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Byte Address and Data in a Memory
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address 
10 bits

dataaddress

data  
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0x002
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0x3FC
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0x3FF
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HEX
address

8 bits10 bits
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Variables and their addresses 

&a

data 

int a; a 

address

int   * p; &p p
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Assignment of a value 

&a

data 

int a; a = 111 

address

int b; &b b = ____

b = a; 
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Assignment of an address

&a

data 

int a; a = 111 

address

int   * p; &p p = ____

p = &a; 
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Variables with initializations

&a

data 

int a; a 

address

int   * p = &a; &p p = &a
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Pointed addresses : p

p

data 

int a; a 

address

int   * p = &a; p &p

p ≡ &a
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Dereferenced Variable : *p

p

data 

int a; *p 

address

int   * p = &a; p &p

 p ≡  &a
*p ≡ *&a
*p ≡   a

assignment equivalence
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Two way to access:  a and *p

*p =100  

&a

data 

a 

address

&p p

1) Read/Write   a
2) Read/Write  *p

a = 100
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1. Pass by Reference
2. Arrays

Applications of pointers
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Pass by Reference
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Variable Scopes

int main ()
{
    int x, int y;
    ...
    ...

    func1 ( 10, 20 );

    ...
    ...
}

int func1 (int a, int b)
{
    int i, int j;
    ...
    ...

    ...
    ...
}

    int x, int y;

int a, int b

    int i, int j;

i and j’s 
variable scope

x and y’s 
variable scope

Only top stack frame is active
and its variable can be accessed

Communications are performed 
only through the parameter variables

( 10,    20 )

cannot access 
each other

func1’s 
Stack 
Frame

main’s
Stack
Frame

x
y

a
b
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Pass by Reference

int main ()
{
    int x, int y;
    ...
    ...

    func1 ( &x, &y );

    ...
    ...
}

int func1 (int* a, int* b)
{
    int i, int j;
    ...
    ...

    ...
    ...
}

func1’s 
Stack 
Frame

main’s
Stack
Frame     int x, int y;

int* a, int* b

    int i, int j;

x and y’s 
variable scope

( &x,   &y )

x and y are made known to func1
func1 can read / write x and y
through their addresses 

x
y

a
b

*a
*b

 a=&x
 b=&y

*a 
*b
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Arrays
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Accessing array elements – using an address 

0

4

1
2
3

int x[5];

x holds the starting address
of 5 consecutive int variables 
 

5 int variables
address data

x

x + 1

x + 2

x + 3

x + 4

*x

*(x+2)

*(x+4)

*(x+1)

*(x+3)

x[0]

x[4]

x[1]
x[2]
x[3]

index data
cannot change 
address x 
(constant)
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Accessing an Array with a Pointer Variable 

int x [5] = { 1, 2, 3, 4, 5 };

int  *p = x;

x[0] 

x[4] 

x[1] 
x[2] 
x[3] 

60

90
40
70

*(x+0) 

*(x+4) 

*(x+1) 
*(x+2) 
*(x+3) 

p[0]  

p[4] 

p[1] 
p[2] 
p[3] 

*(p+0) 

*(p+4) 

*(p+1) 
*(p+2) 
*(p+3) 

x&x p&p
x is a constant symbol 
cannot be changed

p is a variable 
can point to other addresses

80
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Byte Address 
Little Endian
Big Endian 
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Byte Addresses

long  a; a 

Increasing address

&a ?8-byte size data type

which byte?
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Little / Big Endian Ordering of Bytes

long  a;

LSByteMSByte Little Endian

a 

Increasing address

MSByteLSByte Big Endian

a7 a6 a5 a4 a3 a2 a1 a0

a0 a1 a2 a3 a4 a5 a6 a7

Increasing weight

Increasing weight
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Increasing address, Increasing weight

Little 
EndianBig Endian

Little 
EndianBig Endian

&a &a

&a &a

https://stackoverflow.com/questions/15620673/which-bit-is-the-address-of-an-integer

downward, increasing address upward, increasing address
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Pointer Types
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Integer Type Variables and Their Addresses

&a

long  a;

int    b;

short  c;
&b

&c
char  d;

&d

d

a 

b 

c 

Increasing address

Little Endian
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Points to the LSByte

d

a 

b 

c 

Increasing address

Little Endian

&q q

&r r

&s s

&p p long  *p;

int    *q;

short  *r;

char  *s;
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Aligning variables of different sizes

8-byte slots  

4-byte slots

2-byte slots

1-bytes slots d

a 

b 

c 

Memory Alignment
in the Little Endian

long  a;

int    b;

short  c;

char  d;

Increasing address

&a

&b

&c

&d
all these slots
are aligned
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Possible addresses for int values

0x
30

07

0x
30

06

0x
30

05

0x
30

04

0x
30

03

0x
30

02

0x
30

01

0x
30

00

int   *p;

4⋅k k = 0,1,2,⋯
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Possible addresses for short values

0x
30

07

0x
30

06

0x
30

05

0x
30

04

0x
30

03

0x
30

02

0x
30

01

0x
30

00

short   *q;

2⋅k k = 0,1,2,⋯
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Possible addresses for char values

0x
30

07

0x
30

06

0x
30

05

0x
30

04

0x
30

03

0x
30

02

0x
30

01

0x
30

00

char   *r;

1⋅k k = 0,1,2,⋯
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Data size at an address

int   *p;

short *q;

char *r;

p

q

r

Increasing addressthe same address is 
assumed p = q = r
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Associated data at the pointed addresses

int   *p;

short *q;

char *r;

p

q

r

Increasing address

*p

*q

*r

the same address is 
assumed p = q = r
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Incrementing / decrementing pointers  

int   *p;

short *q;

char *r;

p

q

r

p+1

q+1

r+1

p–1

q–1

r–1

Increasing addressthe same address is 
assumed p = q = r
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Dereferencing the pointers  

int   *p;

short *q;

char *r;

p

q

r

Increasing address

*(p+1)

*q

*r

*(p-1)*p

*(q+1) *(q-1)

*(r+1) *(r-1)

the same address is 
assumed p = q = r
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32-bit word view 

int   *p; short *q; char *r;

Increasing address

*(p+1)

   *q
*(p-1)

*p *(q+1)

*(q-1)

Increasing address Increasing address

*r

1 word = 4 bytes = 4 (8 bits) = 32 bitsthe same address is 
assumed p = q = r
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64-bit word view 

int   *p;

Increasing address

*(p+1)

*(p-1)

*p

*(q-1)
*q*(q+1)

*r

short *q;

char *r;

1 word = 8 bytes = 8 (8 bits) = 64 bits

the same address is 
assumed p = q = r
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32-bit vs. 64-bit machines

dataaddress

word

data unit per memory access

32-bit 64-bit

word size

32-bit 64-bit

max address space 

2^32 2^64 
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