
1 Young Won Lim
1/10/22

Monad P3 : Continuation Passing Style (1D)

2 Young Won Lim
1/10/22

 Copyright (c) 2021 - 2016 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Continuous Passing
Style (1D)

3 Young Won Lim
1/10/22

($) is a curious higher-order operator.

Its type is:

($) :: (a -> b) -> a -> b

It takes a function as its first argument,

and all it does is to apply the function (a -> b)

to the second argument a

for instance, (head $ "abc") == (head "abc").

https://en.wikibooks.org/wiki/Haskell/Higher-order_functions#Function_manipulation

Application operator

Continuous Passing
Style (1D)

4 Young Won Lim
1/10/22

Furthermore, as ($) is just a function

which happens to apply functions,

and functions are just values,

we can write intriguing expressions such as:

map ($ 2) [(2*), (4*), (8*)]

($) :: (a -> b) -> a -> b

($ a) :: (a -> b) -> b

https://en.wikibooks.org/wiki/Haskell/Higher-order_functions#Function_manipulation

Application operator as a function

Continuous Passing
Style (1D)

5 Young Won Lim
1/10/22

First, ($) has very low precedence,

unlike regular function application

which has the highest precedence.

can avoid confusing nesting of parentheses

by breaking precedence with $.

https://en.wikibooks.org/wiki/Haskell/Higher-order_functions#Function_manipulation

Application operator ($)

Continuous Passing
Style (1D)

6 Young Won Lim
1/10/22

We write a non-point-free version of myInits

without adding new parentheses:

myInits :: [a] -> [[a]]

myInits xs = map reverse . scanl (flip (:)) [] $ xs

myInits [a1, a2, an]

[[a1], [a2], [an]]

https://en.wikibooks.org/wiki/Haskell/Higher-order_functions#Function_manipulation

Application operator ($) example – (1)

Continuous Passing
Style (1D)

7 Young Won Lim
1/10/22

myInits :: [a] -> [[a]]

myInits xs = map reverse . scanl (flip (:)) [] $ xs

(:) :: a -> [a] -> [a]

scanl :: (a -> b -> a) -> a -> [b] -> [a]

flip :: (a -> b -> c) -> b -> a -> c

https://en.wikibooks.org/wiki/Haskell/Higher-order_functions#Function_manipulation

Application operator ($) example – (2)

Continuous Passing
Style (1D)

8 Young Won Lim
1/10/22

myInits :: [a] -> [[a]]

myInits xs = map reverse . scanl (flip (:)) [] $ xs

xs :: [a] -- [a1, a2, an] [[a1], [a2], [an]]

(:) :: a -> [a] -> [a]

flip (:) :: [a] -> a -> [a]

scan (flip (:)) :: [a] -> [b] -> [[a]]

flip :: (a -> b -> c) -> b -> a -> c

scanl :: (a -> b -> a) -> a -> [b] -> [a]

https://en.wikibooks.org/wiki/Haskell/Higher-order_functions#Function_manipulation

Application operator ($) example – (3)

Continuous Passing
Style (1D)

9 Young Won Lim
1/10/22

scanl :: (a -> b -> a) -> a -> [b] -> [a]

it takes the second argument a

and the first item of the list [b]

and applies the function to them, a -> b -> a

then feeds the function with this result

and the second argument and so on.

It returns the list of intermediate and final results.

http://zvon.org/other/haskell/Outputprelude/scanl_f.html

scanl

b

a

[b1, … bn] :: [b]

[a, a1, … an] :: [a]

 [a, a1, a1, an] :: [a]

◌ b1 ◌ b2 ◌ bn

Continuous Passing
Style (1D)

10 Young Won Lim
1/10/22

Input: scanl (/) 64 [4,2,4]

Output: [64.0,16.0,8.0,2.0]

Input: scanl (/) 3 []

Output: [3.0]

Input: scanl max 5 [1,2,3,4]

Output: [5,5,5,5,5]

http://zvon.org/other/haskell/Outputprelude/scanl_f.html

scanl examples

 [64, 16, 8, 2] :: [a]

/4 /2 /4

 [5, 5, 5, 5, 5] :: [a]

max
(*,1)

max
(*,2)

max
(*,3)

max
(*,4)

[3] :: [a]

Continuous Passing
Style (1D)

11 Young Won Lim
1/10/22

flip takes a function of two arguments and

returns a version of the same function

with the arguments swapped.

flip :: (a -> b -> c) -> b -> a -> c

(flip (/)) 3 1

0.3333333333333333

(flip map) [1,2,3] (*2) map (*2) [1,2,3]

[2,4,6]

https://en.wikibooks.org/wiki/Haskell/Higher-order_functions#Function_manipulation

flip

Continuous Passing
Style (1D)

12 Young Won Lim
1/10/22

tacit programming, also called point-free style,

is a programming paradigm in which function definitions

do not identify the arguments (or "points") on which they operate.

