
Young Won Lim
7/27/18

Background – Accessing Memory (1A)

Young Won Lim
7/27/18

 Copyright (c) 2010 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOfce.

mailto:youngwlim@hotmail.com

Series:
0. Background 3 Young Won Lim

7/27/18

Byte Address and Data in a Memory

0x000

1K x 8
Memory

address
10 bits

dataaddress

data
8 bits

0x001

0x002

0x003

0x3FC

0x3FD

0x3FE

0x3FF

210 = 1024

HEX
address

8 bits10 bits

dataByte Address

Series:
0. Background 4 Young Won Lim

7/27/18

Variables and their addresses

&a

data

int a; a

address

int * p; &p p

Series:
0. Background 5 Young Won Lim

7/27/18

Assignment of a value

&a

data

int a; a = 111

address

int b; &b b = ____

b = a;

Series:
0. Background 6 Young Won Lim

7/27/18

Assignment of an address

&a

data

int a; a = 111

address

int * p; &p p = ____

p = &a;

Series:
0. Background 7 Young Won Lim

7/27/18

Variables with initializations

&a

data

int a; a

address

int * p = &a; &p p = &a

Series:
0. Background 8 Young Won Lim

7/27/18

Pointed addresses : p

p

data

int a; a

address

int * p = &a; p &p

p ≡ &a

Series:
0. Background 9 Young Won Lim

7/27/18

Dereferenced Variable : *p

p

data

int a; *p

address

int * p = &a; p &p

 p ≡ &a
*p ≡ *&a
*p ≡ a

assignment equivalence

Series:
0. Background 10 Young Won Lim

7/27/18

Two way to access: a and *p

*p =100

&a

data

a

address

&p p

1) Read/Write a
2) Read/Write *p

a = 100

Series:
0. Background 11 Young Won Lim

7/27/18

1. Pass by Reference
2. Arrays

Applications of pointers

Series:
0. Background 12 Young Won Lim

7/27/18

Pass by Reference

Series:
0. Background 13 Young Won Lim

7/27/18

Variable Scopes

int main ()
{
 int x, int y;
 ...
 ...

 func1 (10, 20);

 ...
 ...
}

int func1 (int a, int b)
{
 int i, int j;
 ...
 ...

 ...
 ...
}

 int x, int y;

int a, int b

 int i, int j;

i and j’s
variable scope

x and y’s
variable scope

Only top stack frame is active
and its variable can be accessed

Communications are performed
only through the parameter variables

(10, 20)

cannot access
each other

func1’s
Stack
Frame

main’s
Stack
Frame

x
y

a
b

Series:
0. Background 14 Young Won Lim

7/27/18

Pass by Reference

int main ()
{
 int x, int y;
 ...
 ...

 func1 (&x, &y);

 ...
 ...
}

int func1 (int* a, int* b)
{
 int i, int j;
 ...
 ...

 ...
 ...
}

func1’s
Stack
Frame

main’s
Stack
Frame int x, int y;

int* a, int* b

 int i, int j;

x and y’s
variable scope

(&x, &y)

x and y are made known to func1
func1 can read / write x and y
through their addresses

x
y

a
b

*a
*b

 a=&x
 b=&y

*a
*b

Series:
0. Background 15 Young Won Lim

7/27/18

Arrays

Series:
0. Background 16 Young Won Lim

7/27/18

Accessing array elements – using an address

0

4

1
2
3

int x[5];

x holds the starting address
of 5 consecutive int variables

5 int variables
address data

x

x + 1

x + 2

x + 3

x + 4

*x

*(x+2)

*(x+4)

*(x+1)

*(x+3)

x[0]

x[4]

x[1]
x[2]
x[3]

index data
cannot change
address x
(constant)

Series:
0. Background 17 Young Won Lim

7/27/18

Accessing an Array with a Pointer Variable

int x [5] = { 1, 2, 3, 4, 5 };

int *p = x;

x[0]

x[4]

x[1]
x[2]
x[3]

60

90
40
70

*(x+0)

*(x+4)

*(x+1)
*(x+2)
*(x+3)

p[0]

p[4]

p[1]
p[2]
p[3]

*(p+0)

*(p+4)

*(p+1)
*(p+2)
*(p+3)

x&x p&p
x is a constant symbol
cannot be changed

p is a variable
can point to other addresses

80

Series:
0. Background 18 Young Won Lim

7/27/18

Byte Address
Little Endian
Big Endian

Series:
0. Background 19 Young Won Lim

7/27/18

Byte Addresses

long a; a

Increasing address

&a ?8-byte size data type

which byte?

