Variable Block Adder (1C)

- - •

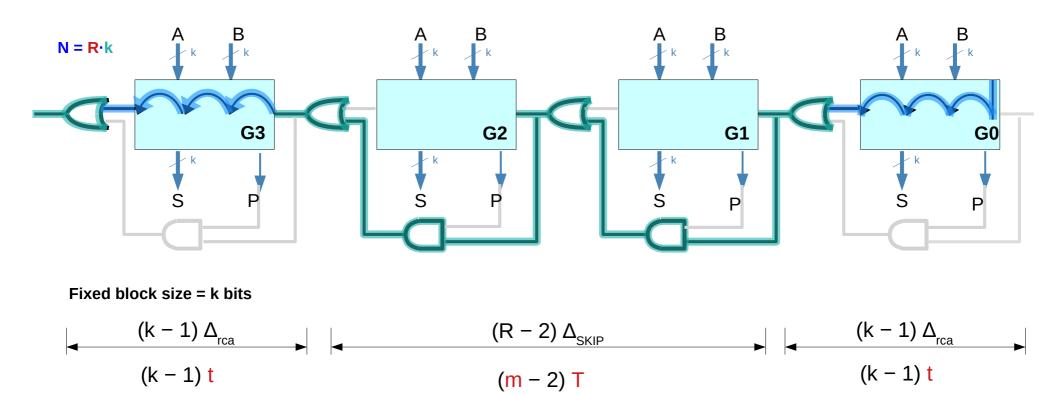
Copyright (c) 2024 - 2010 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Carry Skip Adder



Variable block size = x_i bits for the i-th group

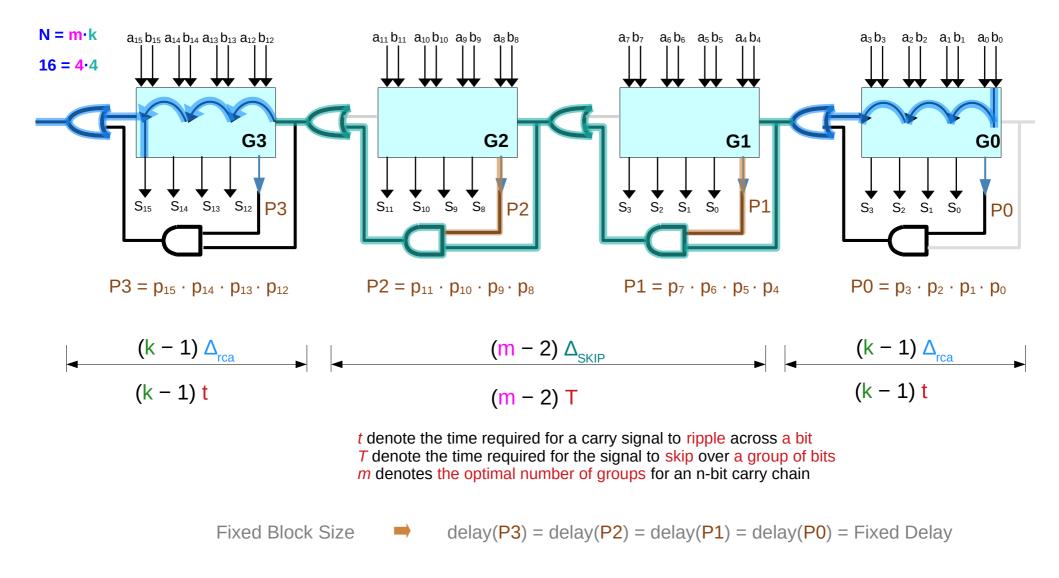
 $(x_i - 1) t$ (m - 2) T $(x_j - 1) t$

t denote the time required for a carry signal to ripple across a bit *T* denote the time required for the signal to skip over a group of bits *m* denotes the optimal number of groups for an n-bit carry chain

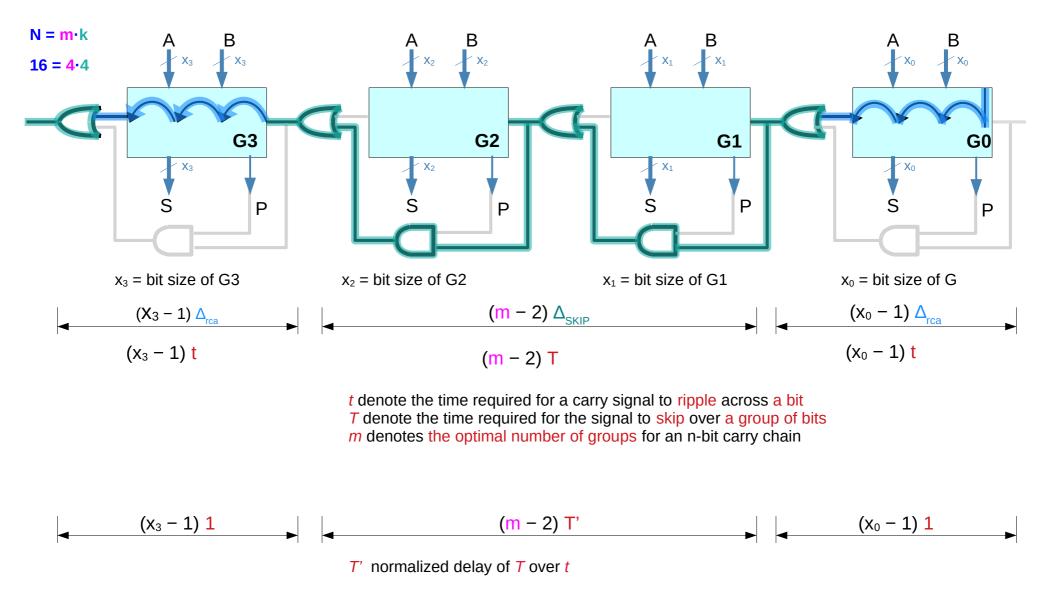
Oklobdzija: High-Speed VLSI arithmetic units : adders and multipliers

Variable Block Adder (1C)

