Monad P3 : Continuation Passing Style (1D)

Copyright (c) 2021-2016 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice.

Application operator

(\$) is a curious higher-order operator.
Its type is:
(\$) :: (a -> b) -> a -> b

It takes a function as its first argument, and all it does is to apply the function to the second argument

```
(a -> b)
```

a
for instance, (head \$ "abc") == (head "abc").
https://en.wikibooks.org/wiki/Haskell/Higher-order_functions\#Function_manipulation

Application operator as a function

Furthermore, as (\$) is just a function
which happens to apply functions,
and functions are just values,
we can write intriguing expressions such as:
map (\$ 2) [(2*), (4*), (8*)]
(\$) :: (a -> b) -> a -> b
(\$ a) :: (a -> b) -> b
https://en.wikibooks.org/wiki/Haskell/Higher-order_functions\#Function_manipulation

Application operator (\$)

First, (\$) has very low precedence, unlike regular function application which has the highest precedence.
can avoid confusing nesting of parentheses
by breaking precedence with $\$$.
https://en.wikibooks.org/wiki/Haskell/Higher-order_functions\#Function_manipulation

Application operator (\$) example - (1)

We write a non-point-free version of mylnits
without adding new parentheses:
mylnits :: [a] -> [[a]]
mylnits xs = map reverse . scanl (flip (:)) [] \$ xs
mylnits [a1, a2, an]
[[a1], [a2], [an]]
https://en.wikibooks.org/wiki/Haskell/Higher-order_functions\#Function_manipulation

Application operator (\$) example - (2)

```
mylnits :: [a] -> [[a]]
mylnits xs = map reverse . scanl (flip (:)) [] $ xs
(:) :: a -> [a] -> [a]
scanl :: (a -> b -> a) -> a -> [b] -> [a]
flip :: (a -> b -> c) -> b -> a -> c
```


Application operator (\$) example - (3)

```
mylnits :: [a] -> [[a]]
mylnits xs = map reverse . scanl (flip (:)) [] $ xs
xs :: [a] -- [a1, a2, an] [[a1], [a2], [an]]
(:) :: a -> [a] -> [a]
flip (:) :: [a] -> a -> [a]
scan (flip (:)) :: [a] -> [b] -> [[a]]
flip :: (a -> b -> c) -> b -> a -> c
scanl :: (a -> b -> a) -> a -> [b] -> [a]
```

scanl :: (a -> b -> a) -> a -> [b] -> [a]
it takes the second argument and the first item of the list and applies the function to them, a
then feeds the function with this result and the second argument and so on.
It returns the list of intermediate and final results.
[a, a1, ... an] :: [a]

$$
[b 1, \ldots b n]::[b]
$$

scanl examples

Input: scanl (I) 64 [4,2,4]
 Output: [64.0,16.0,8.0,2.0]

Input: scanl (I) 3 []
Output: [3.0]

Input: scanl max 5 [1,2,3,4]
Output: [5,5,5,5,5]

[3] :: [a]
$\max \max \max \max$
$\left({ }^{*}, 1\right) \quad(*, 2) \quad(*, 3) \quad(*, 4)$
$\left[\begin{array}{ccccc}5, & 5, & 5, & 5, & 5\end{array}\right]:\left[\begin{array}{ll}{[a]}\end{array}\right.$

flip

flip takes a function of two arguments and
returns a version of the same function
with the arguments swapped.
flip :: (a -> b -> c) -> b -> a -> c
(flip (I)) 31
0.3333333333333333
(flip map) $[1,2,3]$ (*2) $\quad \operatorname{map}(* 2)[1,2,3]$
[2,4,6]
https://en.wikibooks.org/wiki/Haskell/Higher-order_functions\#Function_manipulation

Point-free style programming

tacit programming, also called point-free style,
is a programming paradigm in which function definitions
do not identify the arguments (or "points") on which they operate.

Instead the definitions merely compose other functions, among which are combinators that manipulate the arguments.

Tacit programming is of theoretical interest,
because the strict use of composition results in programs
that are well adapted for equational reasoning

Combinator

here are two distinct meanings of combinator
The first is a narrow, technical meaning, namely:
A function or definition with no free variables.
a pure lambda-expression that refers only to its arguments, like
la -> a
la -> |b -> a
If $->\mathbf{l a}->\mid b->f b a$

The study of such things is called combinatory logic.
the examples above are id, const, and flip respectively.
https://wiki.haskell.org/Combinator

Free variable

A variable that is not bound.
(lx -> $x y$)

In the above expression, y is a free variable.

