A new object of the same type is declared once
for each thread in the team

● All references to the original object are replaced with
references to the new object

● Should be assumed to be uninitialized for each thread

https://curc.readthedocs.io/en/latest/programming/OpenMP-C.html#parallel-hello-world-program

OpenMP Hello World
(1A)

19 Young Won Lim
10/22/20

Shared clauses

The SHARED clause declares variables in its list t
o be shared among all threads in the team.

A shared variable exists in only one memory location and
all threads can read or write to that address

It is the programmer's responsibility to ensure that
multiple threads properly access SHARED variables
(such as via CRITICAL sections)

https://curc.readthedocs.io/en/latest/programming/OpenMP-C.html#parallel-hello-world-program

OpenMP Hello World
(1A)

20 Young Won Lim
10/22/20

Shared clauses

Variables that are created and assigned
inside of a parallel section of code will be
inherently be private

variables created outside of parallel sections
will be inherently public.

https://curc.readthedocs.io/en/latest/programming/OpenMP-C.html#parallel-hello-world-program

OpenMP Hello World
(1A)

21 Young Won Lim
10/22/20

Hello

#include <stdio.h>
#include <omp.h>

int main(int argc, char** argv){
 int thread_id;

 #pragma omp parallel private(thread_id)
 {
 thread_id = omp_get_thread_num();
 printf(“Hello from process: %d\n”, thread_id);
 }

 return 0;
}

// create a separate instance of thread_id for each task.

https://curc.readthedocs.io/en/latest/programming/OpenMP-C.html#parallel-hello-world-program

OpenMP Hello World
(1A)

22 Young Won Lim
10/22/20

Barrier and critical directives

#pragma omp barrier

The barrier directive stops all processes
for proceeding to the next line of code
until all processes have reached the barrier.
This allows a programmer
to synchronize sequences in the parallel process.

#pragma omp critical { … }

A critical directive ensures that
a line of code is only run by one process at a time,
ensuring thread safety in the body of code.

https://curc.readthedocs.io/en/latest/programming/OpenMP-C.html#parallel-hello-world-program

OpenMP Hello World
(1A)

23 Young Won Lim
10/22/20

Barrier (1)

#include <stdio.h>
#include <omp.h>

int main(int argc, char** argv){
 //define loop iterator variable outside parallel region
 int i;
 int thread_id;

 #pragma omp parallel
 {
 thread_id = omp_get_thread_num();

 //create the loop to have each thread print hello.
 for(i = 0; i < omp_get_max_threads(); i++){
 printf(“Hello from process: %d\n”, thread_id);
 }
 }
 return 0;
}

https://curc.readthedocs.io/en/latest/programming/OpenMP-C.html#parallel-hello-world-program

OpenMP Hello World
(1A)

24 Young Won Lim
10/22/20

Barrier (2)

#include <stdio.h>
#include <omp.h>

int main(int argc, char** argv){
 int i;
 int thread_id;

 #pragma omp parallel
 {
 thread_id = omp_get_thread_num();

 for(i = 0; i < omp_get_max_threads(); i++){
 if(i == thread_ID){
 printf(“Hello from process: %d\n”, thread_id);
 }
 }
 }
 return 0;
}

https://curc.readthedocs.io/en/latest/programming/OpenMP-C.html#parallel-hello-world-program

OpenMP Hello World
(1A)

25 Young Won Lim
10/22/20

Barrier (3)

#include <stdio.h>
#include <omp.h>

int main(int argc, char** argv){
 int i;
 int thread_id;

 #pragma omp parallel
 {
 thread_id = omp_get_thread_num();

 for(int i = 0; i < omp_get_max_threads(); i++){
 if(i == omp_get_thread_num()){
 printf(“Hello from process: %d\n”, thread_id);
 }
 #pragma omp barrier
 }
 }
 return 0;
}

https://curc.readthedocs.io/en/latest/programming/OpenMP-C.html#parallel-hello-world-program

OpenMP Hello World
(1A)

26 Young Won Lim
10/22/20

OMP for

OpenMP’s power comes from
easily splitting a larger task into multiple smaller tasks.
Work-sharing directives allow for simple and effective splitting
of normally serial tasks into fast parallel sections of code.

The directive omp for divides a normally serial for loop into a parallel task.