Instead the definitions merely compose other functions,

among which are combinators that manipulate the arguments.

Tacit programming is of theoretical interest,

because the strict use of composition results in programs

that are well adapted for equational reasoning

https://en.wikipedia.org/wiki/Tacit_programming

Point-free style programming

Continuous Passing
Style (1D)

13 Young Won Lim
1/10/22

here are two distinct meanings of combinator

The first is a narrow, technical meaning, namely:

A function or definition with no free variables.

a pure lambda-expression that refers only to its arguments, like

\a -> a

\a -> \b -> a

\f -> \a -> \b -> f b a

The study of such things is called combinatory logic.

the examples above are id, const, and flip respectively.

https://wiki.haskell.org/Combinator

Combinator

Continuous Passing
Style (1D)

14 Young Won Lim
1/10/22

A variable that is not bound.

(\x -> x y)

In the above expression, y is a free variable.

Whether a variable is free or not depends largely on context.

It often helps to describe a variable as being free

within a particular expression.

https://wiki.haskell.org/Free_variable

Free variable

Continuous Passing
Style (1D)

15 Young Won Lim
1/10/22

Conventional (specify the arguments explicitly):

sum (x:xs) = x + (sum xs)

sum [] = 0

Point-free (no explicit arguments)

sum = foldr (+) 0

it's just a fold with + starting with 0

https://en.wikipedia.org/wiki/Tacit_programming

Point-free style programming (1)

Continuous Passing
Style (1D)

16 Young Won Lim
1/10/22

Conventional (specify the arguments explicitly):

g(x) = f(x)

Point-free (no explicit arguments)

g = f

It's closely related to currying

(or operations like function composition).

https://en.wikipedia.org/wiki/Tacit_programming

Point-free style programming (2)

Continuous Passing
Style (1D)

17 Young Won Lim
1/10/22

to compute x*x+1

Conventional (specify the arguments explicitly):

f :: a -> a

f x = inc (square x)

Point-free (no explicit arguments)

f :: a -> a

f = inc . square

https://en.wikipedia.org/wiki/Tacit_programming

Point-free style programming (3)

square :: a -> a

square x = x*x

inc :: a -> a

inc x = x+1

Continuous Passing
Style (1D)

18 Young Won Lim
1/10/22

map ($ 2) [(2*), (4*), (8*)]

[($ 2) (2*), ($ 2) (4*), ($ 2) (8*)]

[(2*) $ 2, (4*) $ 2, (8*) $ 2]

[4,8,16]

map (*2) [2, 4, 8]

[(*2) 2, (*2) 4, (*2) 8]

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

Like a value is applied to a function

Continuous Passing
Style (1D)

19 Young Won Lim
1/10/22

map ($ 2) [(2*), (4*), (8*)] [(2*) $ 2, (4*) $ 2, (4*) $ 2]

[4,8,16]

map (*2) [2, 4, 8] [(*2) 2, (*2) 4, (*2) 8]

The ($) section makes the code appear backwards,

as if we are applying a value to the functions

rather than the other way around.

such an reversal is at heart of

continuation passing style!

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

Reversal of a value and a function

($) :: (a -> b) -> a -> b

($ a) :: (a -> b) -> b

map ($ 2) [(2*), (4*), (8*)]

[($ 2) (2*), ($ 2) (4*), ($ 2) (8*)]

[(2*) ($ 2), (4*) ($ 2), (8*) ($ 2)]

[$ 2 (2*), $ 2 (4*), $ 2 (8*)]

[(2*) $ 2, (4*) $ 2, (8*) $ 2]

Continuous Passing
Style (1D)

20 Young Won Lim
1/10/22

From a CPS perspective, ($ 2) is a suspended computation:

a function with general type

(a -> r) -> r

takes another function as argument (a -> r)

produces a final result. r

the (a -> r) argument is the continuation;

it specifies how the computation

will be brought to a conclusion.