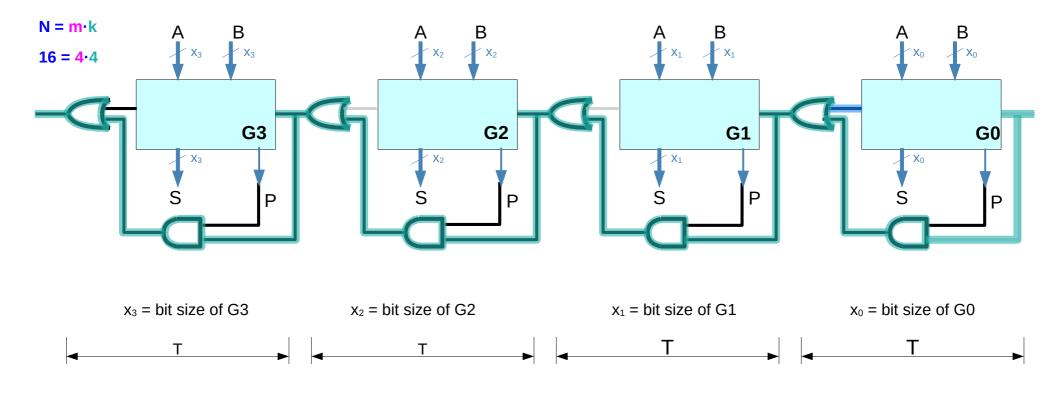
Carry Skip Adder – fixed block size



Carry Skip Adder – maximum carry delay (3)

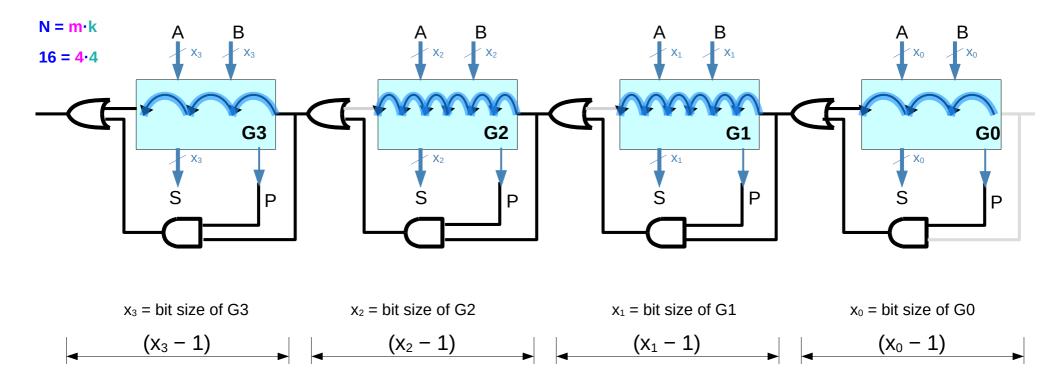


Carry Skip Adder – maximum carry delay (3)



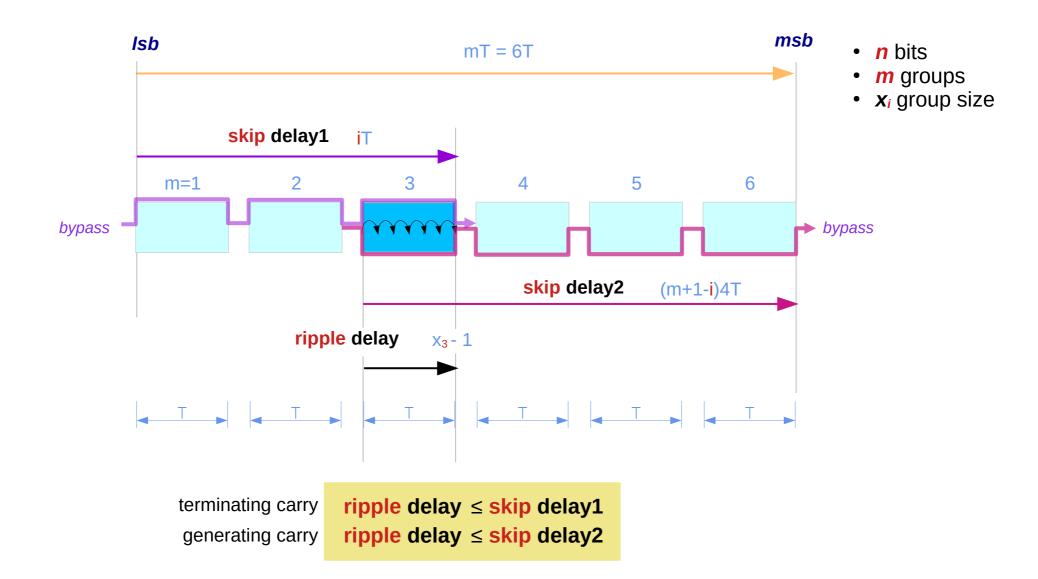
Carry Skip Delays

Carry Skip Adder – maximum carry delay (3)