#pragma omp for { … }

https://curc.readthedocs.io/en/latest/programming/OpenMP-C.html#parallel-hello-world-program

OpenMP Hello World
(1A)

27 Young Won Lim
10/22/20

OMP for

https://curc.readthedocs.io/en/latest/programming/OpenMP-C.html#parallel-hello-world-program

 printf(“Total Sum: %d\n”, total_Sum);
 return 0;
}

#include <stdio.h>
#include <omp.h>

int main(int argc, char** argv){
 int partial_Sum, total_Sum;

 #pragma omp parallel private(partial_Sum) shared(total_Sum)
 {
 partial_Sum = 0;
 total_Sum = 0;

 #pragma omp for
 {
 for(int i = 1; i <= 1000; i++){
 partial_Sum += i;
 }
 }

 //Create thread safe region.
 #pragma omp critical
 {
 //add each threads partial sum to the total sum
 total_Sum += partial_Sum;
 }
 }

OpenMP Hello World
(1A)

28 Young Won Lim
10/22/20

Data Sharing Rules – Implicit Rules

int n = 10; // shared
int a = 7; // shared

#pragma omp parallel for
for (int i = 0; i < n; i++) // i private
{
 int b = a + i; // b private
 ...
}

http://jakascorner.com/blog/2016/06/omp-data-sharing-attributes.html

OpenMP Hello World
(1A)

29 Young Won Lim
10/22/20

Data Sharing Rules – Explicit Rules

#pragma omp parallel for shared(n, a)
for (int i = 0; i < n; i++)
{
 int b = a+ i;
 ...
}

#pragma omp parallel for shared(n, a) private(b)
for (int i = 0; i < n; i++)
{
 b = a + i;
 ...
}

http://jakascorner.com/blog/2016/06/omp-data-sharing-attributes.html

OpenMP Hello World
(1A)

30 Young Won Lim
10/22/20

Data Sharing Rules – Explicit Rules

int p = 0;
// the value of p is 0

#pragma omp parallel private(p)
{
 // the value of p is undefined
 p = omp_get_thread_num();
 // the value of p is defined
 ...
}
// the value of p is undefined

#pragma omp parallel
{
 int p = omp_get_thread_num();
 ...
}

http://jakascorner.com/blog/2016/06/omp-data-sharing-attributes.html

OpenMP Hello World
(1A)

31 Young Won Lim
10/22/20

Data Sharing Rules – Default(Shared)

int a, b, c, n;
...

#pragma omp parallel for default(shared)
for (int i = 0; i < n; i++)
{
 // using a, b, c
}

http://jakascorner.com/blog/2016/06/omp-data-sharing-attributes.html

OpenMP Hello World
(1A)

32 Young Won Lim
10/22/20

Data Sharing Rules – Default(none)

int n = 10;
std::vector<int> vector(n);
int a = 10;

#pragma omp parallel for default(none) shared(n, vector)
for (int i = 0; i < n; i++)
{
 vector[i] = i * a;
}

error: ‘a’ not specified in enclosing parallel
 vector[i] = i * a;
 ^
error: enclosing parallel
 #pragma omp parallel for default(none) shared(n, vector)
 ^

http://jakascorner.com/blog/2016/06/omp-data-sharing-attributes.html

OpenMP Hello World
(1A)

33 Young Won Lim
10/22/20

Data Sharing Rules – Default(none)

int n = 10;
std::vector<int> vector(n);
int a = 10;

#pragma omp parallel for default(none) shared(n, vector, a)
for (int i = 0; i < n; i++)
{
 vector[i] = i * a;
}

http://jakascorner.com/blog/2016/06/omp-data-sharing-attributes.html

OpenMP Hello World
(1A)

34 Young Won Lim
10/22/20

Data Sharing Rules – Default(none)

The default context of a variable is determined by the following rules:

● static variables – shared.
● auto variables in a parallel region – private
● dynamically allocated objects – shared.
● heap allocated variables – shared.

there can be only one shared heap.
● all variables defined outside a parallel construct
● – shared in a parallel region
● loop iteration variables are private within their loops.

the value of the iteration variable after the loop
is the same as if the loop were run sequentially.

● memory allocated within a parallel loop
by the alloca function
persists only for the duration of one iteration,
and is private for each thread.

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbcpx01/cuppvars.htm

OpenMP Hello World
(1A)

35 Young Won Lim
10/22/20

alloca()

NAME
 alloca - allocate memory that is automatically freed

SYNOPSIS
 #include <alloca.h>

 void *alloca(size_t size);

DESCRIPTION
 The alloca() function allocates size bytes of space in the stack
 frame of the caller. This temporary space is automatically freed
 when the function that called alloca() returns to its caller.

