
Young Won Lim
3/2/18

Applicative (2A)

Young Won Lim
3/2/18

 Copyright (c) 2016 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Applicative (2A) 3 Young Won Lim
3/2/18

Based on

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass
http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Applicative (2A) 4 Young Won Lim
3/2/18

Currying

Currying recursively transforms
a function that takes multiple arguments
into a function that takes just a single argument and
returns another function if any arguments are still needed.

f :: a -> b -> c

https://wiki.haskell.org/Currying

f x y

(f x) y

g y

f :: a -> b -> c

g :: b -> c

f :: a -> (b -> c)

f

g

x

y z

a (b->c)

b c

f :: a -> b -> c

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Applicative (2A) 5 Young Won Lim
3/2/18

Curry & Uncurry

f :: a -> b -> c the curried form of g :: (a, b) -> c

f = curry g
g = uncurry f

f x y = g (x,y)

the curried form is usually more convenient
because it allows partial application.

all functions are considered curried

all functions take just one argument

https://wiki.haskell.org/Currying

f :: a -> b -> c g :: (a, b) -> c

currying

uncurrying

f x y g (x,y)

the curried form

Applicative (2A) 6 Young Won Lim
3/2/18

Mapping functions over the Functor [] (1)

*Integer
Integer

fmap[Integer] [Integer -> Integer]

Integer

Applicative (2A) 7 Young Won Lim
3/2/18

Mapping functions over the Functor [] (2)

*Integer
Integer

fmap[Integer]

Integer

(* k)Integer Integer

Applicative (2A) 8 Young Won Lim
3/2/18

Mapping functions over the Functor [] (3)

*Integer
Integer

fmap[Integer]

Integer

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

(* k)Integer Integer

func
a b

fmap
f a f b

func
a b

map
[a] [b]

*2
1
2
3

2
4
6

map[1,2,3] [2,4,6]

Applicative

Functor

Applicative (2A) 9 Young Won Lim
3/2/18

Mapping functions over the Functor [] (4)

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

*2
1
2
3

2
4
6

map[1,2,3] [2,4,6]

Applicative

Functor

*Integer
Integer

fmap

Integer

[1,2,3] [(*1),(*2),(*3)]

Applicative (2A) 10 Young Won Lim
3/2/18

Applicative : Mapping functions

*

Integer
Integer

(* 1)
Integer Integer

Integer *

Integer
Integer

(* 2)
Integer Integer

Integer *

Integer
Integer

(* 3)
Integer Integer

Integer *

Integer
Integer

(* 4)
Integer Integer

Integer

1 2 3 4

A list of functions

Applicative (2A) 11 Young Won Lim
3/2/18

Functor : Mapping values

(* 2)
Integer Integer

(* 2)
Integer Integer

(* 2)
Integer Integer

(* 2)
Integer

1 2 3 4

2 4 6 8

A list of integers

Applicative (2A) 12 Young Won Lim
3/2/18

Applicatives vs. Functors

*Integer
Integer

fmap[Integer]

(* 1)Integer Integer

*2
1
2
3

2
4
6

map[1,2,3] [2,4,6]

1
2
3

(* 2)

(* 3)

Applicative (2A) 13 Young Won Lim
3/2/18

Double applications of fmap (1)

ghci> let a = fmap (*) [1,2,3,4]

ghci> :t a

a :: [Integer -> Integer]

ghci> fmap (\f -> f 9) a

[9,18,27,36]

*Integer
Integer

fmap[Integer] [Integer]

[1,2,3,4] [(*) 1, (*) 2, (*) 3, (*) 4]

[(* 1), (* 2), (* 3), (* 4)]

(* 1)Integer Integer

(* 2)Integer Integer

(* 3)Integer Integer

(* 4)Integer Integer

Integer

 [Integer -> Integer]

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

a =

Applicative (2A) 14 Young Won Lim
3/2/18

Double applications of fmap (2)

ghci> fmap (\f -> f 9) a

[9,18,27,36]