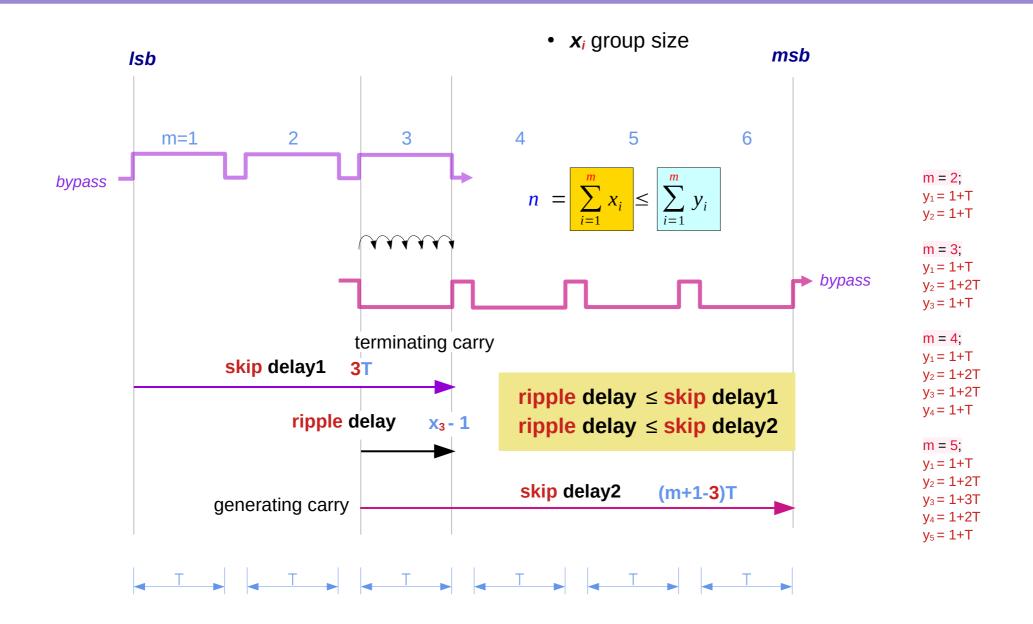


Carry Ripple delays

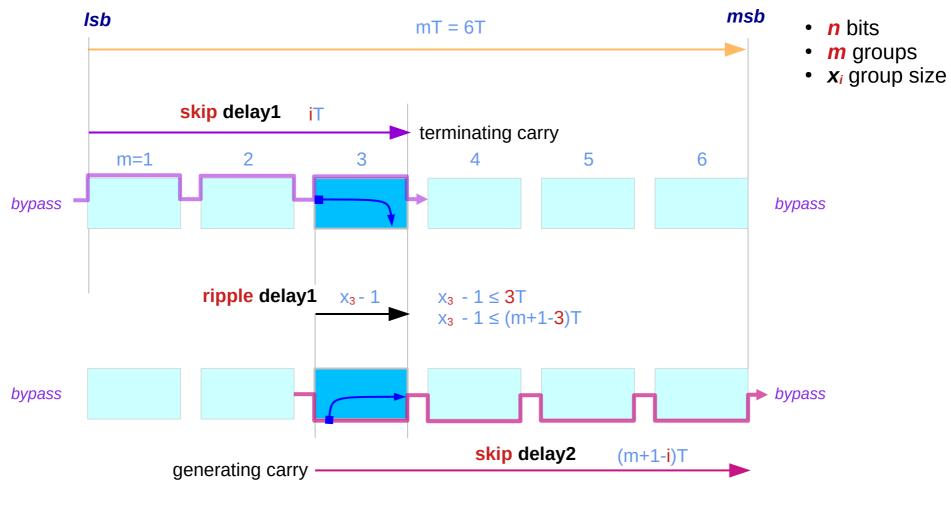
Minimum skip path delay y_i of the *i*th group



Parallel Delay Paths



Minimum skip path delay y_i of the *i*th group



 $x_3 \le y_3 = \min(1 + iT, 1 + (m+1-i)T)$

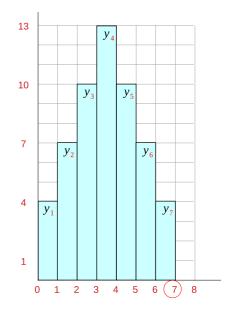
Method 1 – using a histogram

y

Let *m* be the <u>smallest</u> positive integer such that

$$n \leq \sum_{i=1}^{m} y_i$$

m = 2;
while $(y_1 + \dots + y_m < n)$ m = m+1;
 $y_i = min\{1 + iT, 1 + (m) + 1 - i)T\}, \quad i = 1, \dots, m$



Method 2 – using a closed formula Let *m* be the <u>smallest</u> positive integer such that

$$m \leq m + \frac{1}{2}mT + \frac{1}{4}m^2T + (1 - (-1)^m)\frac{1}{8}T$$

m = 2k	$y_i = \min\{1+iT, 1+(m)\}$	$+1-i)T\}, i =$	1,, <i>m</i>	$m \frac{1}{2} k(k+1)$
$\frac{m}{2} = k$	$y_1 = \min\{1+1 \cdot T,$	$1+(m-0)\cdot T$	$0 \leq x_1$	$\leq 1 + 1 \cdot T$
2	$y_2 = min\{1+2\cdot T,$	$1 + (m-1) \cdot T$	$0 \leq x_2$	$\leq 1 + 2 \cdot T$
	$y_3 = \min\{1+3 \cdot T,$	$1+(m-2)\cdot T$	$0 \leq x_3$	≤ 1+3· <i>T</i>
	$y_{\mathbf{k}} = min\{1 + \mathbf{k} \cdot T,$	$1 + (k+1) \cdot T$	$0 \leq x_{\mathbf{k}}$	
	$y_{k+1} = min\{1+(k+1)\cdot T,$	1+ k ·T}	$0 \leq x_{k+1}$	$\leq 1 + k \cdot T$
	$y_{m-2} = min\{1+(m-2)\cdot T,$	$1+3 \cdot T$	$0 \leq x_{m-2}$	$\leq 1 + 3 \cdot T$
	$y_{m-1} = min\{1+(m-1)\cdot T,$	$1+2 \cdot T$ }	$0 \leq x_{m-2}$ $0 \leq x_{m-1}$	$\leq 1 + 2 \cdot T$
	$y_{m-0} = min\{1+(m-0)\cdot T,$	$1+1 \cdot T$ }	$0 \leq x_{m-0}$	$\leq 1 + 1 \cdot T$
Oklobdzija: High-S	Speed VLSI arithmetic units : adders and multipliers	$0 \le x_i \le$	$\leq y_i, i=1,\ldots,m$	$\frac{1}{2} \cdot k(k+1)$

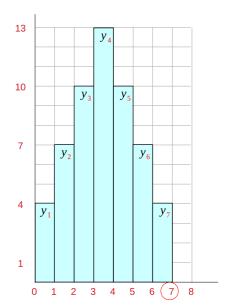
Method 1 – using a histogram

1

Let *m* be the <u>smallest</u> positive integer such that

$$m \le \sum_{i=1}^{m} y_i$$

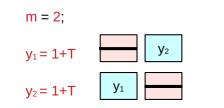
m = 2;
while $(y_1 + \dots + y_m < n)$ m = m+1;
 $y_i = min\{1 + iT, 1 + (m+1-i)T\}, i = 1, \dots, m$