Whether a variable is free or not depends largely on context.

It often helps to describe a variable as being free within a particular expression.

Point-free style programming (1)

Conventional (specify the arguments explicitly):
sum (x:xs) = $\mathrm{x}+$ (sum xs)
sum [] = 0

Point-free (no explicit arguments)
sum $=$ foldr (+) 0
it's just a fold with + starting with $\mathbf{0}$

Point-free style programming (2)

Conventional (specify the arguments explicitly):

$$
g(x)=f(x)
$$

Point-free (no explicit arguments)
$\mathbf{g}=\mathbf{f}$

It's closely related to currying
(or operations like function composition).

Point-free style programming (3)

to compute $\mathbf{x}^{*} \mathbf{x + 1}$

Conventional (specify the arguments explicitly):

```
f :: a -> a
fx= inc (square x)
```

Point-free (no explicit arguments)

$$
\begin{aligned}
& f:: \text { a -> a } \\
& \text { f = inc . square }
\end{aligned}
$$

square :: a -> a
square $x=x^{*} x$
inc :: a -> a
inc $x=x+1$

Like a value is applied to a function

```
map ($ 2) [ (2*), (4*), (8*)]
[($ 2) (2*), ($ 2) (4*), ($ 2) (8*)]
[ (2*) $ 2, (4*) $ 2, (8*) $ 2 ]
[4,8,16]
map (*2) [ 2, 4, 8 ]
[ (*2) 2, (*2) 4, (*2) 8]
```


Reversal of a value and a function

continuation passing style!

Suspended computation and continuation

From a CPS perspective, (\$2) is a suspended computation:
a function with general type
(a -> r) -> r

takes another function as argument	(a $\mathbf{~ - >} \mathbf{r}$)
produces a final result.	\mathbf{r}

the ($\mathbf{a}-\mathbf{r} \mathbf{r}$) argument is the continuation;
it specifies how the computation
will be brought to a conclusion.

```
map ($ 2) [(2*), (4*), (8*)]
```

(\$) :: (a -> b) -> a -> b (\$ a) :: (a ->b) ->b

$(\$ 2)\left(2^{*}\right)$	4
$(\$ 2)\left(4^{\star}\right)$	8
$(\$ 2)\left(8^{*}\right)$	16

Continuation functions for conclusions

map (\$2) [(2*), (4*), (8*)]
Suspended Computation
continuations

the functions in the list are
(2*), (4*), (8*)
supplied as continuations via map,
to the suspended computation
(\$ 2)
producing three distinct results.

CPS (Continuation Passing Style)

```
map ($ 2) [ (2*), (4*), (8*) ]
```

- suspended computations are largely
interchangeable with plain values:
- flip (\$) converts any value
into a suspended computation
- passing id as its continuation
gives back the original value.

Continuation Passing Style Example I : Factorial Computation

Recursive Calling

```
fact x =
    if x<= 1 then 1 else x * fact (x-1)
fact 4
4* fact 3
4 * (3 * fact 2)
4 * (3 * (2 * fact 1))
4 * (3 * (2 * 1))
4 * (3 * 2)
4*6
24
```

Each call of fact is made
with the promise
that the value returned will be multiplied
by the value of the parameter at the time of the call.

Thus fact is invoked
with larger and larger
control contexts
as the calculation proceeds.

Continuation passing style

```
fact_cps x k =
    if }x<=1\mathrm{ then k 1 else fact_cps (x-1) (lv -> k (x * v))
```

- fact_cps 4 id
- fact_cps 3 (lv -> id (4 * v))
- fact_cps 2 ($1 \mathrm{v}^{\prime}$-> (lv -> id (4 * v)) (3 * v'))
- fact_cps 1 ($\left(\mathrm{v}^{\prime \prime}\right.$-> ($\left(\mathrm{v} \mathrm{v}^{\prime}\right.$-> ($(\mathrm{v}$-> id (4 * v)) (3 * v')) (2 * v")) -- v'
- (lv" -> (lv' -> (lv -> id (4 * v)) (3 * v')) (2 * v")) 1
(lv' -> (lv -> id (4 * v)) (3 * v')) (2 * 1) (lv -> id (4 * v)) (3 * (2 * 1))
(4 * (3 * (2 * 1)))
24

```
Continuations k
Suspended computation \(x\) * v
```

each step remembers
what to do with the result

At the bottom of the recursion,
these continuations are evaluated.
using 'id' as the first continuation.
continuations are supplied to the suspended computation