(* 1)Integer Integer

(* 2)Integer Integer

(* 3)Integer Integer

(* 4)Integer Integer

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

a =

(* 1)9

(* 2)9

(* 3)9

(* 4)9

9

18

27

36

Applicative (2A) 15 Young Won Lim
3/2/18

Applications of fmap

fmap (*) [1, 2, 3, 4]

[(*) 1, (*) 2, (*) 3, (*) 4]

[(* 1), (* 2), (* 3), (* 4)]

fmap (\f -> f 9) [(* 1), (* 2), (* 3), (* 4)]

[9,18,27,36]

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Applicative (2A) 16 Young Won Lim
3/2/18

Mapping functions over the Functor Maybe (1)

*Integer
Integer

fmapMaybe Integer

Integer

(* k)Integer IntegerMaybe

Applicative (2A) 17 Young Won Lim
3/2/18

Mapping functions over the Functor Maybe (2)

*Integer
Integer

fmapMaybe Integer

(* k)Integer Integer

*2
1
2
3

2
4
6

map[1,2,3] [2,4,6]

Maybe

Integer

Maybe Integer (* k)Integer IntegerMaybe

Applicative (2A) 18 Young Won Lim
3/2/18

Mapping functions over the Functor Maybe (3)

*Integer
Integer

fmapJust 3

3

Just (* 3)

*Integer
Integer

fmapMaybe Integer Maybe (Integer -> Integer)

Integer

Applicative (2A) 19 Young Won Lim
3/2/18

Function wrapped in Just

fmap (*) (Just 3)

function wrapped in a Just

Just (* 3)

integer wrapped in a Just

Just 2

*Integer
Integer

fmapMaybe Integer Maybe (Integer -> Integer)

Just 3 Just ((*) 3)

Just (* 3)

Integer

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

(* 3)Integer IntegerMaybe

Applicative (2A) 20 Young Won Lim
3/2/18

<*> Application of a function

Just (* 3) <*> Just 2

function wrapped in a Just integer wrapped in a Just

Just (* 3) Just 2

Just 6

Just 6

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

extract

map Extracting and Mapping

Applicative (2A) 21 Young Won Lim
3/2/18

Default Container Function Pure

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

pure 9 Just 9

 10 Just 10pure

 pure 9

 pure 10

= Just 9

= Just 10

to wrap an integer

Applicative (2A) 22 Young Won Lim
3/2/18

Default Container Function Pure

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

 (+3) Just (+3)pure

 (++”haha”) Just (++”haha”)pure

(* k)
Integer Integer

Maybe pure Maybe (* k)
Integer Integer

(* k)
Integer Integer

 pure (+3)

 pure (++”haha”)

= Just (+3)

= Just (++”haha”)

to wrap a function

Applicative (2A) 23 Young Won Lim
3/2/18

Applicative Functor Apply <*> Examples

ghci> Just (+3) <*> Just 9

Just 12

ghci> pure (+3) <*> Just 10

Just 13

ghci> pure (+3) <*> Just 11

Just 12

ghci> Just (++"hahah") <*> Nothing

Nothing

ghci> Nothing <*> Just "woot"

Nothing

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Just 9
Just 12

Just (+3)
(<*>)

Just 10
Just 13

Just (+3)
(<*>)

Just 11
Just 14

Just (+3)
(<*>)

Nothing
Nothing

Just (++”haha”)
(<*>)

Just “woot”
Nothing

Nothing
(<*>)

Applicative (2A) 24 Young Won Lim
3/2/18

The Applicative Typeclass

Functor

lifts a “normal” function

to a function on computational contexts

fmap of Functors cannot

apply a function which is itself in a context

to a value in a context.

Applicative

 (<*>) (variously pronounced as "apply", "app", or "splat")

pure, for embedding values in a default, “effect free” context.

https://wiki.haskell.org/Typeclassopedia

fmap method
maps functions of the base type (such as Integer)
to functions of the lifted type (such as Maybe Integer).

f (a -> b)

Applicative (2A) 25 Young Won Lim
3/2/18

App <*>

(<*>) App

the type of (<*>) is similar to the type of ($)

but with everything enclosed in an functor f.