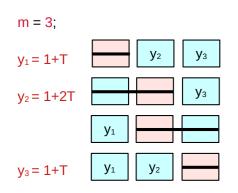


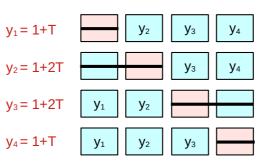
m = 2; T = 3	m = 5; T = 3
$y_1 = \min \{1+T, 1+2T\} = 1+T = 4$	$y_1 = \min \{1+T, 1+5T\} = 1+T = 4$
$y_2 = \min \{1+2T, 1+T\} = 1+T = 4$	$y_2 = min \{1+2T, 1+4T\} = 1+2T = 7$
	$y_3 = \min \{1+3T, 1+3T\} = 1+3T = 10$
m = 3; T = 3	$y_4 = \min \{1+4T, 1+2T\} = 1+2T = 7$
$y_1 = \min \{1+T, 1+3T\} = 1+T = 4$	y₅ = min {1+5T, 1+T} = 1+T = 4
$y_2 = min \{1+2T, 1+2T\} = 1+2T = 7$	
$y_3 = min \{1+3T, 1+T\} = 1+T = 4$	m = 6; T = 3
$y_3 = min \{1+3T, 1+T\} = 1+T = 4$	m = 6; T = 3 $y_1 = min \{1+T, 1+6T\} = 1+T = 4$
$y_3 = min \{1+3T, 1+T\} = 1+T = 4$ m = 4; T = 3	
	$y_1 = min \{1+T, 1+6T\} = 1+T = 4$
m = 4; T = 3	$y_1 = \min \{1+T, 1+6T\} = 1+T = 4$ $y_2 = \min \{1+2T, 1+5T\} = 1+2T = 7$
m = 4; T = 3 $y_1 = min \{1+T, 1+4T\} = 1+T = 4$	$y_1 = \min \{1+T, 1+6T\} = 1+T = 4$ $y_2 = \min \{1+2T, 1+5T\} = 1+2T = 7$ $y_3 = \min \{1+3T, 1+4T\} = 1+3T = 10$

= 3		m =
[1+T, 1+5T} = 1+T	= 4	y ₁ =
[1+2T, 1+4T] = 1+2T	= 7	y ₂ =
[1+3T, 1+3T] = 1+3T	= 10	y ₃ =
[1+4T, 1+2T] = 1+2T	= 7	y ₄ =
[1+5T, 1+T} = 1+T	= 4	y ₅ =
		$y_{6} =$
= 3		y ₇ =
[1+T, 1+6T} = 1+T	= 4	
[1+2T, 1+5T] = 1+2T	= 7	

7; T = 3 $\min \{1+T, 1+7T\} = 1+T = 4$ min {1+2T, 1+6T} = 1+2T=7 $\min \{1+3T, 1+5T\} = 1+3T = 10$ $\min \{1+4T, 1+4T\} = 1+4T = 13$ $\min \{1+5T, 1+3T\} = 1+3T = 10$ min {1+6T, 1+2T} = 1+2T=7 $\min \{1+7T, 1+1T\} = 1+T = 4$

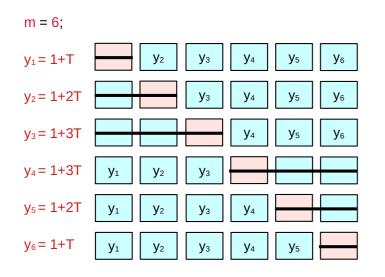


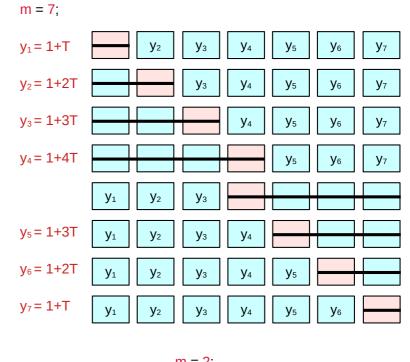




m = 5; **y**₂ y₃ **y**₄ **y**5 y1 = 1+T y₂ = 1+2T **y**4 **y**5 y₃ y₃=1+3T \mathbf{y}_4 **y**5 **y**1 **y**₂ $y_4 = 1 + 2T$ **y**1 **y**₂ Уз y₅ = 1+T **y**1 **y**₂ **y**4 y₃

m = 2;	m = 4;	m = 5;
x1≤ 1+T	x1≤ 1+L	x1≤ 1+L
x₂≤ 1+T	x₂≤ 1+2T	x₂≤ 1+2T
	x₃≤ 1+2T	x₃≤ 1+3T
m = 3;	X₄≤ 1+T	x₄≤ 1+2T
x1≤ 1+T		x₅≤ 1+T
x₂≤ 1+2T		
x₃ ≤ 1+T		





m = 2;
x1= 1+L
$x_2 = 1 + T$
m = 3;
x1= 1+T
x ₂ =1+2T
x ₃ =1+T
m = 4;
x1= 1+T
$x_2 = 1 + 2T$
x ₃ =1+2T
x ₄ =1+T

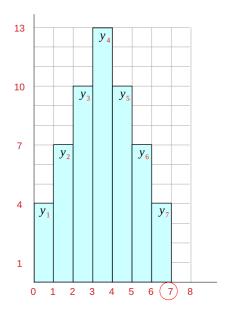
Method 1 - using a histogram

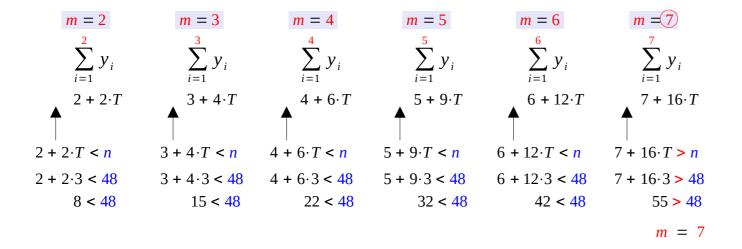
Let *m* be the <u>smallest</u> positive integer such that

$$n \le \sum_{i=1}^{m} y_i$$

 (m = 2;
 while (y₁+...+y_m < n) (m = m+1;

