
Young Won Lim
2/19/18

State Monad Methods (3G)

Young Won Lim
2/19/18

 Copyright (c) 2016 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

State Monad Methods
(3G)

3 Young Won Lim
2/19/18

Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

State Monad Methods
(3G)

4 Young Won Lim
2/19/18

put :: s -> State s a

put newSt = state $ _ -> ((), newSt)

Given a wanted state newState,

put generates a state processor
● ignores whatever the state it receives,
● updates the state to newState
● doesn't care about the result of this processor

● all we want to do is to change the state
● the tuple will be ((), newState)
● () : the universal placeholder value.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Setting the State : put

state
State s a

func
s ((), s)

s0

((), newSt)

funcs0 ((), newSt)

unwrapped state processor

State Monad Methods
(3G)

5 Young Won Lim
2/19/18

get :: State s s

get = state $ \s -> (s, s)

get generates a state processor
● gives back the state s0
● as a result and as an updated state – (s0, s0)

● the state will remain unchanged
● a copy of the state will be made available

through the result returned

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Getting the State : get

state
State s a

func
s (s, s)

s0

(s0, s0)

funcs0 (s0, s0)

unwrapped state processor

State Monad Methods
(3G)

6 Young Won Lim
2/19/18

import Control.Monad.Trans.State

runState get 1

(1,1)

runState (return 'X') 1

('X',1)

runState get 1

(1,1)

runState (put 5) 1

((),5)

let postincrement = do { x <- get; put (x+1); return x }

runState postincrement 1

(1,2)

let predecrement = do { x <- get; put (x-1); get }

 runState predecrement 1

(0,0)

https://wiki.haskell.org/State_Monad

Example Codes

runState (modify (+1)) 1

((),2)

runState (gets (+1)) 1

(2,1)

evalState (gets (+1)) 1

2

execState (gets (+1)) 1

1

State Monad Methods
(3G)

7 Young Won Lim
2/19/18

put :: s -> State s a

put s :: State s a

put newState = state $ _ -> ((), newState)

-- setting a state to newState

-- regardless of the old state

-- setting the result to ()

get :: State s s

get = state $ \s -> (s, s)

-- getting the current state s

-- also setting the result to s

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Setting and Getting the State

state
State s s

func
s (s, s)

get

state
State s a

func
s (a, s)

s
put

State Monad Methods
(3G)

8 Young Won Lim
2/19/18

Types and Values of put and get

state
State s s

func

get

state
State s a

func

put

state
State s s

func
s (s, s)

get

state
State s a

func
s (a, s)

s
put ss

s0 ((), ss)

s0 (s0, s0)

State Monad Methods
(3G)

9 Young Won Lim
2/19/18

put :: s -> State s a

put s :: State s a

put newSt = state $ _ -> ((), newSt)

get :: State s s

get = state $ \s -> (s, s)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

wrapped version of put and get

func

()

((), newSt)st

func

st

(st, st)st

put

get

State s a

State s a

 s

newSt

newSt

st

State Monad Methods
(3G)

10 Young Won Lim
2/19/18

put :: s -> State s a

put newSt = state $ _ -> ((), newSt)

runState (put newSt) s0  ((), newSt)

get :: State s s

get = state $ \s -> (s, s)

runState (get) s0 (s0, s0)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Executing the state processor

func
((), newSt)st

func

p :: State s a

(st, st)st

s0

((), newSt)

s0

(s0, s0)

applying the function

applying the function

State Monad Methods
(3G)

11 Young Won Lim
2/19/18

runState (put 5) 1

 ((),5)

put

set the result value to () and set the state value.

Comments:

 put 5 :: State Int ()

 runState (put 5) :: Int -> ((),Int)

 initial state = 1 :: Int

 final value = () :: ()

 final state = 5 :: Int

https://wiki.haskell.org/State_Monad

State Monad Examples – put

put :: s -> State s a

put newState = state $ _ -> ((), newState)

func
((), newSt)st

1

((), 5)

State Monad Methods
(3G)

12 Young Won Lim
2/19/18

runState get 1

 (1,1)

get

set the result value to the state and leave the state unchanged.