(<*>) is just function application

within a computational context.

The type of (<*>) is also similar to the type of fmap;

the only difference is that

the first parameter of (<*>) is

f (a -> b), a function in a context f,

instead of a “normal” function (a -> b).

https://wiki.haskell.org/Typeclassopedia

($) is just function application: func $ x = func x

pure (+3) <*> Just 11 Just 14

fmap (*2) (Just 200)

Just (+3) <*> Just 11

Just 400

Just (*2) <*> (Just 200) Just 400

Just 14

Applicative (2A) 26 Young Won Lim
3/2/18

fmap v.s. <*>

https://wiki.haskell.org/Typeclassopedia

(*2) :: Integer -> Integer

Just (+3) :: Maybe (Integer -> Integer)

 (a -> b)

f (a -> b)

fmap (*2) (Just 200) Just 400

Just (+3) <*> (Just 200) Just 203

fmap func Fval

Ffunc <*> Fval

the first parameter of (<*>) is

f (a -> b), a function in a context f,

instead of a “normal” function (a -> b). (<*>) :: f (a -> b) -> f a -> f b

 fmap :: (a -> b) -> f a -> f b

Applicative (2A) 27 Young Won Lim
3/2/18

pure

pure takes a value of any type a, and

returns a context/container of type f a.

to create a “default” container

or “effect free” context.

the behavior of pure is quite constrained by the laws

that must be satisfied in conjunction with (<*>).

Usually, for a given implementation of (<*>)

there is only one possible implementation of pure.

https://wiki.haskell.org/Typeclassopedia

Applicative (2A) 28 Young Won Lim
3/2/18

The definition of Applicative

class (Functor f) => Applicative f where

 pure :: a -> f a

 (<*>) :: f (a -> b) -> f a -> f b

The class has a two methods :

pure brings arbitrary values into the functor

(<*>) takes a function wrapped in a functor f

and a value wrapped in a functor f

and returns the result of the application

which is also wrapped in a functor f

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicative (2A) 29 Young Won Lim
3/2/18

The Maybe instance of Applicative

instance Applicative Maybe where

 pure = Just

 (Just f) <*> (Just x) = Just (f x)

 _ <*> _ = Nothing

pure wraps the value with Just;

(<*>) applies

 the function wrapped in Just

to the value wrapped in Just if both exist,

and results in Nothing otherwise.

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicative (2A) 30 Young Won Lim
3/2/18

The Applicative Typeclass

class (Functor f) => Applicative f where

 pure :: a -> f a

 (<*>) :: f (a -> b) -> f a -> f b

f : Functor, Applicative

instance Applicative Maybe where

 pure = Just

 Nothing <*> _ = Nothing

 (Just f) <*> something = fmap f something

f : function in a context

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

f a

f a f b

a

ba

f aa

f g

pure

pure

(<*>)

g

pure

pure pure

(Functor f) => Applicative f

(Functor f) => Applicative f

Applicative (2A) 31 Young Won Lim
3/2/18

fmap g x = (pure g) <*> x

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

ga b

fmapf a f b

(pure g) <*> x fmap g x

x (<*>)fmapx y

g pure g

y

f b

b

f g

pure

(<*>)

g

pure pure

f a

a

pure = f

Applicative (2A) 32 Young Won Lim
3/2/18

Left Associative <*>

ghci> pure (+) <*> Just 3 <*> Just 5

Just 8

ghci> pure (+) <*> Just 3 <*> Nothing

Nothing

ghci> pure (+) <*> Nothing <*> Just 5

Nothing

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

 pure (+) <*> Just 3 <*> Just 5

 pure (+3) <*> Just 5

 Just 8

Applicative (2A) 33 Young Won Lim
3/2/18

Infix Operator <$>

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

 pure f <*> x <*> y <*> z

 fmap f x <*> y <*> z

 f <$> x <*> y <*> z

fmap g x

fmapx y

g

g <$> x

<$>x y

g

Applicative (2A) 34 Young Won Lim
3/2/18

Infix Operator <$> : not a class method

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

(<$>) :: (Functor f) => (a -> b) -> f a -> f b

f <$> x = fmap f x

class (Functor f) => Applicative f where

 pure :: a -> f a

 (<*>) :: f (a -> b) -> f a -> f b

instance Applicative Maybe where

 pure = Just

 Nothing <*> _ = Nothing

 (Just f) <*> something = fmap f something

not a class method

fmap g x

fmapx y

g

g <$> x

<$>x y

g

Applicative (2A) 35 Young Won Lim
3/2/18

The Applicative Typeclass

Applicative is a superclass of Monad.