$$y_i = min\{1+iT, 1+(m+1-i)T\}, \quad i = 1, ..., m$$





15

construct a histogram whose *i*-th column has height y_i

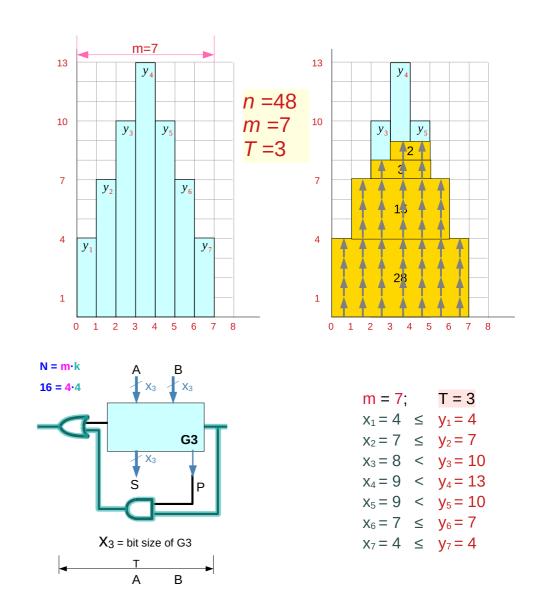
so these y_i 's are <u>at least *n* unit squares</u> in the histogram, starting with the first row, shade in *n* of the squares, <u>row by row</u>

let x_i denote the number of shaded squares in column *i* of the histogram,

i = 1, ..., *m*

$$0 \leq x_i \leq y_i, \quad i=1,\ldots,m$$
$$n = \sum_{i=1}^m x_i \leq \sum_{i=1}^m y_i$$
$$n = \sum_{i=1}^7 x_i$$

 $n = 4 + 7 + 8 + 9 + 9 + 7 + 4 = 48 < 7 + 16 \cdot 3 = 55$



Procedure

(I) Let m be the smallest positive integer such that

$$m \leq \left| m + \frac{1}{2}mT + \frac{1}{4}m^2T + (1 - (-1)^m)\frac{1}{8}T \right| = \sum_{i=1}^m y_i$$

(II) Let

$$y_i = min\{1+iT, 1+(m+1-i)T\}, \quad i = 1, ..., m$$

and construct a histogram whose *i*-th column has height y_i for example, for T=3, and n=48, we have m=7

(III) It is easily verified that the area of the histogram in (II) is

$$\sum_{i=1}^{m} y_i = \left| m + \frac{1}{2}mT + \frac{1}{4}m^2T + (1 - (-1)^m)\frac{1}{8}T \right| \ge n$$

so these are <u>at least *n* unit squares</u> in the histogram starting with the first row, shade in *n* of the squares, <u>row by row</u> Let x_i denote the number of shaded squares in column *i* of the histogram,

$$n = \sum_{i=1}^{m} x_i \leq \sum_{i=1}^{m} y_i$$

• total n = 48 bits

• *i*-th group has *x*, bits (size)

• constant skip delay $T = T(x_i) = 3$

m =7 groups

i = 1, ..., m

Maximum propagation time P

$$y_i = min\{1+iT, 1+(m+1-i)T\}, \quad i = 1, ..., m$$

the scheme (i), (ii), (iii) gives the max prop time *mT*

$$y_{1} = min\{1+1 \cdot T, 1+(m+1-1)T\} = 1+T$$

$$y_{m} = min\{1+m \cdot T, 1+(m+1-m)T\} = 1+T$$

 $x_1 \le y_1 = 1 + T$

$$x_m \leq y_m = 1 + T$$

$$y_{2} = min\{1+2 \cdot T, 1+(m+1-2)T\} = 1+2T$$

$$y_{m-1} = min\{1+(m-1) \cdot T, 1+(m+1-(m-1))T\} = 1+2T$$

$$x_2 \le y_2 = 1+2T$$

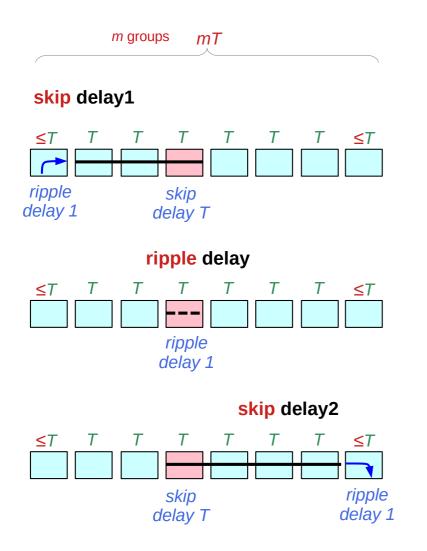
 $x_{m-1} \le y_{m-1} = 1+2T$

$$y_{3} = min\{1+3 \cdot T, 1+(m+1-3)T\} = 1+3T$$

$$y_{m-2} = min\{1+(m-2) \cdot T, 1+(m+1-(m-2))T\} = 1+3T$$

$$x_{m-2} \le y_{m-2} = 1+3T$$

Maximum propagation time P



the scheme (i), (ii), (iii) gives the max prop time *mT*

<mark>skip</mark> delay1	iT	generating carry
ripple delay	x _i - 1	
<mark>skip</mark> delay2	(m+1- i)T	terminating carry

 $\begin{array}{l} x_i \text{-} 1 \leq i \text{T} \\ x_i \text{-} 1 \leq (m \text{+} 1 \text{-} i) \text{T} \end{array}$

 $\begin{array}{l} x_i \leq 1 + iT \\ x_i \leq 1 + (m+1-i)T \end{array}$

 $\begin{aligned} x_i &\leq \min \left\{ 1 + \textbf{i} T, \, 1 + (m \text{+} 1 \text{-} \textbf{i}) T \right\} \\ x_i &\leq y_i \end{aligned}$

y_i = min {1 + **i**T, 1 + (m+1-**i**)T}

Maximum propagation time P

 $y_1 = min\{1+1,T,1+(m+1-1)T\} = 1+T$

 $y_m = min\{1+m \cdot T, 1+(m+1-m)T\} = 1+T$

 $x_1 - 1 \le (m+1-1)T$ $x_1 - 1 \le mT$

 $x_m - 1 \le (m+1-m)T$ $x_m - 1 \le T$

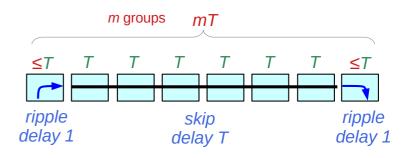
$$y_i = min\{1+iT, 1+(m+1-i)T\}, i = 1, ..., m$$

x₁ - 1 ≤T

x_m - 1 ≤ mT

the scheme (i), (ii), (iii) gives the max prop time *mT*

maximum propagation time



$$P_{max} = P_{1,m} \leq mT$$

$$P = P_{i,j} \leq mT$$

Oklobdzija: High-Speed VLSI arithmetic units : adders and multipliers

Variable Block Adder (1C)

 $x_1 \le y_1 = 1 + T$

 $x_m \leq y_m = 1 + T$

 $X_1 - 1 \le 1T$

 $x_m - 1 \le mT$

20

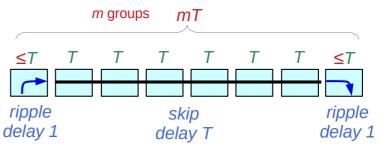
Lemma 1 When the bits of a carry skip adder are grouped according to the scheme (i)-(iii), the maximum propagation time of a carry signal is *mT*

The carry generated at the 2^{nd} bit position and terminating at the $(n-1)^{th}$ bit position clearly has propagation time mT.