Continuation passing

```
fact_cps x k=
    if x<= 1 then k 1
    else fact_cps (x - 1) (lv -> k (x* v))
```

v :: a
x:- a
k:: a -> r
k x* \mathbf{x} :: r
($a->r$) $->r$
$f:: a->(a->r)->r$

https://www.seas.upenn.edu/~cis552/13fa/lectures/FunCont.html

Passing and evaluating continuations

fact_cps x	k
return	$k 1$

At the bottom of the recursion, these continuations are evaluated

```ContinuationskSuspended computation x * v
```


Steps of passing and evaluating continuations

```
fact_cps x k =
    if }x<=1\mathrm{ then k 1 else fact_cps (x - 1) (lv -> k (x* v))
```

 - fact_cps 4 id
 - fact_cps 3 (lv -> id (4* v))
 - fact_cps 2 (\(\mathrm{vv}^{\prime}\)-> (lv -> id (4 * v)) (3 * v'))
 - fact_cps 1 (lv" -> (\(\mathrm{Vv}^{\prime}\)-> ((lv -> id (4 * v)) (3 * v')) \((2\) * v"))
 - (lv " -> (lv' -> (lv -> id (4 * v)) (3 * v')) (2 * v")) 1
 (lv' -> (lv -> id (4 * v)) (3 * v')) (2 * 1)
 (lv -> id (4 * v)) (3 * (2 * 1))
 id (4 * (3 * (2 * 1)))
 (4 * (3 * (2 * 1)))
 24
 using 'id' as the first continuation.

```
Continuations k
Suspended computation \(x\) * v
```


each step remembers

what to do with the result

At the bottom of the recursion,
these continuations are evaluated.

[^0]
Passing continuations

- fact_cps 4 id
- fact_cps $3(\mathrm{lv}->$ id $(4 * v))$
k'

$$
k^{\prime \prime}
$$

- fact_cps $2\left(\mathrm{lv}{ }^{\prime}\right.$-> $\left(\mathrm{lv}\right.$-> id $\left.\left(4^{*} \mathrm{v}\right)\right)\left(3\right.$ * $\left.\left.\mathrm{v}^{\prime}\right)\right)$

k"'

- fact_cps $1\left(\backslash v^{\prime \prime}->\left(\backslash v^{\prime}->(l v->i d(4 * v))\left(3^{*} v^{\prime}\right)\right)\left(2^{*} v^{\prime \prime}\right)\right)$

Continuations k
Suspended computation x * v
Let's name the continuations at each step as $k^{\prime}, k^{\prime \prime}, k^{\prime \prime \prime}$
the control context is made explicit in the continuation argument to fact_cps

Suspended computation

```
fact_cps x k =
    if }x<=1\mathrm{ then k 1 else fact_cps (x - 1) (lv -> k (x * v))
                                    Suspended computation x * v
fact_cps 4k fact_cps 4 id k = id
fact_cps 3 k' fact_cps 3 (\v -> k (4*v)) \quadk
fact_cps 2 k' fact_cps 2(lv' -> k' (3*\mp@subsup{v}{}{\prime})) \quadk"=(l\mp@subsup{v}{}{\prime}-> k}\mp@subsup{k}{}{\prime}(\mp@subsup{3}{}{*}\mp@subsup{v}{}{\prime}))=(l\mp@subsup{v}{}{\prime}->(lv -> id (4*v))(\mp@subsup{3}{}{*}\mp@subsup{v}{}{\prime}
fact_cps 1 k'" fact_cps 1 (l\mp@subsup{v}{}{\prime\prime}-> \mp@subsup{k}{}{\prime\prime\prime}(\mp@subsup{2}{}{*}\mp@subsup{v}{}{\prime\prime})) \mp@subsup{k}{}{\prime\prime\prime}=(l\mp@subsup{v}{}{\prime\prime}-> \mp@subsup{k}{}{\prime\prime}(\mp@subsup{2}{}{*}\mp@subsup{v}{}{\prime\prime}))=(l\mp@subsup{v}{}{\prime\prime}->(\\mp@subsup{v}{}{\prime}->(lv -> id (4*v))(\mp@subsup{3}{}{*}\mp@subsup{v}{}{\prime}))(\mp@subsup{2}{}{*}\mp@subsup{v}{}{\prime}))
    v" = 1
return k'"1
```