every Monad is also a Functor and an Applicative

fmap, pure, (<*>) can all be used with monads.

a Monad instance also requires

Functor and Applicative instances.

the types and roles of return and (>>)

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicative (2A) 36 Young Won Lim
3/2/18

(*> v.s. >>) and (pure v.s. return)

(*>) :: Applicative f => f a -> f b -> f b

(>>) :: Monad m => m a -> m b -> m b

pure :: Applicative f => a -> f a

return :: Monad m => a -> m a

the constraint changes from Applicative to Monad.

(*>) in Applicative (>>) in Monad

pure in Applicative return in Monad

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicative (2A) 37 Young Won Lim
3/2/18

The Applicative Laws

The identity law: pure id <*> v = v

Homomorphism: pure f <*> pure x = pure (f x)

Interchange: u <*> pure y = pure ($ y) <*> u

Composition: u <*> (v <*> w) = pure (.) <*> u <*> v <*> w

Applicative (2A) 38 Young Won Lim
3/2/18

The Identity Law

The identity law pure id <*> v = v

pure to inject values into the functor

in a default, featureless way,

so that the result is as close as possible to the plain value.

applying the pure id morphism does nothing,

exactly like with the plain id function.

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicative (2A) 39 Young Won Lim
3/2/18

The Homomorphism Law

The homomorphism law pure f <*> pure x = pure (f x)

applying a "pure" function to a "pure" value is the same as

applying the function to the value in the normal way

and then using pure on the result.

means pure preserves function application.

applying a non-effectful function f

to a non-effectful argument x in an effectful context pure

is the same as just applying the function f to the argument x

and then injecting the result (f x) into the context with pure.

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicative (2A) 40 Young Won Lim
3/2/18

The Interchange Law

The interchange law u <*> pure y = pure ($ y) <*> u

applying a morphism u to a "pure" value pure y

is the same as applying pure ($ y) to the morphism u

($ y) is the function that supplies y as argument to another function

– the higher order functions

when evaluating the application of

an effectful function u to a pure argument pure y,

the order in which we evaluate

the function u and its argument pure y doesn't matter.

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicative (2A) 41 Young Won Lim
3/2/18

The Composition Law

The composition law pure (.) <*> u <*> v <*> w = u <*> (v <*> w)

pure (.) composes morphisms similarly

to how (.) composes functions:

pure (.) <*> pure f <*> pure g <*> pure x

= pure f <*> (pure g <*> pure x)

applying the composed morphism pure (.) <*> u <*> v to w

gives the same result as applying u u

to the result of applying v to w (v <*> w)

it is expressing a sort of associativity property of (<*>).

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

(f . g) x = f (g x)

u = pure f
v = pure g
w = pure x

Applicative (2A) 42 Young Won Lim
3/2/18

The Applicative Typeclass

a bonus law about the relation between fmap and (<*>):

fmap f x = pure f <*> x -- fmap

Applying a "pure" function with (<*>)

is equivalent to using fmap.

This law is a consequence of the other ones,

so you need not bother with proving it

when writing instances of Applicative.