We must show that *any other* carry signal has propagation time <u>smaller</u> than or equal to *mT*

propagation time of a carry signal $\leq mT$ the maximum propagation time = mT the scheme (i), (ii), (iii) gives the max prop time *mT*

maximum propagation time



$$P_{max} = P_{1,m} \leq mT$$

Procedure

(I) Let *m* be the smallest positive integer

$$n \leq \sum_{i=1}^{m} y_i \qquad i = 1, \dots, m$$

(II) Let

$$y_i = min\{1+iT, 1+(m+1-i)T\}$$

(III) Let x_i , i = 1, ..., m

starting with the first row, row by row

 $n = \sum_{i=1}^{m} x_i \leq \sum_{i=1}^{m} y_i$

Variable block size = x_i bits for the i-th group

the scheme (i), (ii), (iii) gives the max propagation time *mT*

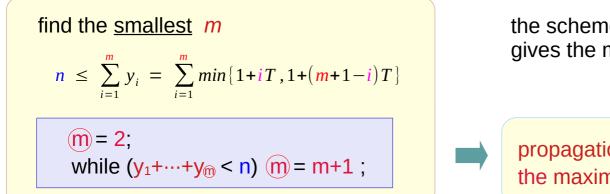
find the smallest m

$$n \leq \sum_{i=1}^{m} y_i = \sum_{i=1}^{m} \min\{1+iT, 1+(m+1-i)T\}$$

m = 2;while (y₁+...+y_m < n) m = m+1;

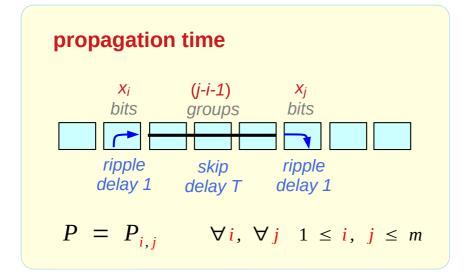
m = 2; $y_1 = 1+T$ $y_2 = 1+T$ m = 3; $y_1 = 1+T$ $y_2 = 1+2T$ $y_3 = 1+T$	m = 4; $y_1 = 1+T$ $y_2 = 1+2T$ $y_3 = 1+2T$ $y_4 = 1+T$	m = 5; $y_1 = 1+T$ $y_2 = 1+2T$ $y_3 = 1+3T$ $y_4 = 1+2T$ $y_5 = 1+T$	m = 6; $y_1 = 1+T$ $y_2 = 1+2T$ $y_3 = 1+3T$ $y_4 = 1+3T$ $y_5 = 1+2T$ $y_6 = 1+T$	m = 7; $y_1 = 1+T$ $y_2 = 1+2T$ $y_3 = 1+3T$ $y_4 = 1+4T$ $y_5 = 1+3T$ $y_6 = 1+2T$ $y_7 = 1+T$
--	--	--	--	--

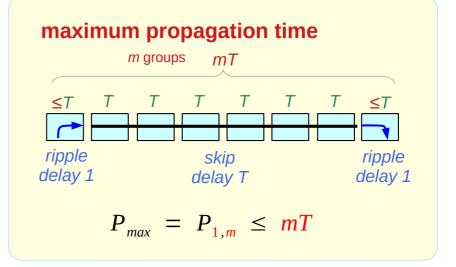
Propagation Time P



the scheme (i), (ii), (iii) gives the max propagation time *mT*

propagation time of a carry signal $\leq mT$ the maximum propagation time = mT





Maximum delay and optimal group size

the maximum propagation time ∞ the number of groups

 $D \propto m$

- <u>not</u> an optimal optimal division
 - larger number of groups \rightarrow
 - larger delays →

 when group size m is not optimate optimate 	<u>mal</u>	
then there is an <u>optimal</u> group size = r		
 the maximum delay with the group size m 	$D_m = mT$	
 the maximum delay with the group size r 	$D_r = rT$	
• <i>r</i> must be <u>smaller</u> than m	r ≤ m	

$$D_r < D_m$$

$$rT < mT$$

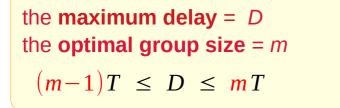
$$r < m$$

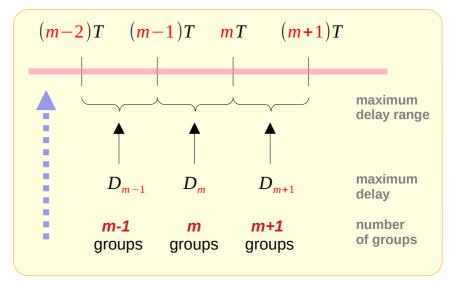
Lemma 2 Let *D* denote the maximum delay of a carry signal in a *n* bit carry skip adder with group sizes chosen optimally. Then

 $(m-1)T \leq D \leq mT$

Since we have exhibited a <u>division</u> of the carry chain into groups In such a way that the maximum delay of a carry signal is mTWe clearly have $D \leq mT$