RETURN VALUE
 The alloca() function returns a pointer to the beginning of the
 allocated space. If the allocation causes stack overflow, program
 behavior is undefined.

https://man7.org/linux/man-pages/man3/alloca.3.html

OpenMP Hello World
(1A)

36 Young Won Lim
10/22/20

Data Sharing Rules – Default(none)

int E1; /* shared static */

void main (argvc,...) { /* argvc is shared */
 int i; /* shared automatic */

void *p = malloc(...); /* memory allocated by malloc */
 /* is accessible by all threads (shared) */
 /* and cannot be privatized */

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbcpx01/cuppvars.htm

OpenMP Hello World
(1A)

37 Young Won Lim
10/22/20

Data Sharing Rules – Default(none)

void main (argvc,...) { // argvc is shared
int i; void *p = malloc(...);

#pragma omp parallel firstprivate (p)

 {
 int b; // private automatic
 static int s; // shared static

 #pragma omp for
 for (i =0;...) {
 b = 1; // b is still private here !
 foo (i); // i is private here because it is an iteration variable
 }

#pragma omp parallel
 {
 b = 1; // b is shared here because it
 } // is another parallel region
 }
}

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbcpx01/cuppvars.htm

OpenMP Hello World
(1A)

38 Young Won Lim
10/22/20

Data Sharing Rules – Default(none)

int E2; /* shared static */

void foo (int x) { /* x is private for the parallel */
 /* region it was called from */

int c; /* c is private for the same reason */
 ... }

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbcpx01/cuppvars.htm

OpenMP Hello World
(1A)

39 Young Won Lim
10/22/20

Data Sharing Rules – Default(none)

The private clause declares the variables in the list to be
private to each thread in a team.

The firstprivate clause provides a superset of the functionality
provided by the private clause.
The private variable is initialized by the original value of the variable
when the parallel construct is encountered.

The lastprivate clause provides a superset of the functionality
provided by the private clause.
The private variable is updated after the end of the parallel construct.

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbcpx01/cuppvars.htm

OpenMP Hello World
(1A)

40 Young Won Lim
10/22/20

Data Sharing Rules – Default(none)

The shared clause declares the variables in the list to be
shared among all the threads in a team.
All threads within a team access the same storage area for shared variables.

The reduction clause performs a reduction on the scalar variables
that appear in the list, with a specified operator.

The default clause allows the user
to affect the data-sharing attribute of the variables appeared in the parallel construct.

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbcpx01/cuppvars.htm

OpenMP Hello World
(1A)

41 Young Won Lim
10/22/20

Nested Parallelism (1)

void fun1()
{
 for (int i=0; i<80; i++)
 ...
}

main()
{
 #pragma omp parallel
 {
 #pragma omp for
 for (int i=0; i<100; i++)
 ...

 #pragma omp for
 for (int i=0; i<10; i++)
 fun1();
 }
}

https://software.intel.com/content/www/us/en/develop/articles/exploit-nested-parallelism-with-openmp-tasking-model.html

the 2nd loop in main
can only be distributed to 10 threads

80 loop iterations in fun1
which will be called 10 times in main loop.

total 800 iterations in fun1 and the main loop

This gives much more parallelism potential
if parallelism can be added in both levels.

OpenMP Hello World
(1A)

42 Young Won Lim
10/22/20

Nested Parallelism (2)

void fun1()
{
 #pragma omp parallel for
 for (int i=0; i<80; i++)
 ...
}

main
{
 #Pragma omp parallel
 {
 #pragma omp for
 for (int i=0; i<100; i++)
 …

 #pragma omp for
 for (int i=0; i<10; i++)
 fun1();
 }
}

https://software.intel.com/content/www/us/en/develop/articles/exploit-nested-parallelism-with-openmp-tasking-model.html

may either have insufficient threads for the 1st main loop
as it has larger loop count, or

create exploded number of threads for the 2nd main loop
when OMP_NESTED=TRUE.

The simple solution is to split the parallel region in main and
create separate ones for each loop
with a distinct thread number specified.

OpenMP Hello World
(1A)

43 Young Won Lim
10/22/20

Nested Parallelism (3)

void fun1()
{
 #pragma omp taskloop
 for (int I = 0; i<80; i++)
 ...
}

main
{
 #pragma omp parallel
 {
 #pragma omp for
 for (int i=0; i<100; i++)
 ...

 #pragma omp for
 for (int i=0; i<10; i++)
 fun1();
 }
}

https://software.intel.com/content/www/us/en/develop/articles/exploit-nested-parallelism-with-openmp-tasking-model.html

don't have to worry about the thread number changes
in 1st and 2nd main loops.