Comments:

 get :: State Int Int

 runState get :: Int -> (Int, Int)

 initial state = 1 :: Int

 final value = 1 :: Int

 final state = 1 :: Int

https://wiki.haskell.org/State_Monad

State Monad Examples – get

get :: State s s

get = state $ \s -> (s, s)

func
st

1

(1, 1)

State Monad Methods
(3G)

13 Young Won Lim
2/19/18

(return 5)  1 -> (5,1) -- a way of thinking

get  1 -> (1,1) -- a way of thinking

(put 5)  1 -> ((),5) -- a way of thinking

a value of type (State s a) is

a function from initial state s

to final value a and final state s: (a,s).

these are usually wrapped,

but shown here unwrapped for simplicity.

(return 5)  state(1 -> (5,1)) -- an actual way

get  state(1 -> (1,1)) -- an actual way

(put 5)  state(1 -> ((),5)) -- an actual way

https://wiki.haskell.org/State_Monad

Think an unwrapped state processor

Think an unwrapped
state processor

wrapping the
state processor

State Monad Methods
(3G)

14 Young Won Lim
2/19/18

Return leaves the state unchanged and sets the result:

-- ie: (return 5)  1 -> (5,1) -- a way of thinking

runState (return 5) 1  (5,1)

Get leaves state unchanged and sets the result to the state:

-- ie: get  1 -> (1,1) -- a way of thinking

runState get 1  (1,1)

Put sets the result to () and sets the state:

-- ie: (put 5)  1 -> ((),5) -- a way of thinking

runState (put 5) 1  ((),5)

https://wiki.haskell.org/State_Monad

State Monad Examples – return, get, and put

State Monad Methods
(3G)

15 Young Won Lim
2/19/18

modify :: (s -> s) -> State s ()

modify f = do { x <- get; put (f x) }

gets :: (s -> a) -> State s a

gets f = do { x <- get; return (f x) }

runState (modify (+1)) 1 (+1) 1 → 2 :: s

  ((),2)

runState (gets (+1)) 1 (+1) 1 → 2 :: a

  (2,1)

evalState (gets (+1)) 1 → :: s state

  2

execState (gets (+1)) 1 → :: a result

  1

https://wiki.haskell.org/State_Monad

State Monad Examples – modify and gets

x <- get; put (f x)

x <- get; return (f x)

● inside a monad instance
● unwrapped implementations

of modify and gets

State Monad Methods
(3G)

16 Young Won Lim
2/19/18

Return leaves the state unchanged and sets the result:

-- ie: (return 5)  1 -> (5,1) -- a way of thinking

return :: a -> State s a

return x s = (x,s)

Get leaves state unchanged and sets the result to the state:

-- ie: get  1 -> (1,1) -- a way of thinking

get :: State s s

get s = (s,s)

Put sets the result to () and sets the state:

-- ie: (put 5)  1 -> ((),5) -- a way of thinking

put :: s -> State s ()

put x s = ((),x)

https://wiki.haskell.org/State_Monad

Unwrapped Implementation – return, get, and put

(x,s)

(s,s)

((),x)

● inside a monad instance
● unwrapped implementations

of return, get, and put

State Monad Methods
(3G)

17 Young Won Lim
2/19/18

class Monad m => MonadState s m | m -> s where

 -- | Return the state from the internals of the monad.

 get :: m s

 get = state (\s -> (s, s))

 -- | Replace the state inside the monad.

 put :: s -> m ()

 put s = state (_ -> ((), s))

 -- | Embed a simple state action into the monad.

 state :: (s -> (a, s)) -> m a

 state f = do

 s <- get

 let ~(a, s') = f s

 put s'

 return a

https://stackoverflow.com/questions/23149318/get-put-and-state-in-monadstate

Default Implementations

State Monad Methods
(3G)