Series:
0. Background 20 Young Won Lim

7/27/18

Little / Big Endian Ordering of Bytes

long a;

LSByteMSByte Little Endian

a

Increasing address

MSByteLSByte Big Endian

a7 a6 a5 a4 a3 a2 a1 a0

a0 a1 a2 a3 a4 a5 a6 a7

Increasing weight

Increasing weight

Series:
0. Background 21 Young Won Lim

7/27/18

Increasing address, Increasing weight

Little
EndianBig Endian

Little
EndianBig Endian

&a &a

&a &a

https://stackoverflow.com/questions/15620673/which-bit-is-the-address-of-an-integer

downward, increasing address upward, increasing address

In
cr

ea
si

ng
 a

dd
re

ss

In
cr

ea
si

ng
 w

ei
gh

t

In
cr

ea
si

ng
 a

dd
re

ss

In
cr

ea
si

ng
 w

ei
gh

t

Series:
0. Background 22 Young Won Lim

7/27/18

Pointer Types

Series:
0. Background 23 Young Won Lim

7/27/18

Integer Type Variables and Their Addresses

&a

long a;

int b;

short c;
&b

&c
char d;

&d

d

a

b

c

Increasing address

Little Endian

Series:
0. Background 24 Young Won Lim

7/27/18

Points to the LSByte

d

a

b

c

Increasing address

Little Endian

&q q

&r r

&s s

&p p long *p;

int *q;

short *r;

char *s;

Series:
0. Background 25 Young Won Lim

7/27/18

Aligning variables of different sizes

8-byte slots

4-byte slots

2-byte slots

1-bytes slots d

a

b

c

Memory Alignment
in the Little Endian

long a;

int b;

short c;

char d;

Increasing address

&a

&b

&c

&d
all these slots
are aligned

Series:
0. Background 26 Young Won Lim

7/27/18

Possible addresses for int values

0x
30

07

0x
30

06

0x
30

05

0x
30

04

0x
30

03

0x
30

02

0x
30

01

0x
30

00

int *p;

4⋅k k = 0,1,2,⋯

Series:
0. Background 27 Young Won Lim

7/27/18

Possible addresses for short values

0x
30

07

0x
30

06

0x
30

05

0x
30

04

0x
30

03

0x
30

02

0x
30

01

0x
30

00

short *q;

2⋅k k = 0,1,2,⋯

Series:
0. Background 28 Young Won Lim

7/27/18

Possible addresses for char values

0x
30

07

0x
30

06

0x
30

05

0x
30

04

0x
30

03

0x
30

02

0x
30

01

0x
30

00

char *r;

1⋅k k = 0,1,2,⋯

Series:
0. Background 29 Young Won Lim

7/27/18

Data size at an address

int *p;

short *q;

char *r;

p

q

r

Increasing addressthe same address is
assumed p = q = r

Series:
0. Background 30 Young Won Lim

7/27/18

Associated data at the pointed addresses

int *p;

short *q;

char *r;

p

q

r

Increasing address

*p

*q

*r

the same address is
assumed p = q = r

Series:
0. Background 31 Young Won Lim

7/27/18

Incrementing / decrementing pointers

int *p;

short *q;

char *r;

p

q

r

p+1

q+1

r+1

p–1

q–1

r–1

Increasing addressthe same address is
assumed p = q = r

Series:
0. Background 32 Young Won Lim

7/27/18

Dereferencing the pointers

int *p;

short *q;

char *r;

p

q

r

Increasing address

*(p+1)

*q

*r

*(p-1)*p

*(q+1) *(q-1)

*(r+1) *(r-1)

the same address is
assumed p = q = r

Series:
0. Background 33 Young Won Lim

7/27/18

32-bit word view

int *p; short *q; char *r;

Increasing address

*(p+1)

 *q
*(p-1)

*p *(q+1)

*(q-1)

Increasing address Increasing address

*r

1 word = 4 bytes = 4 (8 bits) = 32 bitsthe same address is
assumed p = q = r

Series:
0. Background 34 Young Won Lim

7/27/18

64-bit word view

int *p;

Increasing address

*(p+1)

*(p-1)

*p

*(q-1)
q(q+1)

*r

short *q;

char *r;

1 word = 8 bytes = 8 (8 bits) = 64 bits

the same address is
assumed p = q = r

Series:
0. Background 35 Young Won Lim

7/27/18

32-bit vs. 64-bit machines

dataaddress

word

data unit per memory access

32-bit 64-bit

word size

32-bit 64-bit

max address space

2^32 2^64

Series:
0. Background 36 Young Won Lim

7/27/18

References

[1] Essential C, Nick Parlante
[2] Efficient C Programming, Mark A. Weiss
[3] C A Reference Manual, Samuel P. Harbison & Guy L. Steele Jr.
[4] C Language Express, I. K. Chun

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