Even though you still have a small amount of (10) threads
allocated for 2nd main loop,
the rest available threads will be able
to be distributed through omp taskloop in fun1.

OpenMP Hello World
(1A)

44 Young Won Lim
10/22/20

Tasking

● Tasking was introduced in OpenMP 3.0
● Until then it was impossible to efficiently and easily

implement certain types of parallelism
● the initial functionality was very simple by design
● note that tasks can be nested

https://www.openmp.org//wp-content/uploads/sc13.tasking.ruud.pdf

OpenMP Hello World
(1A)

45 Young Won Lim
10/22/20

Tasking

Developer
● Use a pragma to specify where the tasks are
● Assume that all tasks can be executed independently

OpenMP runtime system
● when a thread encounters a task construct,

a new task is generated
● the moment of execution of the task

is up to the runtime system
● execution can either be immediate or delayed
● completion of a task can be enforced

through task synchronization

https://www.openmp.org//wp-content/uploads/sc13.tasking.ruud.pdf

OpenMP Hello World
(1A)

46 Young Won Lim
10/22/20

taskloop

The taskloop pragma is used to specify
that the iterations of one or more associated loops
are executed in parallel using OpenMP tasks.
 The iterations are distributed across tasks that are
created by the construct and scheduled to be executed.

The taskloop construct generates as many as 20 tasks.
The iterations of the for loop are distributed among the tasks
generated for the taskloop construct.

#pragma omp parallel
#pragma omp single // only one process performs taskloop
#pragma omp taskloop num_tasks(20)
 for (i=0; i<N; i++) {
 arr[i] = i*i;
 }

https://www.ibm.com/support/knowledgecenter/SSXVZZ_16.1.1/com.ibm.xlcpp1611.lelinux.doc/compiler_ref/prag_omp_taskloop.html

OpenMP Hello World
(1A)

47 Young Won Lim
10/22/20

taskloop

#pragma omp parallel
#pragma omp single
#pragma omp taskloop num_tasks(20)
 for (i=0; i<N; i++) {
 arr[i] = i*i;
}

https://www.ibm.com/support/knowledgecenter/SSXVZZ_16.1.1/com.ibm.xlcpp1611.lelinux.doc/compiler_ref/prag_omp_taskloop.html

FORK

end taskloop

JOIN

single

taskloop

end single

OpenMP Hello World
(1A)

48 Young Won Lim
10/22/20

taskwait

Completion of a subset of all explicit tasks bound to
a given parallel region may be specified
through the use of the taskwait directive.

The taskwait directive specifies a wait
on the completion of child tasks generated
since the beginning of the current (implicit or explicit) task.

Note that the taskwait directive specifies a wait
on the completion of direct children tasks, not all descendant tasks.

https://docs.oracle.com/cd/E19205-01/820-7883/6nj43o69j/index.html

OpenMP Hello World
(1A)

49 Young Won Lim
10/22/20

Tasking example

#include <stdio.h>
#include <omp.h>
int fib(int n)
{
 int i, j;
 if (n<2)
 return n;
 else
 {
 #pragma omp task shared(i) firstprivate(n)
 i=fib(n-1);

 #pragma omp task shared(j) firstprivate(n)
 j=fib(n-2);

 #pragma omp taskwait
 return i+j;
 }
}

https://docs.oracle.com/cd/E19205-01/820-7883/6nj43o69j/index.html

int main()
{
 int n = 10;

 omp_set_dynamic(0);
 omp_set_num_threads(4);

 #pragma omp parallel shared(n)
 {
 #pragma omp single
 printf ("fib(%d) = %d\n", n, fib(n));
 }
}

% CC -xopenmp -xO3 task_example.cc
% a.out
fib(10) = 55

OpenMP Hello World
(1A)

50 Young Won Lim
10/22/20

Tasking example

The following C/C++ program illustrates
how the OpenMP task and taskwait directives
can be used to compute Fibonacci numbers recursively.

In the example, the parallel directive denotes
a parallel region which will be executed by four threads.
In the parallel construct, the single directive is used
to indicate that only one of the threads
will execute the print statement that calls fib(n).

https://docs.oracle.com/cd/E19205-01/820-7883/6nj43o69j/index.html

OpenMP Hello World
(1A)

51 Young Won Lim
10/22/20

Tasking example

The call to fib(n) generates two tasks,
indicated by the task directive.
One of the tasks computes fib(n-1) and
the other computes fib(n-2),
and the return values are added together
to produce the value returned by fib(n).
Each of the calls to fib(n-1) and fib(n-2)
will in turn generate two tasks.
Tasks will be recursively generated
until the argument passed to fib() is less than 2.

https://docs.oracle.com/cd/E19205-01/820-7883/6nj43o69j/index.html

OpenMP Hello World
(1A)

52 Young Won Lim
10/22/20

Tasking example

The taskwait directive ensures that
the two tasks generated in an invocation of fib()
are completed (that is. the tasks compute i and j)
before that invocation of fib() returns.