18 Young Won Lim
2/19/18

the definitions of get, put,state in the Monad class declaration

● the default implementations,

● to be overridden in actual instances of the class.

the dead loop in the default definition does not happen:

● put and get in terms of state

● state in terms of put and get

* minimal definition is either both of get and put or just state

https://stackoverflow.com/questions/23149318/get-put-and-state-in-monadstate

No dead loop

 get :: m s
 get = state (\s -> (s, s))

 put :: s -> m ()
 put s = state (_ -> ((), s))

 state :: (s -> (a, s)) -> m a
 state f = do
 s <- get
 let ~(a, s') = f s
 put s'
 return a

State Monad Methods
(3G)

19 Young Won Lim
2/19/18

class Monad m => MonadState s m | m -> s where …

functional dependencies

to constrain the parameters of type classes.

in a multi-parameter type class,

one of the parameters can be determined from the others,

so that the parameter determined by the others can be the return type

but none of the argument types of some of the methods.

s can be determined from m,

so that s can be the return type

but m can not be the return type

https://stackoverflow.com/questions/23149318/get-put-and-state-in-monadstate

Functional Dependency |

class Monad m where

 return :: a -> m a

 (>>=) :: m a -> (a -> m b) -> m b

 (>>) :: m a -> m b -> m b

 fail :: String -> m a

m a

Maybe a

IO a

ST a

State s a

m → s

State s → s

State Monad Methods
(3G)

20 Young Won Lim
2/19/18

class Monad m => MonadState s m | m -> s where …

get :: MonadState s m => m s

put :: MonadState s m => s -> m ()

MonadState s m is a typeclass constraint, not a type.

the more concrete (less-overloaded) version of State

get :: State s s

put :: s -> State s ()

https://stackoverflow.com/questions/25438575/states-put-and-get-functions

Typeclass Constrain MonadState s m

:t get

:t put

s ← m functional dependencies

m  State s

State Monad Methods
(3G)

21 Young Won Lim
2/19/18

class Monad m => MonadState s m | m -> s where …

get :: MonadState s m => m s

for some monad m

storing some state of type s,

get is an action in m

that returns a value of type s.

https://stackoverflow.com/questions/25438575/states-put-and-get-functions

Typeclass Constrain MonadState s m (1)

State Monad Methods
(3G)

22 Young Won Lim
2/19/18

class Monad m => MonadState s m | m -> s where …

put :: MonadState s m => s -> m ()

for some monad m

put is an action in m

storing the given state of type s,

but returns nothing ().

https://stackoverflow.com/questions/25438575/states-put-and-get-functions

Typeclass Constrain MonadState s m (2)

State Monad Methods
(3G)

23 Young Won Lim
2/19/18

execState get 0  0

set the value of the counter using put:

execState (put 1) 0  1

set the state multiple times:

execState (do put 1; put 2) 0  2

modify the state based on its current value:

execState (do x <- get; put (x + 1)) 0  1

execState (do modify (+ 1)) 0  1

execState (do modify (+ 2); modify (* 5)) 0  10

https://stackoverflow.com/questions/25438575/states-put-and-get-functions

Counter using State Monad

State Monad Methods
(3G)

24 Young Won Lim
2/19/18

MonadState is the class of types that are monads with state.

State is an instance of that class:

instance MonadState s (State s) where

 get = Control.Monad.Trans.State.get

 put = Control.Monad.Trans.State.put

So are StateT (the state monad transformer,

which adds state to another monad) and various others.

This overloading was introduced so that

if you’re using a stack of monad transformers,

you don’t need to explicitly lift operations

between different transformers.

If you’re not doing that,

you can use the simpler operations from transformers.

https://stackoverflow.com/questions/25438575/states-put-and-get-functions

Default Implementations

State Monad Methods
(3G)

25 Young Won Lim
2/19/18

a stateful computation is a function that

takes some state and

returns a value along with some new state.