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

Suspended computation and continuation

map ($ 2) [(2*), (4*), (8*)]

($) :: (a -> b) -> a -> b

($ a) :: (a -> b) -> b

($ 2) (2*) 4

($ 2) (4*) 8

($ 2) (8*) 16

f

a -> r

a r

Continuous Passing
Style (1D)

21 Young Won Lim
1/10/22

map ($ 2) [(2*), (4*), (8*)]

the functions in the list are (2*), (4*), (8*)

supplied as continuations via map,

to the suspended computation ($ 2)

producing three distinct results.

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

Continuation functions for conclusions

Suspended
Computation continuations

Continuous Passing
Style (1D)

22 Young Won Lim
1/10/22

map ($ 2) [(2*), (4*), (8*)]

● suspended computations are largely ($ 2)

interchangeable with plain values:

● flip ($) converts any value

into a suspended computation

● passing id as its continuation ($ 2) id

gives back the original value.

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

CPS (Continuation Passing Style)

Continuous Passing
Style (1D)

23 Young Won Lim
1/10/22

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

Continuation Passing Style

Example I : Factorial Computation

Continuous Passing
Style (1D)

24 Young Won Lim
1/10/22

fact x =

 if x <= 1 then 1 else x * fact (x - 1)

 fact 4

 4 * fact 3

 4 * (3 * fact 2)

 4 * (3 * (2 * fact 1))

 4 * (3 * (2 * 1))

 4 * (3 * 2)

 4 * 6

 24

https://www.seas.upenn.edu/~cis552/13fa/lectures/FunCont.html

Recursive Calling

Each call of fact is made

with the promise

that the value returned will be multiplied

by the value of the parameter

at the time of the call.

Thus fact is invoked

with larger and larger

control contexts

as the calculation proceeds.

Continuous Passing
Style (1D)

25 Young Won Lim
1/10/22

fact_cps x k =

 if x <= 1 then k 1 else fact_cps (x - 1) (\v -> k (x * v))

● fact_cps 4 id

● fact_cps 3 (\v -> id (4 * v)) -- v

● fact_cps 2 (\v' -> (\v -> id (4 * v)) (3 * v')) -- v’

● fact_cps 1 (\v'' -> (\v' -> (\v -> id (4 * v)) (3 * v')) (2 * v'')) -- v’’

● (\v'' -> (\v' -> (\v -> id (4 * v)) (3 * v')) (2 * v'')) 1 -- v’’

 (\v' -> (\v -> id (4 * v)) (3 * v')) (2 * 1) -- v’

 (\v -> id (4 * v)) (3 * (2 * 1)) -- v

 id (4 * (3 * (2 * 1)))

 (4 * (3 * (2 * 1)))

 24

using 'id' as the first continuation.

https://www.seas.upenn.edu/~cis552/13fa/lectures/FunCont.html

Continuation passing style

Suspended computation x * v

Continuations k

At the bottom of the recursion,

these continuations are evaluated.

each step remembers

what to do with the result

continuations are supplied
to the suspended computation

Continuous Passing
Style (1D)

26 Young Won Lim
1/10/22

fact_cps x k = x k

 if x <= 1 then k 1

else fact_cps (x - 1) (\v -> k (x * v))

v :: a

x :: a

k :: a -> r

k x*v :: r

(a -> r) -> r

f :: a -> (a -> r) -> r

https://www.seas.upenn.edu/~cis552/13fa/lectures/FunCont.html

Continuation passing

f

k :: a->r

v :: a k (x*v) :: r

Suspended computation x * v

Continuations k

Continuous Passing
Style (1D)

27 Young Won Lim
1/10/22

fact_cps x k

fact_cps (x - 1) (\v -> k (x * v))

fact_cps x k

 return k 1

https://www.seas.upenn.edu/~cis552/13fa/lectures/FunCont.html

Passing and evaluating continuations

At the bottom of the recursion,

these continuations are evaluated.

each step remembers

what to do with the result

Suspended computation x * v

Continuations k

Continuous Passing
Style (1D)

28 Young Won Lim
1/10/22

https://www.seas.upenn.edu/~cis552/13fa/lectures/FunCont.html

Steps of passing and evaluating continuations

At the bottom of the recursion,

these continuations are evaluated.

each step remembers

what to do with the result

fact_cps x k =

 if x <= 1 then k 1 else fact_cps (x - 1) (\v -> k (x * v))