Note that although only one thread executes the single directive
and hence the call to fib(n), all four threads will participate
in executing the tasks gener

https://docs.oracle.com/cd/E19205-01/820-7883/6nj43o69j/index.html

OpenMP Hello World
(1A)

53 Young Won Lim
10/22/20

Single

The single construct specifies that
the associated structured block is
executed by only one of the threads in the team
(not necessarily the master thread),
in the context of its implicit task.

The other threads in the team,
which do not execute the block,
wait at an implicit barrier
at the end of the single construct
unless a nowait clause is specified.

https://www.openmp.org/spec-html/5.0/openmpsu38.html

OpenMP Hello World
(1A)

54 Young Won Lim
10/22/20

c(0)

c(1)

c(2)

c(3)

Single

denotes block of code
to be executed by only one thread

• first thread to arrive is chosen
• implicit barrier at end

#pragma omp parallel
{

a();
#pragma omp single
{

b();
} // threads wait here for single
c();

}

https://www.intel.com/content/dam/www/public/apac/xa/en/pdfs/ssg/Programming_with_OpenMP-Linux.pdf

a(0)

a(2)

a(4)

a(8)

a(1)

a(3)

bchosen

OpenMP Hello World
(1A)

55 Young Won Lim
10/22/20

Master

Denotes block of code to be executed only by the master thread
No implicit barrier at end

#pragma omp parallel
{

a();
#pragma omp master
{ // if not master skip to next stmtp

b();
}
c();

|

https://www.intel.com/content/dam/www/public/apac/xa/en/pdfs/ssg/Programming_with_OpenMP-Linux.pdf

c(0)

c(1)

c(2)

c(3)

a(0)

a(2)

a(4)

a(8)

a(1)

a(3)

bmaster

OpenMP Hello World
(1A)

56 Young Won Lim
10/22/20

Nowait (1)

In an omp parallel region, automatically wait for all threads to finish
In an omp for loop, a synchronization point after the end of the loop

a();
#pragma omp parallel
{
 b();
 #pragma omp for
 for (int i = 0; i < 10; ++i) {
 c(i);
 }
 d();
}
z();

http://ppc.cs.aalto.fi/ch3/nowait/

a b

b

b

b

c(0)

c(3)

c(6)

c(8)

c(1)

c(4)

c(7)

c(9)

c(2)

c(5)

d

d

d

d

z

OpenMP Hello World
(1A)

57 Young Won Lim
10/22/20

Nowait (2)

no thread will execute d() until all threads are done with the loop:
However, if you do not need synchronization after the loop, you can disable it with nowait:

a();
#pragma omp parallel
{
 b();
 #pragma omp for nowait
 for (int i = 0; i < 10; ++i) {
 c(i);
 }
 d();
}
z();

http://ppc.cs.aalto.fi/ch3/nowait/

a b

b

b

b

c(0)

c(3)

c(6)

c(8)

c(1)

c(4)

c(7)

c(9)

c(2)

c(5)

d

d

d

d

z

OpenMP Hello World
(1A)

58 Young Won Lim
10/22/20

Nowait (3)

for a critical section after a loop,
first wait for all threads to finish their loop iterations
before letting any of the threads to enter a critical section:

a();
#pragma omp parallel
{
 b();
 #pragma omp for
 for (int i = 0; i < 10; ++i) {
 c(i);
 }
 #pragma omp critical
 { d(); }
}
z();

http://ppc.cs.aalto.fi/ch3/nowait/

a b

b

b

b

c(0)

c(3)

c(6)

c(8)

c(1)

c(4)

c(7)

c(9)

c(2)

c(5)

d

d

d

z

d

OpenMP Hello World
(1A)

59 Young Won Lim
10/22/20

Nowait (4)

disable this waiting, so that some threads can start doing postprocessing early.
This would make sense if, e.g., d() updates some global data structure based on what the
thread computed in its own part of the parallel for loop:

a();
#pragma omp parallel
{
 b();
 #pragma omp for nowait
 for (int i = 0; i < 10; ++i) {
 c(i);
 }
 #pragma omp critical
 { d(); }
}
z();

http://ppc.cs.aalto.fi/ch3/nowait/

a b

b

b

b

c(0)

c(3)

c(6)

c(8)

c(1)

c(4)

c(7)

c(9)

c(2)

c(5)

d

d

d

z

d

OpenMP Hello World
(1A)