Suspended computation

fact_cps x k $=$
if $x<=1$ then $k 1$ else fact_cps $(x-1)(l v->k(x * v))$

- fact_cps 4 id $k=i d$
- fact_cps 3 ($\ \mathrm{v}->\mathrm{k}\left(4^{*} \mathrm{v}\right)$) $\mathrm{k}^{\prime}=\left(\backslash \mathrm{v}->\mathrm{k}\left(4^{*} \mathrm{v}\right)\right)$
- fact_cps $2\left(\backslash v^{\prime}->k^{\prime}\left(3^{\star} v^{\prime}\right)\right) \quad k^{\prime \prime}=\left(\backslash v^{\prime}->k^{\prime}\left(3^{*} v^{\prime}\right)\right)$
- fact_cps $1\left(\backslash v^{\prime \prime}->k^{\prime \prime}\left(2^{\star} v^{\prime \prime}\right)\right) \quad k^{\prime \prime \prime}=\left(\mid v^{\prime \prime}->k^{\prime \prime}\left(2^{\star} v^{\prime \prime}\right)\right)$
- return $k^{\prime \prime \prime} 1=\left(\backslash v^{\prime \prime}->k^{\prime \prime}\left(2^{*} v^{\prime \prime}\right)\right) 1=k^{\prime \prime}\left(2^{*} 1\right) \quad v^{\prime \prime}=1$
$k^{\prime \prime}\left(2^{*} 1\right) \quad=\left(v^{\prime}->k^{\prime}\left(3^{*} v^{\prime}\right)\right)\left(2^{*} 1\right) \quad=k^{\prime}\left(3^{*}\left(2^{*} 1\right)\right) \quad v^{\prime}=\left(2^{\star} 1\right)$
$k^{\prime}\left(3^{*}\left(2^{*} 1\right)\right)=\left(\operatorname{lv}->k\left(4^{*} v\right)\right)\left(3^{*}\left(2^{*} 1\right)\right)=k\left(4^{*}\left(3^{*}\left(2^{*} 1\right)\right)\right) \quad v=\left(3^{*}\left(2^{*} 1\right)\right)$

Suspended computation x * v
fact_cps 4 k
fact_cps $3 \mathrm{k}^{\prime}$
fact_cps 2 k"
fact_cps 1 k"'
k"' 1
$\Rightarrow \mathbf{k}^{\prime \prime}\left(2^{*} 1\right)$
$k^{\prime \prime}\left(2^{*} 1\right)$
$\Rightarrow \mathbf{k}^{\prime}\left(3^{*}\left(2^{*} 1\right)\right)$
$\mathbf{k}^{\prime}\left(3^{\star}\left(2^{*} 1\right)\right)$
$\Rightarrow \quad k\left(4^{*}\left(3^{*}\left(2^{*} 1\right)\right)\right)$
$\Rightarrow \quad$ id $\left(4^{*}\left(3^{*}\left(2^{*} 1\right)\right)\right)$

Continuations and suspended computations

Evaluating continuations

$$
\begin{array}{ll}
v^{\prime \prime}=1 & v^{\prime \prime}=1 \\
v^{\prime}=2 & v^{\prime}=\left(2^{*} 1\right) \\
v^{\prime}=3 & v=\left(3^{\star}\left(2^{*} 1\right)\right)
\end{array}
$$

```
id \(\left(4^{\star}\left(3^{\star}\left(2^{\star} 1\right)\right)\right)\)
id \(\left(4^{\star}\left(3^{\star}\left(2^{\star} 1\right)\right)\right)\)
(lv -> id (4*v)) (3*(2*1))
(lv -> id (4*v)) (3*(2*1))
( v ' -> (lv -> id (4*v)) (3*v')) (2*1)
( v ' -> (lv -> id (4*v)) (3*v')) (2*1)
(lv" -> (lv' -> (lv -> id (4*v)) (3*v')) (2*v")) 1
(lv" -> (lv' -> (lv -> id (4*v)) (3*v')) (2*v")) 1
https://www.seas.upenn.edu/~cis552/13fa/lectures/FunCont.html

\section*{Evaluating continuations}

https://www.seas.upenn.edu/~cis552/13fa/lectures/FunCont.html

\section*{CPS Ex 1}
```