● fact_cps 4 id

● fact_cps 3 (\v -> id (4 * v)) -- v

● fact_cps 2 (\v' -> (\v -> id (4 * v)) (3 * v')) -- v’

● fact_cps 1 (\v'' -> (\v' -> (\v -> id (4 * v)) (3 * v')) (2 * v'')) -- v’’

● (\v'' -> (\v' -> (\v -> id (4 * v)) (3 * v')) (2 * v'')) 1 -- v’’

 (\v' -> (\v -> id (4 * v)) (3 * v')) (2 * 1) -- v’

 (\v -> id (4 * v)) (3 * (2 * 1)) -- v

 id (4 * (3 * (2 * 1)))

 (4 * (3 * (2 * 1)))

 24

using 'id' as the first continuation.

Suspended computation x * v

Continuations k

Continuous Passing
Style (1D)

29 Young Won Lim
1/10/22

https://www.seas.upenn.edu/~cis552/13fa/lectures/FunCont.html

Passing continuations

● fact_cps 4 id

● fact_cps 3 (\v -> id (4 * v))

● fact_cps 2 (\v' -> (\v -> id (4 * v)) (3 * v'))

● fact_cps 1 (\v'' -> (\v' -> (\v -> id (4 * v)) (3 * v')) (2 * v''))

Suspended computation x * v

Continuations k

k’

k’’

k’’’

k

Let’s name the continuations
at each step as k’, k’’, k’’’

the control context is made explicit

in the continuation argument to

fact_cps

Continuous Passing
Style (1D)

30 Young Won Lim
1/10/22

fact_cps x k =

 if x <= 1 then k 1 else fact_cps (x - 1) (\v -> k (x * v))

fact_cps 4 k fact_cps 4 id k = id

fact_cps 3 k’ fact_cps 3 (\v -> k (4*v)) k’ = (\v -> k (4*v)) = (\v -> id (4*v))

v = (3*(2*1))

fact_cps 2 k’’ fact_cps 2 (\v’ -> k’ (3*v’)) k’’ = (\v’ -> k’ (3*v’)) = (\v' -> (\v -> id (4*v)) (3*v')

v’ = (2*1)

fact_cps 1 k’’’ fact_cps 1 (\v’’ -> k’’ (2*v’’)) k’’’ = (\v’’ -> k’’ (2*v’’)) = (\v'' -> (\v' -> (\v -> id (4*v)) (3*v')) (2*v''))

v’’ = 1

return k’’’ 1

https://www.seas.upenn.edu/~cis552/13fa/lectures/FunCont.html

Suspended computation

Suspended computation x * v

Continuous Passing
Style (1D)

31 Young Won Lim
1/10/22

fact_cps x k =

 if x <= 1 then k 1 else fact_cps (x - 1) (\v -> k (x * v))

● fact_cps 4 id k = id fact_cps 4 k

● fact_cps 3 (\v -> k (4*v)) k’ = (\v -> k (4*v)) fact_cps 3 k’

● fact_cps 2 (\v’ -> k’ (3*v’)) k’’ = (\v’ -> k’ (3*v’)) fact_cps 2 k’’

● fact_cps 1 (\v’’ -> k’’ (2*v’’)) k’’’ = (\v’’ -> k’’ (2*v’’)) fact_cps 1 k’’’

● return k’’’ 1 = (\v’’ -> k’’ (2*v’’)) 1 = k’’ (2*1) v’’ = 1 k’’’ 1

 k’’ (2*1)

k’’ (2*1) = (\v’ -> k’ (3*v’)) (2*1) = k’ (3*(2*1)) v’ = (2*1) k’’ (2*1)

k’ (3*(2*1))

k’ (3*(2*1)) = (\v -> k (4*v)) (3*(2*1)) = k (4*(3*(2*1))) v = (3*(2*1)) k’ (3*(2*1))

k (4*(3*(2*1)))

id (4*(3*(2*1)))

https://www.seas.upenn.edu/~cis552/13fa/lectures/FunCont.html

Suspended computation

Suspended computation x * v

Continuous Passing
Style (1D)