60 Young Won Lim
10/22/20

Nowait (5)

Note that there is no synchronization point before the loop starts. If threads reach the for
loop at different times, they can start their own part of the work as soon as they are there,
without waiting for the other threads:

a();
#pragma omp parallel
{
 #pragma omp critical
 {
 b();
 }
 #pragma omp for
 for (int i = 0; i < 10; ++i) {
 c(i);
 }
 d();
}
z();

http://ppc.cs.aalto.fi/ch3/nowait/

a c(0)

c(3)

c(6)

c(8)

c(1)

c(4)

c(7)

c(9)

c(2)

c(5)

d

d

d

z

d

b

b

b

b

OpenMP Hello World
(1A)

61 Young Won Lim
10/22/20

Implicit task (1)

In addition to explicit tasks specified using the task directive,
the OpenMP specification version 3.0 introduces
the notion of implicit tasks.

An implicit task is a task generated by the implicit parallel region,
or generated when a parallel construct is encountered during execution.

The code for each implicit task is the code inside the parallel construct.

Each implicit task is assigned to a different thread in the team and is tied;

that is, an implicit task is always executed from beginning to end
by the thread to which it is initially assigned.

https://docs.oracle.com/cd/E19205-01/820-7883/6nj43o69j/index.html

OpenMP Hello World
(1A)

62 Young Won Lim
10/22/20

Implicit task (2)

All implicit tasks generated
when a parallel construct is encountered

are guaranteed to be complete
when the master thread exits the implicit barrier
at the end of the parallel region.

On the other hand,
all explicit tasks generated within a parallel region
are guaranteed to be complete

on exit from the next implicit or explicit barrier
within the parallel region.

https://docs.oracle.com/cd/E19205-01/820-7883/6nj43o69j/index.html

OpenMP Hello World
(1A)

63 Young Won Lim
10/22/20

Implicit task (3)

When an if clause is present on a task construct
and the value of the scalar-expression evaluates to false,
the thread that encounters the task must immediately execute the task.

The if clause can be used to avoid the overhead of
generating many finely grained tasks and
placing them in the conceptual pool.

https://docs.oracle.com/cd/E19205-01/820-7883/6nj43o69j/index.html

OpenMP Hello World
(1A)

64 Young Won Lim
10/22/20

Implicit barrier

Implicit BarriersSeveral OpenMP* constructs have implicit barriers
• parallel
• for
• single

Unnecessary barriers hurt performance
• Waiting threads accomplish no work!

Waiting threads accomplish no work!
Suppress implicit barriers, when safe, with the nowait

https://www.intel.com/content/dam/www/public/apac/xa/en/pdfs/ssg/Programming_with_OpenMP-Linux.pdf

OpenMP Hello World
(1A)

65 Young Won Lim
10/22/20

Task example (1)

#include <stdlib.h>
#include <stdio.h>
int main(intargc, char *argv[])
{

printf("A ");
printf("race ");
printf("car ");
printf("\n");
return(0);

}

$ cc -fast hello.c
$./a.out
A race car
$

https://www.openmp.org//wp-content/uploads/sc13.tasking.ruud.pdf

#include <stdlib.h>
#include <stdio.h>
int main(intargc, char *argv[])
{

#pragma omp parallel {
printf("A ");
printf("race ");
printf("car ");

}
printf("\n");
return(0);

}

$ cc -xopenmp -fast hello.c
$ export OMP_NUM_THREADS=2 $
./a.out
A race car A race car or

“A A race race car car” or
“A race A car race car” or
“A race A race car car”

OpenMP Hello World
(1A)

66 Young Won Lim
10/22/20

Task example (2)

#include <stdlib.h>
#include <stdio.h>
int main(intargc, char *argv[])
{

#pragma omp parallel {
#pragma omp single {

 printf("A ");
 printf("race ");
 printf("car ");

}
 }

printf("\n");
return(0);

}

$ cc -xopenmp –fast hello.c
$ export OMP_NUM_THREADS=2 $
./a.out
A race car

https://www.openmp.org//wp-content/uploads/sc13.tasking.ruud.pdf

#include <stdlib.h>
#include <stdio.h>
int main(intargc, char *argv[])
{

#pragma omp parallel {
#pragma omp single {

printf("A ");
#pragma omp task { printf("race ");}
#pragma omp task { printf("car "); }