fact_cps $\times k=$
if $x<=1$ then $k 1$ else fact_cps $(x-1)\left(l v->k\left(x^{*} v\right)\right)$
suspended computation continuations

```
the control context is made explicit
in the continuation argument to fact_cps.
(lv -> k (x*v)
never calling to fact_cps that is the argument
to some other computation like x * fact ( \(\mathrm{x}-1\) )

Instead, each step remembers what to do with the result as a first-class function.
```

(lv -> k (x* v))

```

At the bottom of the recursion, these continuations are evaluated.

\section*{CPS Ex 1}
- fact_cps 4 id
- fact_cps 3 ( lv -> id (4 * v))
for an input v , compute id ( 4 * v)
- fact_cps 2 ( \(\mathrm{lv} \mathrm{v}^{\prime}\)-> ( lv -> id (4 * v)) (3 * v'))
\[
\begin{aligned}
& \text { for an input } \mathrm{v}^{\prime} \text {, compute }(\backslash \mathrm{v}->\text { id }(4 * \text { v }))\left(3 \text { * } \mathrm{v}^{\prime}\right) \\
&=\operatorname{id}(4 *(3 * \text { v' }))
\end{aligned}
\]
 for an input \(\mathrm{v}^{\prime \prime}\), compute ( \(\left(\mathrm{v}^{\prime}->(\mathrm{lv}\right.\)-> id ( 4 * v\(\left.)\right)\left(3\right.\) * \(\left.\left.\mathrm{v}^{\prime}\right)\right)\left(2\right.\) * \(\left.\mathrm{v}^{\prime \prime}\right)\)
\[
\begin{aligned}
& \left.=\left(\text { v }->\text { id }\left(4^{*} \text { v }\right)\right)\left(3^{*}\left(2 \text { * } \mathrm{v}^{\prime}\right)\right)\right) \\
& =i d\left(4 \text { * }\left(3 \text { * ( } 2 \text { * } \mathrm{v}^{\prime \prime}\right)\right) \text { ) }
\end{aligned}
\]
each step remembers
what to do with the result as a first-class function.
each step associates
with an anonymous function
(lambda expression)
the result

\section*{First class functions}
functions as arguments to other functions, returning them as the values from other functions, and assigning them to variables or storing them in data structures.
in the context of "functions as first-class citizens"

1 Higher-order functions: passing functions as arguments
2 Anonymous and nested functions
3 Non-local variables and closures
4 Higher-order functions: returning functions as results
5 Assigning functions to variables
6 Equality of functions
https://en.wikipedia.org/wiki/First-class_function

\section*{Higher-order functions}

In mathematics and computer science, a higher-order function is a function that does at least one of the following:
- takes one or more functions as arguments (i.e. procedural parameters),
- returns a function as its result.

All other functions are first-order functions.

In mathematics higher-order functions
are also termed operators or functionals.
https://en.wikipedia.org/wiki/Higher-order_function

\section*{CPS (Continuation Passing Style)}

An elementary way to take advantage of continuations
is to modify our functions so that
they return suspended computations
rather than ordinary values. -- without evaluation
create suspended computations and
pass continuations
rather than return ordinary values

Suspending a computation
each step remembers
what to do with the result

Get back to the suspended computation :
At the bottom of the recursion,
these continuations are evaluated

\section*{Passing the result}
a function written in continuation passing style

No function call is allowed to return to its caller, ever.

Instead, it must always pass its result directly
to an explicit continuation

\[
\begin{array}{ll}
\text { fact_cps } 4 k & k=i d \\
\text { fact_cps } 3 k^{\prime} & k^{\prime}=\left(\backslash v->k\left(4^{*} v\right)\right) \\
\text { fact_cps } 2 k^{\prime \prime \prime} & k^{\prime \prime}=\left(\mid v^{\prime}->k^{\prime}\left(3^{*} v^{\prime}\right)\right) \\
\text { fact_cps } 1 k^{\prime \prime \prime} & k^{\prime \prime \prime}=\left(l v^{\prime \prime \prime}->k^{\prime \prime}\left(2^{*} v^{\prime \prime}\right)\right)
\end{array}
\]

\section*{A callback and its return value}
every function takes an extra argument (a callback)
and passes its "return value" this callback.
every function takes an extra argument (a callback)
and its "return value" is the application of this callback.


\section*{Invoking the current continuation callback}

When a function is ready to "return",
it invokes the "current continuation" callback (provided by its caller) on the "return value"
- return

-- evaluate


\section*{Callers provide the continuation}

When calling functions written in CPS-style, callers must also provide the "continuation", i.e. a function that says what to do with the result of the function call.
fact_cps 4 id


\section*{Control flow}

\section*{Continuations and suspended computations}
make it possible
- to explicitly manipulate the control flow of a program
- to dramatically alter the control flow of a program.

\section*{Returning early from a procedure}
- returning early from a procedure can be implemented with continuations.
- exceptions and failure can also be handled with continuations
- pass in a continuation for success,
- another continuation for fail,
- invoke the appropriate continuation.
returning early from a procedure without evaluations
delayed evaluations
suspended computations

\section*{Suspending a computation}
- suspending a computation
and returning to it at another time,
and implementing simple forms of concurrency
notably, one Haskell implementation, Hugs,
uses continuations to implement
cooperative concurrency

Suspending a computation :
each step remembers
what to do with the result

Get back to the suspended computation :
At the bottom of the recursion,
these continuations are evaluated

\section*{Improving performance}

In some circumstances, CPS can be used
to improve performance by eliminating certain
construction-pattern matching sequences
i.e. a function returns a complex structure
which the caller will at some point deconstruct
though a sufficiently smart compiler
should be able to do the elimination
https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

\section*{Continuation Passing Style \\ Example II : Pythagoras Equation Computation Ver 1}

\section*{CPS (Continuation Passing Style)}
```