• **r** groups

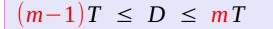


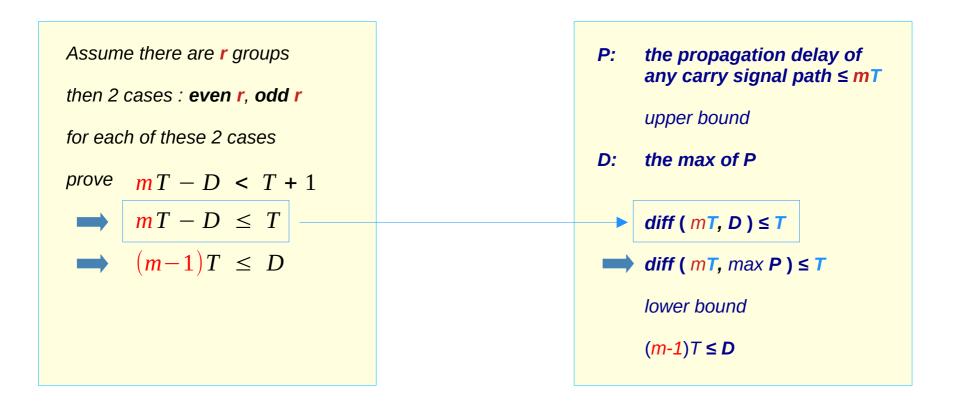


Oklobdzija: High-Speed VLSI arithmetic units : adders and multipliers

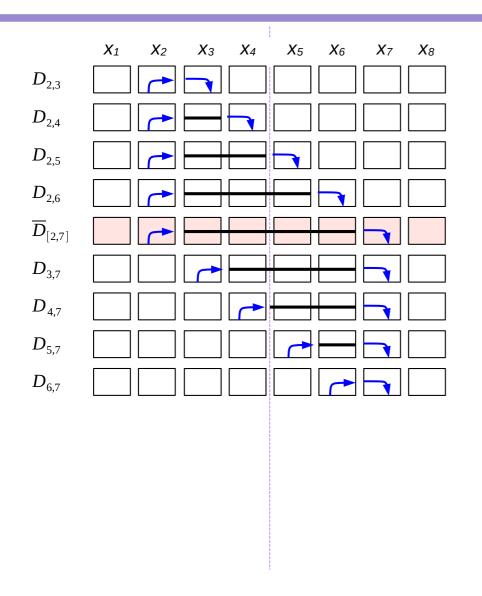
Variable Block Adder (1C)

Maximum delay of a carry signal





Maximum delays of carry signals (**r** = 2**k**)



Oklobdzija: High-Speed VLSI arithmetic units : adders and multipliers

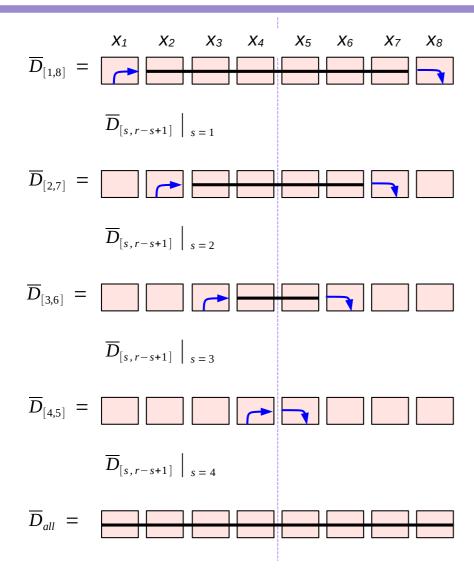
 $\overline{D}_{[2,7]}$ = the maximum delay of carry signals $\leq D$ generated in the *i*-th group and terminated in the *j*-th group such that $2 \leq i, j \leq 7$

$$\overline{D}_{[2,7]} = max \begin{cases} D_{2,3}, D_{2,4}, D_{2,5}, D_{2,6}, \\ D_{2,7}, \\ D_{3,7}, D_{4,7}, D_{5,7}, D_{6,7} \end{cases}$$

$$\overline{D}_{[2,7]} = \overline{D}_{[2,8-2+1]} = \overline{D}_{[s,8-s+1]}, s = 2$$

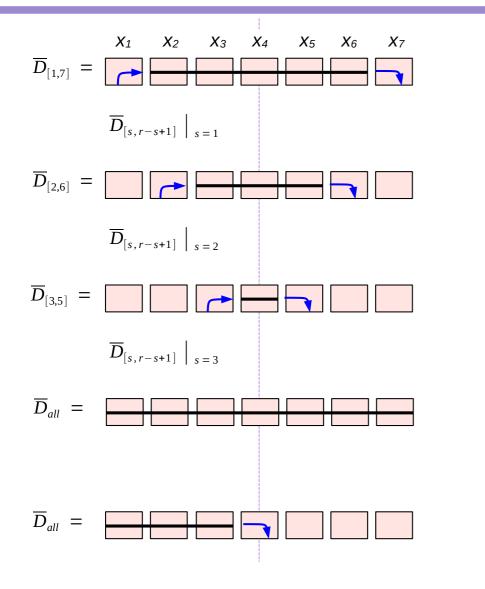
 $\overline{D}_{[s,r-s+1]} = \text{the maximum delay of carry signals} \\ \text{generated in the } \frac{i-th}{i-th} \text{ group and} \\ \text{terminated in the } \frac{j-th}{j-th} \text{ group} \\ \text{such that } s \leq i, j \leq r-s+1 \end{cases}$

Maximum delays of carry signals (r = 2k)



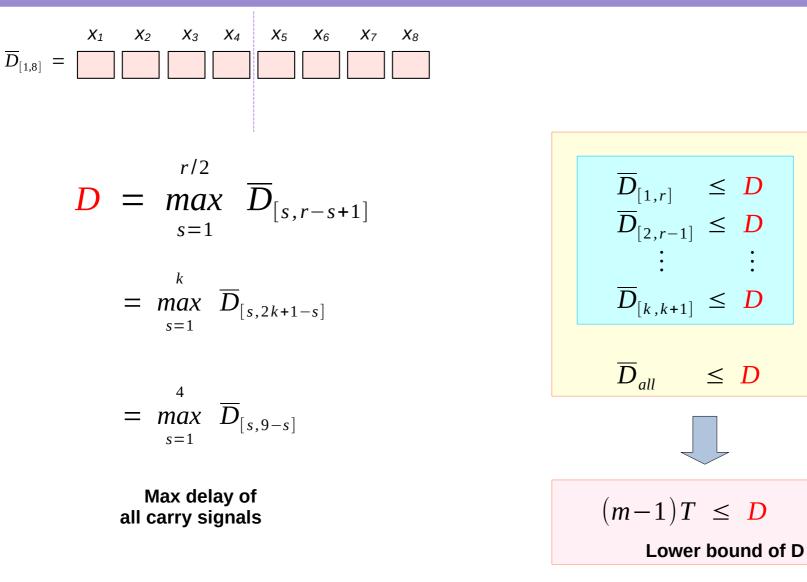
$\overline{D}_{[1,8]} =$ The maximum delay of carry signals generated in the <i>i-th</i> group or terminated in the <i>j-th</i> group such that $1 \le i, j \le 8$	≤D
$\overline{D}_{[2,7]} =$ The maximum delay of carry signals generated in the <i>i-th</i> group or terminated in the <i>j-th</i> group such that $2 \leq i, j \leq 7$	≤ D
$\overline{D}_{[3,6]} =$ The maximum delay of carry signals generated in the <i>i-th</i> group or terminated in the <i>j-th</i> group such that $3 \leq i, j \leq 6$	≤ D
$\overline{D}_{[4,5]} =$ The maximum delay of carry signals generated in the <i>i-th</i> group or terminated in the <i>j-th</i> group such that $4 \le i, j \le 5$	≤ D
$\overline{D}_{all} = All skip delay$	$\leq D$
$D = max\{\overline{D}_{[1,8]}, \overline{D}_{[2,7]}, \overline{D}_{[3,6]}, \overline{D}_{[4,5]}\}$ Max d all carry	lelay of signals