}
 }

printf("\n");
return(0);

}

$ cc -xopenmp -fast hello.c
$ export OMP_NUM_THREADS=2
$./a.out A race car
$./a.out A race car
$./a.out A car race
$

OpenMP Hello World
(1A)

67 Young Won Lim
10/22/20

Task example (3)

#include <stdlib.h>
#include <stdio.h>
int main(intargc, char *argv[])
{

#pragma omp parallel {
#pragma omp single {

printf("A ");
#pragma omp task { printf("race ");}
#pragma omp task { printf("car "); }
printf(“is fun to watch “);

}
 }

printf("\n");
return(0);

}

$ cc -xopenmp -fast hello.c
$ export OMP_NUM_THREADS=2
$./a.out A is fun to watch race car
$./a.out A is fun to watch race car
$./a.out A is fun to watch car race
$

https://www.openmp.org//wp-content/uploads/sc13.tasking.ruud.pdf

#include <stdlib.h>
#include <stdio.h>
int main(intargc, char *argv[])
{

#pragma omp parallel {
#pragma omp single {

printf("A ");
#pragma omp task { printf("race "); }
#pragma omp task { printf("car "); }
#pragma omp taskwait { printf(“is fun to watch “); }

}
 }

printf("\n");
return(0);

}

$ cc -xopenmp -fast hello.c
$ export OMP_NUM_THREADS=2
$./a.out A race car is fun to watch
$./a.out A race car is fun to watch
$./a.out A car race is fun to watch
$

OpenMP Hello World
(1A)

68 Young Won Lim
10/22/20

#pragma omp

1. pragmas for defining parallel regions
in which work is done by threads in parallel (#pragma omp parallel).
Most of the OpenMP directives either statically or dynamically bind
to an enclosing parallel region

2. pragmas for defining how work is distributed or shared
across the threads in a parallel region
(#pragma omp sections, #pragma omp for, #pragma omp single, #pragma omp task).

3. pragmas for controlling synchronization among threads
(#pragma omp atomic, #pragma omp master, #pragma omp barrier,
#pragma omp critical, #pragma omp flush, #pragma omp ordered) .

4. pragmas for defining the scope of data visibility
across parallel regions within the same thread
(#pragma omp threadprivate).

5. pragmas for synchronization
(#pragma omp taskwait, #pragma omp barrier)

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbcpx01/cuppovrv2.htm

OpenMP Hello World
(1A)

69 Young Won Lim
10/22/20

#pragma omp

The #pragma omp pragmas generally appear
immediately before the section of code to which they apply.

The following code defines a parallel region
in which iterations of a for loop can run in parallel:

#pragma omp parallel
{
 #pragma omp for
 for (i=0; i<n; i++)
 ...
}

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbcpx01/cuppovrv2.htm

OpenMP Hello World
(1A)

70 Young Won Lim
10/22/20

#pragma omp

The following example defines a parallel region
in which two or more non-iterative sections of program code
can run in parallel:

#pragma omp parallel
{
 #pragma omp sections
 {
 #pragma omp section
 structured_block_1
 ...
 #pragma omp section
 structured_block_2
 ...

 }
}

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbcpx01/cuppovrv2.htm

OpenMP Hello World
(1A)

71 Young Won Lim
10/22/20

Sections, section

The omp section directive is optional
for the first program code segment
inside the omp sections directive.

Following segments must be preceded
by an omp section directive.

All omp section directives must appear
within the lexical construct of
the program source code segment
associated with the omp sections directive.

When program execution reaches a omp sections directive,
program segments defined by the following omp section directive
are distributed for parallel execution among available threads.

A barrier is implicitly defined at the end of the larger program region
associated with the omp sections directive unless the nowait clause is specified.

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbcpx01/cuppovrv2.htm

OpenMP Hello World
(1A)

72 Young Won Lim
10/22/20

Sections

Parallel SectionsIndependent sections of code can execute concurrently

#pragma omp parallel sections
{

#pragma omp section
phase1();

#pragma omp section
phase2();

#pragma omp section
phase3();

}

https://www.intel.com/content/dam/www/public/apac/xa/en/pdfs/ssg/Programming_with_OpenMP-Linux.pdf

OpenMP Hello World
(1A)