32 Young Won Lim
1/10/22

https://www.seas.upenn.edu/~cis552/13fa/lectures/FunCont.html

Continuations and suspended computations

k’

id

v

k’’v’

k’’’v’’

id (4*v)

k’ (3*v’)

k’’ (2*v’’)

k’ = \v -> id (4*v)

k’’ =\v' -> (\v -> id (4*v)) (3*v')

k’’’ =\v'' -> (\v' -> (\v -> id (4*v)) (3*v')) (2*v'')

k’
k’’

k’’’

k’’’ 1
k’’ 2
k’ 3
k 4

v = 3*(2*1)

v’ = (2*1)

v’’ = 1

v’’ = 1
v’’ = 2
v’ = 3

suspended
computation

suspended
computation

continuations Let’s name the lambda expression
at each step as k’, k’’, k’’’

Continuous Passing
Style (1D)

33 Young Won Lim
1/10/22

https://www.seas.upenn.edu/~cis552/13fa/lectures/FunCont.html

Evaluating continuations

k’

id

v

k’’v’

k’’’v’’

id (4*v)

k’ (3*v’)

k’’ (2*v’’)1

id (4*(3*(2*1)))

k’ (3*(2*1))

k’’ (2*1)

(2*1)

(3*(2*1)) (\v -> id (4*v)) (3*(2*1))

(\v' -> (\v -> id (4*v)) (3*v')) (2*1)

(\v'' -> (\v' -> (\v -> id (4*v)) (3*v')) (2*v'')) 1

id (4*(3*(2*1)))

v’’ = 1
v’ = 2
v’ = 3

 v’’ = 1
 v’ = (2*1)
 v = (3*(2*1))

suspended
computation

suspended
computation

Continuous Passing
Style (1D)

34 Young Won Lim
1/10/22

https://www.seas.upenn.edu/~cis552/13fa/lectures/FunCont.html

Evaluating continuations

k’

id

v

k’’v’

k’’’v’’

id (4*v)

k’ (3*v’)

k’’ (2*v’’)

v’’ = 1 k’’ (2*1)

k’’’ 1 k’’ (2*1) k’ (3*(2*1))

k’

id

v

k’’v’

id (4*v)

k’ (3*v’)

v’’ = (2*1) k’’ (3*(2*1))

k’

id

v id (4*v)

v’’ = (3*(2*1)) id (4* (3*(2*1)))

Suspended computation x * v

Continuations k

Continuous Passing
Style (1D)

35 Young Won Lim
1/10/22

fact_cps x k =

 if x <= 1 then k 1 else fact_cps (x - 1) (\v -> k (x * v))

the control context is made explicit

in the continuation argument to fact_cps. (\v -> k (x * v)

never calling to fact_cps that is the argument

to some other computation like x * fact (x - 1)

Instead, each step remembers what to do with the result

as a first-class function. (\v -> k (x * v))

https://www.seas.upenn.edu/~cis552/13fa/lectures/FunCont.html

CPS Ex 1

At the bottom of the recursion,

these continuations are evaluated.

suspended
computation continuations

Continuous Passing
Style (1D)

36 Young Won Lim
1/10/22

● fact_cps 4 id

● fact_cps 3 (\v -> id (4 * v))

for an input v, compute id (4 * v)

● fact_cps 2 (\v' -> (\v -> id (4 * v)) (3 * v'))

for an input v’, compute (\v -> id (4 * v)) (3 * v')

= id (4 * (3 * v'))

● fact_cps 1 (\v'' -> (\v’ -> (\v -> id (4 * v)) (3 * v')) (2 * v''))

for an input v'', compute (\v’ -> (\v -> id (4 * v)) (3 * v')) (2 * v'')

= (\v -> id (4 * v)) (3 * (2 * v'')))

= id (4 * (3 * (2 * v'')))

https://www.seas.upenn.edu/~cis552/13fa/lectures/FunCont.html

CPS Ex 1

each step remembers

what to do with the result

as a first-class function.

each step associates

with an anonymous function

(lambda expression)

the result

Continuous Passing
Style (1D)

37 Young Won Lim
1/10/22

functions as arguments to other functions,

returning them as the values from other functions,

and assigning them to variables or storing them in data structures.

in the context of "functions as first-class citizens"

 1 Higher-order functions: passing functions as arguments

 2 Anonymous and nested functions

 3 Non-local variables and closures

 4 Higher-order functions: returning functions as results

 5 Assigning functions to variables

 6 Equality of functions

https://en.wikipedia.org/wiki/First-class_function

First class functions

Continuous Passing
Style (1D)

38 Young Won Lim
1/10/22

In mathematics and computer science, a higher-order function

is a function that does at least one of the following:

● takes one or more functions as arguments

(i.e. procedural parameters),

● returns a function as its result.