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicative (2A) 43 Young Won Lim
3/2/18

Sequencing of Effects (1)

>>> [(2*),(3*)] <*> [4,5]

[8,10,12,15]

>>> [4,5] <**> [(2*),(3*)]

[8,12,10,15]

Prelude> Just 2 *> Just 3

Just 3

Prelude> Just 3 *> Just 2

Just 2

Prelude> Just 2 *> Nothing

Nothing

Prelude> Nothing *> Just 2

Nothing

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

[(2*)] <*> [4,5], [(3*)] <*> [4,5]

[4] <**> [(2*),(3*)], [5] <**> [(2*),(3*)]

Applicative (2A) 44 Young Won Lim
3/2/18

Sequencing of Effects

Prelude> (print "foo" *> pure 2) *> (print "bar" *> pure 3)

"foo"

"bar"

3

Prelude> (print "bar" *> pure 3) *> (print "foo" *> pure 2)

"bar"

"foo"

2

Prelude> (print "foo" *> pure 2) <* (print "bar" *> pure 3)

"foo"

"bar"

2

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicative (2A) 45 Young Won Lim
3/2/18

Sequencing of Effects

By the way, if you hear about commutative monads in Haskell, the concept involved is the same,
only specialised to Monad.

Commutativity (or the lack thereof) affects other functions which are derived from (<*>) as well.
(*>) is a clear example:

(*>) :: Applicative f => f a -> f b -> f b

(*>) combines effects while preserving only the values of its second argument.

For monads, it is equivalent to (>>).

Here is a demonstration of it using Maybe, which is commutative:

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicative (2A) 46 Young Won Lim
3/2/18

Sequencing of Effects

(<**>) :: Applicative f => f a -> f (a -> b) -> f b

from Control.Applicative is not flip (<*>).

That means it provides a way of inverting the sequencing:

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicative (2A) 47 Young Won Lim
3/2/18

Sequencing of Effects

The convention in Haskell is to always implement (<*>)

and other applicative operators using left-to-right sequencing.

Even though this convention helps reducing confusion,

it also means appearances sometimes are misleading.

For instance, the (<*) function is not flip (*>),

as it sequences effects from left to right just like (*>):

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicative (2A) 48 Young Won Lim
3/2/18

Sequencing of Effects

Functor, Applicative, Monad.

Three closely related functor type classes;

the characteristic methods of the three classes

fmap :: Functor f => (a -> b) -> f a -> f b

(<*>) :: Applicative f => f (a -> b) -> f a -> f b

(>>=) :: Monad m => m a -> (a -> m b) -> m b

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

*23 6

fmapJust 3 Just 6

*2

<*>Just 3 Just 6

Just

Applicative (2A) 49 Young Won Lim
3/2/18

Sequencing of Effects

replace fmap by its infix synonym, (<$>);

replace (>>=) by its flipped version, (=<<);

fmap :: Functor f => (a -> b) -> f a -> f b

(<*>) :: Applicative f => f (a -> b) -> f a -> f b

(>>=) :: Monad m => m a -> (a -> m b) -> m b

(<$>) :: Functor t => (a -> b) -> (t a -> t b)

(<*>) :: Applicative t => t (a -> b) -> (t a -> t b)

(=<<) :: Monad t => (a -> t b) -> (t a -> t b)

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicative (2A) 50 Young Won Lim
3/2/18

Sequencing of Effects

fmap, (<*>) and (=<<) are all mapping functions over Functors.

The differences between them are in what is being mapped over in each case:

(<$>) :: Functor t => (a -> b) -> (t a -> t b)

(<*>) :: Applicative t => t (a -> b) -> (t a -> t b)

(=<<) :: Monad t => (a -> t b) -> (t a -> t b)

 fmap maps arbitrary functions over functors.

 (<*>) maps t (a -> b) morphisms over (applicative) functors.

 (=<<) maps a -> t b functions over (monadic) functors.

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicative (2A) 51 Young Won Lim
3/2/18

Sequencing of Effects

The day-to-day differences in uses of

Functor, Applicative and Monad follow from

what the types of those three mapping functions allow you to do.

As you move from fmap to (<*>) and then to (>>=),

you gain in power, versatility and control,

at the cost of guarantees about the results.

We will now slide along this scale.

While doing so, we will use the contrasting terms values and

context to refer to plain values within a functor and

to whatever surrounds them, respectively.

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicative (2A) 52 Young Won Lim
3/2/18

Sequencing of Effects

The type of fmap ensures that it is impossible to use it to change the context,

no matter which function it is given.