That function would have the following type:

 s -> (a,s)

s is the type of the state and

a the result of the stateful computation.

http://learnyouahaskell.com/for-a-few-monads-more

The Result of a Stateful Computation

s -> (a, s)

s (a, s)

a function is an executable data

when executed, a result is produced

action, execution, result

s -> (a, s)

State Monad Methods
(3G)

26 Young Won Lim
2/19/18

inside a monad,

when sc is a stateful computation

then the result of the stateful computation sc

can be assigned to x

x <- sc

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Stateful Computations Inside the State Monad

sc :: State s a

x :: a (the execution result of sc)

s -> (a, s)

the result type

State Monad Methods
(3G)

27 Young Won Lim
2/19/18

inside the State monad,

get returns the current monad instance

whose type is State s a

x <- get

the stateful computation is performed

over the current monad instance returned by get

the result of the stateful computation is st::s

thus x will get the st

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

get inside the State Monad

x :: a the execution result of get

func

st

(st, st)st

st

State Monad Methods
(3G)

28 Young Won Lim
2/19/18

inside the State monad,

get returns the current monad instance

whose type is State s a

to get the current state st, do

s <- get

s will have the value of the current state st

this is like evalState is called with the current monad instance

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Getting the current state inside the State Monad

func

st

(st, st)st

st

● get
● current monad instance
● stateful computation
● result :: s

State Monad Methods
(3G)

29 Young Won Lim
2/19/18

put :: s -> State s a

put newSt = state $ _ -> ((), newSt)

get :: State s s

get = state $ \s -> (s, s)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

put and get inside State Monad

func
st

func
(st0, st0)st0

put
newSt

((), newSt)

get

put :: s -> ()

get :: s

()

st0

stateful computation of put

stateful computation of get

the result type :: ()

the result type :: s

State Monad Methods
(3G)

30 Young Won Lim
2/19/18

Most monads are equipped with some "run" functions

such as runState, execState, and so forth.

But, frequent calling such functions inside the monad

shows that the functionality of the monad does not fully exploited

s0 <- get -- read the state of the current instance

let (a,s1) = runState p s0 -- pass the state to p, get new state

put s1 -- save new state

a <- p -- the stateful computation p updates the state to s1

-- the result of the state returned is assigned to a

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Inside Functions and runState Functions

let p = state (\y -> (y, y+1))

State Monad Methods
(3G)

31 Young Won Lim
2/19/18

the same binding variable a

the same state s1

s0 <- get

let (a,s1) = runState p s0

put s1

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Redundant computation examples (1)

runState
(a, s)State s a s

p s0 (a, s1)

(a, s1) s0

a <- p

func
(s0, s0)s0

get
s0

func
s0

put
s1

((), s1)

()

the current monad instance

p :: State s a

State Monad Methods
(3G)

32 Young Won Lim
2/19/18

a <- p -- the stateful computation p updates the state to s1

-- the result of the state returned is assigned to a

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Redundant computation examples (2)

p :: State s a

stateful computation p return the result a

func

-
(a, s)s

s0 func

a
(a, s)s

s1

a

State Monad Methods
(3G)

33 Young Won Lim
2/19/18

Inferred Function Type

collectUntil :: Monad State t m => (t -> Bool) -> m a -> m [a]

m  State t

Specific Function Type

collectUntil :: (t -> Bool) -> State t a -> State t [a]

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Example of collecting returned values (1)

State Monad Methods
(3G)

34 Young Won Lim
2/19/18

collectUntil f comp = do

 st <- get -- Get the current state

 if f st then return [] -- If it satisfies predicate, return

 else do -- Otherwise...

 x <- comp -- Perform the computation s

 xs <- collectUntil f comp -- Perform the rest of the computation

 return (x:xs) -- Collect the results and return them

simpleState = state (\x -> (x,x+1))

*Main> evalState (collectUntil (>10) simpleState) 0

[0,1,2,3,4,5,6,7,8,9,10]