All other functions are first-order functions.

In mathematics higher-order functions

are also termed operators or functionals.

https://en.wikipedia.org/wiki/Higher-order_function

Higher-order functions

Continuous Passing
Style (1D)

39 Young Won Lim
1/10/22

An elementary way to take advantage of continuations

is to modify our functions so that

they return suspended computations

rather than ordinary values. -- without evaluation

create suspended computations and

pass continuations

rather than return ordinary values

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

CPS (Continuation Passing Style)

Get back to the suspended computation :

At the bottom of the recursion,

these continuations are evaluated.

Suspending a computation :

each step remembers

what to do with the result

Continuous Passing
Style (1D)

40 Young Won Lim
1/10/22

a function written in continuation passing style

 No function call is allowed to return to its caller, ever.

Instead, it must always pass its result directly

to an explicit continuation.

https://www.seas.upenn.edu/~cis552/13fa/lectures/FunCont.html

Passing the result

k’

id

v

k’’v’

k’’’v’’

id (4*v)

k’ (3*v’)

k’’ (2*v’’)

pass the result

pass the result

fact_cps 4 k k = id

fact_cps 3 k’ k’ = (\v -> k (4*v))

fact_cps 2 k’’ k’’ = (\v’ -> k’ (3*v’))

fact_cps 1 k’’’ k’’’ = (\v’’ -> k’’ (2*v’’))

Continuous Passing
Style (1D)

41 Young Won Lim
1/10/22

 every function takes an extra argument (a callback)

and passes its “return value” this callback.

 every function takes an extra argument (a callback)

and its “return value” is the application of this callback.

https://www.seas.upenn.edu/~cis552/13fa/lectures/FunCont.html

A callback and its return value

k’

id

v

k’’v’

k’’’v’’

id (4*v)

k’ (3*v’)

k’’ (2*v’’)

pass the callback

pass the callback

Continuous Passing
Style (1D)

42 Young Won Lim
1/10/22

 When a function is ready to "return", -- evaluate

it invokes the "current continuation" callback

(provided by its caller) on the “return value”

https://www.seas.upenn.edu/~cis552/13fa/lectures/FunCont.html

Invoking the current continuation callback

● return k’’’ 1

k’’ (2*1)

k’’ (2*1)

k’ (3*(2*1))

k’ (3*(2*1))

k (4*(3*(2*1)))

id (4*(3*(2*1)))

k’

id

v

k’’v’

k’’’v’’

id (4*v)

k’ (3*v’)

k’’ (2*v’’)

pass the result

pass the result

1

(2*v’’)

(3*v’)

Continuous Passing
Style (1D)

43 Young Won Lim
1/10/22

 When calling functions written in CPS-style,

callers must also provide the "continuation", i.e.

a function that says what to do

with the result of the function call.

fact_cps 4 id

https://www.seas.upenn.edu/~cis552/13fa/lectures/FunCont.html

Callers provide the continuation

k’

id

v

k’’v’

k’’’v’’

id (4*v)

k’ (3*v’)

k’’ (2*v’’)

pass the result

pass the result

Continuous Passing
Style (1D)

44 Young Won Lim
1/10/22

Continuations and suspended computations

make it possible

● to explicitly manipulate the control flow of a program

● to dramatically alter the control flow of a program.

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

Control flow

Continuous Passing
Style (1D)

45 Young Won Lim
1/10/22

● returning early from a procedure

can be implemented with continuations.

● exceptions and failure can also

be handled with continuations

- pass in a continuation for success,

- another continuation for fail,

- invoke the appropriate continuation.

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

Returning early from a procedure

returning early from a procedure

without evaluations

delayed evaluations

suspended computations

Continuous Passing
Style (1D)

46 Young Won Lim
1/10/22

● suspending a computation

and returning to it at another time,

and implementing simple forms of concurrency

notably, one Haskell implementation, Hugs,

uses continuations to implement

cooperative concurrency

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

Suspending a computation

Get back to the suspended computation :

At the bottom of the recursion,

these continuations are evaluated.