pow2 :: Float -> Float
pow2 a = a ** 2
add :: Float -> Float -> Float
add a b = a + b
pyth :: Float -> Float -> Float
pyth a b = sqrt (add (pow2 a) (pow2 b))

```

\section*{CPS (Continuation Passing Style)}

To transform the traditional function to CPS, we need to change its signature.

The function will get another argument of function type,
continuations of the type (Float -> a)
and its return type depends on that function:
```

cont :: Float -> a

```

\section*{CPS (Continuation Passing Style)}
```

pow2' :: Float -> (Float -> a) -> a
pow2' a cont = cont (a ** 2)
sqrt' :: Float -> ((Float -> a) -> a)
sqrt' a = \cont -> cont (sqrt a)

```
```

add' :: Float -> Float -> (Float -> a) -> a

```
add' :: Float -> Float -> (Float -> a) -> a
add' a b cont \(=\) cont \((\mathrm{a}+\mathrm{b})\)
```

add' a b cont $=$ cont $(\mathrm{a}+\mathrm{b})$

```


\section*{CPS (Continuation Passing Style)}
-- Types a -> (b -> c) and a -> b -> c are equivalent,
-- so CPS function may be viewed as a higher order function
```

pyth' :: Float -> Float -> (Float -> a) -> a
pyth' a b cont =
pow2' a k1
(la2 -> pow2' b k2
(lb2 -> add' a2 b2 k3
(lanb -> sqrt' anb cont)))

```

\section*{CPS (Continuation Passing Style)}

k1 = (la2 -> pow2' b (lb2 -> add' a2 b2 (lanb -> sqrt' anb cont)))
k2 = (lb2 -> add' a2 b2 (lanb -> sqrt' anb cont))
k3 = (lanb -> sqrt' anb cont)
pyth' a b cont =
pow2' a k1
pow2' b k2
add' a2 b2 k3
sqrt' anb cont
k1 = (la2 -> pow2' b k2)
k2 = (lb2 -> add' a2 b2 k3)
k3 = (lanb -> sqrt' anb cont)
https://en.wikipedia.org/wiki/Continuation-passing_style

\section*{CPS (Continuation Passing Style)}

pyth' a b cont = pow2' a k1 pow2' b k2
```

 add' a2 b2 k3
    ```
sqrt' anb cont
k1 = (la2 -> pow2' b (lb2 -> add' a2 b2 (lanb -> sqrt' anb cont)))
k1 = (la2 -> pow2' b k2)
k2 = (llb2 -> add' a2 b2 (lanb -> sqrt' anb cont))
k2 = (llb2 -> add' a2 b2 k3)
k3 = (lanb -> sqrt' anb cont)

\section*{CPS (Continuation Passing Style)}

First we calculate the square of a in pyth' function and pass a lambda function as a continuation
which will accept a square of a as a first argument.
And so on until we reach the result of our calculations.
To get the result of this function we can pass id function
as a final argument which returns the value
that was passed to it unchanged: pyth' 34 id == 5.0.