73 Young Won Lim
10/22/20

Single (1)

int main()
{
 int salaries1 = 0;
 int salaries2 = 0;

 for (int employee = 0; employee < 25000; employee++)
 {
 salaries1 += fetchTheSalary(employee, Co::Company1);
 }

 std::cout << "Salaries1: " << salaries1 << std::endl;

 for (int employee = 0; employee < 25000; employee++)
 {
 salaries2 += fetchTheSalary(employee, Co::Company2);
 }

 std::cout << "Salaries2: " << salaries2 << std::endl;

 return 0;
}

http://jakascorner.com/blog/2016/06/omp-single.html

OpenMP Hello World
(1A)

74 Young Won Lim
10/22/20

Single (2)

int salaries1 = 0;
int salaries2 = 0;

#pragma omp parallel shared(salaries1, salaries2)
{
 #pragma omp for reduction(+: salaries1)
 for (int employee = 0; employee < 25000; employee++)
 {
 salaries1 += fetchTheSalary(employee, Co::Company1);
 }

 std::cout << "Salaries1: " << salaries1 << std::endl;

 #pragma omp for reduction(+: salaries2)
 for (int employee = 0; employee < 25000; employee++)
 {
 salaries2 += fetchTheSalary(employee, Co::Company2);
 }

 std::cout << "Salaries2: " << salaries2 << std::endl;
}

http://jakascorner.com/blog/2016/06/omp-single.html

FORK

FOR

END FOR

FOR

END FOR

JOIN

#pragma omp
 parallel

1st for loop

2nd for loop

1st printing

2nd printing

OpenMP Hello World
(1A)

75 Young Won Lim
10/22/20

Single (v1)

#pragma omp parallel for reduction(+: salaries1)
for (int employee = 0; employee < 25000; employee++)
{
 salaries1 += fetchTheSalary(employee, Co::Company1);
}

std::cout << "Salaries1: " << salaries1 << std::endl;

#pragma omp parallel for reduction(+: salaries2)
for (int employee = 0; employee < 25000; employee++)
{
 salaries2 += fetchTheSalary(employee, Co::Company2);
}

std::cout << "Salaries2: " << salaries2 << std::endl;

http://jakascorner.com/blog/2016/06/omp-single.html

FORK

JOIN

FOR

JOIN

#pragma omp
 parallel

1st for loop

2nd for loop

1st printing

2nd printing

OpenMP Hello World
(1A)

76 Young Won Lim
10/22/20

Single (v2)

#pragma omp parallel for reduction(+: salaries1, salaries2)
for (int employee = 0; employee < 25000; employee++)
{
 salaries1 += fetchTheSalary(employee, Co::Company1);
 salaries2 += fetchTheSalary(employee, Co::Company2);
}

std::cout << "Salaries1: " << salaries1 << "\n"
 << "Salaries2: " << salaries2 << std::endl;

http://jakascorner.com/blog/2016/06/omp-single.html

FORK

FOR

END FOR

JOIN

#pragma omp
 parallel

1st for loop

2nd for loop

1st printing
2nd printing

OpenMP Hello World
(1A)

77 Young Won Lim
10/22/20

Single (v3)

#pragma omp parallel shared(salaries1, salaries2)
{
 #pragma omp for reduction(+: salaries1)
 for (int employee = 0; employee < 25000; employee++)
 {
 salaries1 += fetchTheSalary(employee, Co::Company1);
 }

 #pragma omp single
 {
 std::cout << "Salaries1: " << salaries1 << std::endl;
 }

 #pragma omp for reduction(+: salaries2)
 for (int employee = 0; employee < 25000; employee++)
 {
 salaries2 += fetchTheSalary(employee, Co::Company2);
 }
}

std::cout << "Salaries2: " << salaries2 << std::endl;

http://jakascorner.com/blog/2016/06/omp-single.html

FORK

FOR

END FOR

FOR

END FOR

JOIN

#pragma omp
 parallel

1st for loop

2nd for loop

1st printing

2nd printing

SINGLE

END SINGLE

OpenMP Hello World
(1A)

78 Young Won Lim
10/22/20

taskloop

Int main (int argc, char* argv[])
{

#pragma omp parallel
{

#pragrma omp single
{

fib(input);
}

}

}

https://pop-coe.eu/sites/default/files/pop_files/pop-webinar-openmptasking.pdf

Int fib(int n)
{

if (n < 2) return n;
int x, y;

#pragma omp task shared(x)
{

x = fib(n-1);
}
#pragma omp task shared(y)
{

y = fib(n-2);
}
#pragma omp taskwait;
{

return x+y;
}

OpenMP Hello World
(1A)

79 Young Won Lim
10/22/20

References

[1] en.wikipedia.org
[2] M Harris, http://beowulf.lcs.mit.edu/18.337-2008/lectslides/scan.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79