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Example of collecting returned values (2)

func
s (a, s)

a s

simpleState :: State s a

comp :: State s a

x :: a

xs :: [a]

st :: s

State Monad Methods
(3G)

35 Young Won Lim
2/19/18

collectUntil f comp = do

 st <- get

 if f st then return []

 else do

 x <- comp -- stateful computation

 xs <- collectUntil f comp

 return (x:xs)

simpleState = state (\x -> (x,x+1))

*Main> evalState (collectUntil (>10) simpleState) 0

[0,1,2,3,4,5,6,7,8,9,10]

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Example of collecting returned values (3)

get st←0 comp : 0 → (0, 1) x←0

get st←1 comp : 1 → (1, 2) x←1

get st←2 comp : 2 → (2, 3) x←2

get st←3 comp : 3 → (3, 4) x←3

get st←4 comp : 4 → (4, 5) x←4

get st←5 comp : 5 → (5, 6) x←5

get st←6 comp : 6 → (6, 7) x←6

get st←7 comp : 7 → (7, 8) x←7

get st←8 comp : 8 → (8, 9) x←8

get st←9 comp : 9 → (9, 10) x←9

get st←10 comp : 10→(10, 11) x←10

State Monad Methods
(3G)

36 Young Won Lim
2/19/18

collectUntil f comp = do

 st <- get

 if f st then return [] –--------------------------------- return State t [a] type

 else do

 x <- comp -- stateful computation

 xs <- collectUntil f comp

 return (x:xs) –--------------------------------- return State t [a] type

nesting do statements is possible

if they are within the same monad

enables branching within one do block,

as long as both branches of the if statement

results in the same monadic type.

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Example of collecting returned values (5)

State Monad Methods
(3G)

37 Young Won Lim
2/19/18

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Stateful Computation of comp

func
(a, s)s

func

0
(a, s)s

1

func

1
(a, s)s

2

0 func

0
(a, s)s

1

func

1
(a, s)s

2

func

2
(a, s)s

3

comp

State Monad Methods
(3G)

38 Young Won Lim
2/19/18

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Stateful Computations of put & get

func

a
(a, s)s

s

func

a
(a, s)s

s

func

()
(a, s)s

ns

func

s
(a, s)s

s

ns

get

put

State Monad Methods
(3G)

39 Young Won Lim
2/19/18

collectUntil :: (s -> Bool) -> State s a -> State s [a]

collectUntil f s = step

 where

 step = do a <- s

 liftM (a :) continue

 continue = do s' <- get

 if f s' then return [] else step

simpleState = state (\x -> (x,x+1))

*Main> evalState (collectUntil (>10) simpleState) 0

[0,1,2,3,4,5,6,7,8,9,10]

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Another example of collecting returned values (1)

State Monad Methods
(3G)

40 Young Won Lim
2/19/18

collectUntil :: (s -> Bool) -> State s a -> State s [a]

collectUntil f s = step

 where

 step = do a <- s

 liftM (a :) continue

 continue = do s' <- get

 if f s' then return [] else step

collectUntil f comp = do

 st <- get

 if f st then return []

 else do

 x <- comp -- stateful computation

 xs <- collectUntil f comp

 return (x:xs)

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Another example of collecting returned values (2)

Since a is part of the result
in both branches of the 'if'

State Monad Methods
(3G)

41 Young Won Lim
2/19/18

liftM :: (Monad m) => (a -> b) -> m a -> m b

mapM :: (Monad m) => (a -> m b) -> [a] -> m [b]

liftM lifts a function of type a -> b to a monadic counterpart.

mapM applies a function which yields a monadic value to a list of values,

yielding list of results embedded in the monad.

> liftM (map toUpper) getLine

Hallo

"HALLO"

> :t mapM return "monad"

mapM return "monad" :: (Monad m) => m [Char]

https://stackoverflow.com/questions/5856709/what-is-the-difference-between-liftm-and-mapm-in-haskell

liftM and mapM

Young Won Lim
2/19/18

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