Suspending a computation :

each step remembers

what to do with the result

Continuous Passing
Style (1D)

47 Young Won Lim
1/10/22

In some circumstances, CPS can be used

to improve performance by eliminating certain

construction-pattern matching sequences

i.e. a function returns a complex structure

which the caller will at some point deconstruct

though a sufficiently smart compiler

should be able to do the elimination

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

Improving performance

Continuous Passing
Style (1D)

48 Young Won Lim
1/10/22

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

Continuation Passing Style

Example II : Pythagoras Equation Computation

Ver 1

Continuous Passing
Style (1D)

49 Young Won Lim
1/10/22

pow2 :: Float -> Float

pow2 a = a ** 2

add :: Float -> Float -> Float

add a b = a + b

pyth :: Float -> Float -> Float

pyth a b = sqrt (add (pow2 a) (pow2 b))

https://en.wikipedia.org/wiki/Continuation-passing_style

CPS (Continuation Passing Style)

Continuous Passing
Style (1D)

50 Young Won Lim
1/10/22

To transform the traditional function to CPS,

we need to change its signature.

The function will get another argument of function type,

continuations of the type (Float -> a)

and its return type depends on that function:

cont :: Float -> a

https://en.wikipedia.org/wiki/Continuation-passing_style

CPS (Continuation Passing Style)

Continuous Passing
Style (1D)

51 Young Won Lim
1/10/22

pow2' :: Float -> (Float -> a) -> a

pow2' a cont = cont (a ** 2)

add' :: Float -> Float -> (Float -> a) -> a

add' a b cont = cont (a + b)

sqrt' :: Float -> ((Float -> a) -> a)

sqrt' a = \cont -> cont (sqrt a)

https://en.wikipedia.org/wiki/Continuation-passing_style

CPS (Continuation Passing Style)

pow2’

cont

a cont (a**2)

add’

cont

a
cont (a+b)

b

sqrt’

cont

a cont (sqrt a)

Continuous Passing
Style (1D)

52 Young Won Lim
1/10/22

-- Types a -> (b -> c) and a -> b -> c are equivalent,

-- so CPS function may be viewed as a higher order function

pyth' :: Float -> Float -> (Float -> a) -> a

pyth' a b cont =

pow2' a

 (\a2 -> pow2' b

 (\b2 -> add' a2 b2

 (\anb -> sqrt' anb cont)))

https://en.wikipedia.org/wiki/Continuation-passing_style

CPS (Continuation Passing Style)

k1

k2

k3

Continuous Passing
Style (1D)

53 Young Won Lim
1/10/22

sqrt’

cont

anb

add’
a2

anbb2

https://en.wikipedia.org/wiki/Continuation-passing_style

CPS (Continuation Passing Style)

pow2’b b2

pow2’a a2

k1 = (\a2 -> pow2' b (\b2 -> add' a2 b2 (\anb -> sqrt' anb cont)))

k2 = (\b2 -> add' a2 b2 (\anb -> sqrt' anb cont))

k3 = (\anb -> sqrt' anb cont)

k1

k2

k3

k1 = (\a2 -> pow2' b k2)

k2 = (\b2 -> add' a2 b2 k3)

k3 = (\anb -> sqrt' anb cont)

pyth' a b cont =

pow2' a k1

 pow2' b k2

 add' a2 b2 k3

 sqrt' anb cont

Continuous Passing
Style (1D)

54 Young Won Lim
1/10/22

sqrt’

cont

anb

add’
a2

anbb2

https://en.wikipedia.org/wiki/Continuation-passing_style

CPS (Continuation Passing Style)

pow2’b b2

pow2’a a2

k1 = (\a2 -> pow2' b (\b2 -> add' a2 b2 (\anb -> sqrt' anb cont)))

k2 = (\b2 -> add' a2 b2 (\anb -> sqrt' anb cont))

k3 = (\anb -> sqrt' anb cont)

k1

k2

k3

k1 = (\a2 -> pow2' b k2)

k2 = (\b2 -> add' a2 b2 k3)

k3 = (\anb -> sqrt' anb cont)

pyth' a b cont =

pow2' a k1

 pow2' b k2

 add' a2 b2 k3

 sqrt' anb cont

Continuous Passing
Style (1D)

55 Young Won Lim
1/10/22

First we calculate the square of a in pyth' function

and pass a lambda function as a continuation

which will accept a square of a as a first argument.

And so on until we reach the result of our calculations.