\section*{Continuation Passing Style \\ Example II : Pythagoras Equation Computation Ver 2}

\section*{A simple module - without continuation}
-- We assume some primitives add and square
add :: Int -> Int -> Int
add \(x y=x+y\)
square :: Int -> Int
square \(x=x\) * \(x\)
pythagoras :: Int -> Int -> Int
pythagoras \(x y=\) add (square \(x\) ) (square \(y\) )
https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

\section*{A simple module - with continuation}
-- We assume CPS versions of the add and square primitives,
-- (note: the actual definitions of add_cps and square_cps are not
-- in CPS form, they just have the correct type)
add_cps :: Int -> Int -> ((Int -> r) -> r)
add_cps \(\times \mathrm{y}=1 \mathrm{k}->\mathrm{k}(\operatorname{add} \times \mathrm{y})\)
square_cps :: Int -> ((Int -> r) -> r)
square_cps \(x=1 k\)-> \(k\) (square \(x\) )
```

Continuations
add_cps x y k = k (add x y)
k :: Int -> r
(add x y) :: Int
k (add x y) :: r
square_cps x k = k (square x)
k :: Int -> r
(square x) :: Int
k (square x) :: r

```

\section*{A simple module - with continuation}
-- We assume CPS versions of the add and square primitives,
-- (note: the actual definitions of add_cps and square_cps are not
-- in CPS form, they just have the correct type)
add_cps :: Int -> Int -> ((Int -> r) -> r)
add_cps \(\times \mathrm{y}=\mathrm{lk}->\mathrm{k}(\operatorname{add} \times \mathrm{y})\)
square_cps :: Int -> ((Int -> r) -> r)
square_cps \(x=1 k\)-> k (square \(x\) )


\section*{CPS (Continuation Passing Style)}
```

pythagoras_cps :: Int -> Int -> ((Int -> r) -> r)
pythagoras_cps x y =
lk -> square_cps
x \$
(lx2 -> square_cps
y \$
(ly2 -> add_cps
x2
y2 \$
k))

```

(lx2 -> ...) continuation

> (ly2 -> ...) continuation

\section*{CPS (Continuation Passing Style)}
pythagoras_cps :: Int -> Int -> ((Int -> r) -> r)
pythagoras_cps x y = lk ->
square_cps x \$ lx2 ->
square_cps y \$ ly2 ->
add_cps x2 y2 \$ k
square \(\mathbf{x}\) and throw the result into the ( \(\mathbf{1 x 2} \mathbf{2}->\ldots\)...) continuation square \(y\) and throw the result into the (ly2 -> ...) continuation add x _squared and \(\mathbf{y}\) _squared and throw the result
 into the top level/program continuation \(\mathbf{k}\).

We can try it out in GHCi by passing print as the program continuation:
*Main> pythagoras_cps 34 print
25

\section*{CPS (Continuation Passing Style)}
continuations can be used in a similar fashion,
for implementing interesting control flow in monads.

Note that there usually are alternative techniques
for such use cases,
especially in tandem with laziness.

\section*{CPS (Continuation Passing Style)}

The mtl library, which is shipped with GHC,
has the module Control.Monad.Cont.
This module provides the Cont type,
which implements Monad and some other useful functions.
The following snippet shows the pyth' function using Cont:

\section*{CPS (Continuation Passing Style)}
```

pow2_m :: Float -> Cont a Float
pow2_m a = return (a ** 2)
pyth_m :: Float -> Float -> Cont a Float
pyth_m ab = do
a2 <- pow2_m a
b2 <- pow2_m b
anb <- cont (add' a2 b2)
r <- cont (sqrt' anb)
return r

```

\section*{References}
[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf```


[^0]:    https://www.seas.upenn.edu/~cis552/13fa/lectures/FunCont.html