In (a -> b) -> t a -> t b, the (a -> b) function

has nothing to do with the t context of the t a functorial value,

and so applying it cannot affect the context.

For that reason, if you do fmap f xs on some list xs

the number of elements of the list will never change.

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicative (2A) 53 Young Won Lim
3/2/18

Sequencing of Effects

Functor map <$>

(<$>) :: Functor f => (a -> b) -> f a -> f b

(<$) :: Functor f => a -> f b -> f a

($>) :: Functor f => f a -> b -> f b

The <$> operator is just a synonym for the fmap function from the Functor typeclass. This
function generalizes the map function for lists to many other data types, such as Maybe, IO, and
Map.

https://haskell-lang.org/tutorial/operators

Applicative (2A) 54 Young Won Lim
3/2/18

Sequencing of Effects

Functor map <$>

(<$>) :: Functor f => (a -> b) -> f a -> f b

(<$) :: Functor f => a -> f b -> f a

($>) :: Functor f => f a -> b -> f b

The <$> operator is just a synonym for the fmap function from the Functor typeclass. This
function generalizes the map function for lists to many other data types, such as Maybe, IO, and
Map.

https://haskell-lang.org/tutorial/operators

Applicative (2A) 55 Young Won Lim
3/2/18

Sequencing of Effects

#!/usr/bin/env stack

-- stack --resolver ghc-7.10.3 runghc

import Data.Monoid ((<>))

main :: IO ()

main = do

 putStrLn "Enter your year of birth"

 year <- read <$> getLine

 let age :: Int

 age = 2020 - year

 putStrLn $ "Age in 2020: " <> show age

https://haskell-lang.org/tutorial/operators

Applicative (2A) 56 Young Won Lim
3/2/18

Sequencing of Effects

In addition, there are two additional operators provided which replace a value inside a Functor
instead of applying a function. This can be both more convenient in some cases, as well as for
some Functors be more efficient. In terms of definition:

value <$ functor = const value <$> functor

functor $> value = const value <$> functor

x <$ y = y $> x

x $> y = y <$ x

https://haskell-lang.org/tutorial/operators

Applicative (2A) 57 Young Won Lim
3/2/18

Sequencing of Effects

Applicative function application <*>

(<*>) :: Applicative f => f (a -> b) -> f a -> f b

(*>) :: Applicative f => f a -> f b -> f b

(<*) :: Applicative f => f a -> f b -> f a

Commonly seen with <$>, <*> is an operator that applies a wrapped function to a wrapped value.
It is part of the Applicative typeclass, and is very often seen in code like the following:

foo <$> bar <*> baz

https://haskell-lang.org/tutorial/operators

Applicative (2A) 58 Young Won Lim
3/2/18

Sequencing of Effects

For cases when you're dealing with a Monad, this is equivalent to:

do x <- bar

 y <- baz

 return (foo x y)

Other common examples including parsers and serialization libraries. Here's an example you
might see using the aeson package:

data Person = Person { name :: Text, age :: Int } deriving Show

-- We expect a JSON object, so we fail at any non-Object value.

instance FromJSON Person where

 parseJSON (Object v) = Person <$> v .: "name" <*> v .: "age"

 parseJSON _ = empty

https://haskell-lang.org/tutorial/operators

Applicative (2A) 59 Young Won Lim
3/2/18

Sequencing of Effects

To go along with this, we have two helper operators that are less frequently used:

 *> ignores the value from the first argument. It can be defined as:

 a1 *> a2 = (id <$ a1) <*> a2

 Or in do-notation:

 a1 *> a2 = do

 _ <- a1

 a2

 For Monads, this is completely equivalent to >>.

https://haskell-lang.org/tutorial/operators

Applicative (2A) 60 Young Won Lim
3/2/18

Sequencing of Effects

<* is the same thing in reverse: perform the first action then the second, but only take the value
from the first action. Again, definitions in terms of <*> and do-notation:

(<*) = liftA2 const

a1 <* a2 = do

 res <- a1

 _ <- a2

 return res

https://haskell-lang.org/tutorial/operators

Young Won Lim
3/2/18

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