To get the result of this function we can pass id function

as a final argument which returns the value

that was passed to it unchanged: pyth' 3 4 id == 5.0.

https://en.wikipedia.org/wiki/Continuation-passing_style

CPS (Continuation Passing Style)

Continuous Passing
Style (1D)

56 Young Won Lim
1/10/22

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

Continuation Passing Style

Example II : Pythagoras Equation Computation

Ver 2

Continuous Passing
Style (1D)

57 Young Won Lim
1/10/22

-- We assume some primitives add and square

add :: Int -> Int -> Int

add x y = x + y

square :: Int -> Int

square x = x * x

pythagoras :: Int -> Int -> Int

pythagoras x y = add (square x) (square y)

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

A simple module – without continuation

Continuous Passing
Style (1D)

58 Young Won Lim
1/10/22

-- We assume CPS versions of the add and square primitives,

-- (note: the actual definitions of add_cps and square_cps are not

-- in CPS form, they just have the correct type)

add_cps :: Int -> Int -> ((Int -> r) -> r)

add_cps x y = \k -> k (add x y)

square_cps :: Int -> ((Int -> r) -> r)

square_cps x = \k -> k (square x)

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

A simple module – with continuation

Continuations

add_cps x y k = k (add x y)

k :: Int -> r

(add x y) :: Int

k (add x y) :: r

square_cps x k = k (square x)

k :: Int -> r

(square x) :: Int

k (square x) :: r

Continuous Passing
Style (1D)

59 Young Won Lim
1/10/22

-- We assume CPS versions of the add and square primitives,

-- (note: the actual definitions of add_cps and square_cps are not

-- in CPS form, they just have the correct type)

add_cps :: Int -> Int -> ((Int -> r) -> r)

add_cps x y = \k -> k (add x y)

square_cps :: Int -> ((Int -> r) -> r)

square_cps x = \k -> k (square x)

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

A simple module – with continuation

add_cps

k

a
k (a+b)

b

sqrt_cps

k

a k (a^2)

Continuous Passing
Style (1D)

60 Young Won Lim
1/10/22

pythagoras_cps :: Int -> Int -> ((Int -> r) -> r)

pythagoras_cps x y =

 \k -> square_cps

 x $

 (\x2 -> square_cps

 y $

(\y2 -> add_cps

x2

y2 $

k))

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

CPS (Continuation Passing Style)

add_cps

k

square_cpsy y2

square_cpsx x2

x2
y2

 (\x2 -> ...) continuation
 (\y2 -> ...) continuation

Continuous Passing
Style (1D)

61 Young Won Lim
1/10/22

pythagoras_cps :: Int -> Int -> ((Int -> r) -> r)

pythagoras_cps x y = \k ->

 square_cps x $ \x2 ->

 square_cps y $ \y2 ->

 add_cps x2 y2 $ k

square x and throw the result into the (\x2 -> ...) continuation

square y and throw the result into the (\y2 -> ...) continuation

add x_squared and y_squared and throw the result

into the top level/program continuation k.

We can try it out in GHCi by passing print as the program continuation:

*Main> pythagoras_cps 3 4 print

25

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

CPS (Continuation Passing Style)

add_cps

k

square_cpsy y2

square_cpsx x2

x2
y2

Continuous Passing
Style (1D)

62 Young Won Lim
1/10/22

continuations can be used in a similar fashion,

for implementing interesting control flow in monads.

Note that there usually are alternative techniques

for such use cases,

especially in tandem with laziness.

https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

CPS (Continuation Passing Style)

Continuous Passing
Style (1D)

63 Young Won Lim
1/10/22

The mtl library, which is shipped with GHC,

has the module Control.Monad.Cont.

This module provides the Cont type,

which implements Monad and some other useful functions.

The following snippet shows the pyth' function using Cont:

https://en.wikipedia.org/wiki/Continuation-passing_style

CPS (Continuation Passing Style)

Continuous Passing
Style (1D)

64 Young Won Lim
1/10/22

pow2_m :: Float -> Cont a Float

pow2_m a = return (a ** 2)

pyth_m :: Float -> Float -> Cont a Float

pyth_m a b = do

 a2 <- pow2_m a

 b2 <- pow2_m b

 anb <- cont (add' a2 b2)

 r <- cont (sqrt' anb)

 return r

https://en.wikipedia.org/wiki/Continuation-passing_style

CPS (Continuation Passing Style)

Continuous Passing
Style (1D)

65 Young Won Lim
1/10/22

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