Maximum delays of carry signals (r = 2k+1)



$\overline{D}_{[1,7]} =$ The maximum delay of carry signals generated in the <i>i</i> -th group or terminated in the <i>j</i> -th group such that $1 \leq i, j \leq 8$	≤	D
$\overline{D}_{[2,6]} =$ The maximum delay of carry signals generated in the <i>i</i> -th group or terminated in the <i>j</i> -th group such that $2 \leq i, j \leq 7$	≤	D
<i>D</i> _[3,65] = The maximum delay of carry signals generated in the i-th group or terminated in the j-th group such that 3 ≤ i, j ≤ 6	≤	D
$\overline{D}_{all} = All skip delay$		
\widetilde{D}_{all} = Comparable to all skip delay	\leq	D
$D = max\{\overline{D}_{[1,8]}, \overline{D}_{[2,7]}, \overline{D}_{[3,6]}, \overline{D}_{[4,5]}\}$ Max of all carry		-

Maximum delays of carry signals (**r** = 2**k**)

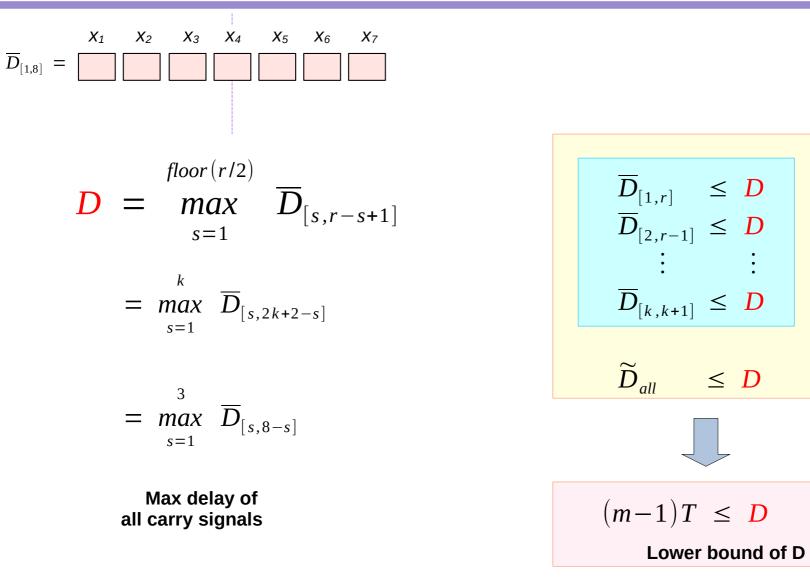


Oklobdzija: High-Speed VLSI arithmetic units : adders and multipliers

Variable Block Adder (1C)

30

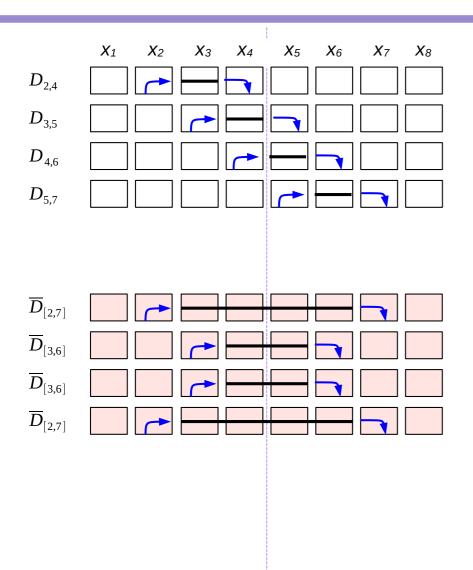
Maximum delays of carry signals (**r** = 2**k**+1)



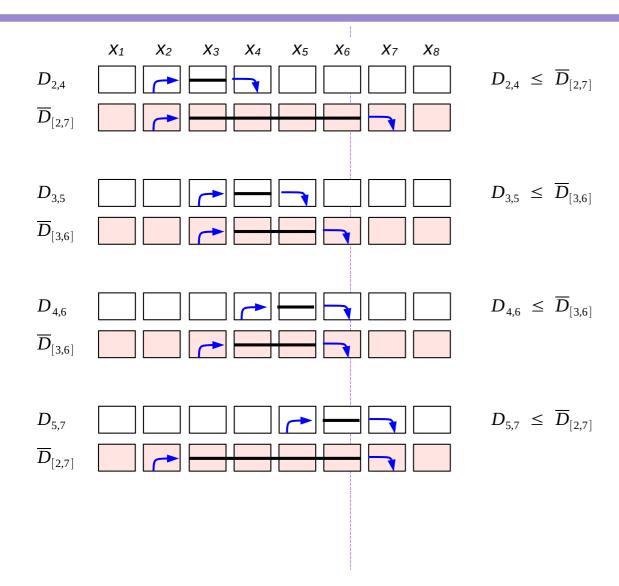
Oklobdzija: High-Speed VLSI arithmetic units : adders and multipliers

Variable Block Adder (1C)

Example delays of carry signals (r = 2k) (1)



Example delays of carry signals (r = 2k) (2)



Optimal division into groups (1-1)

Theorem 1

The scheme 2(i) - 2(iii) given above for dividing the bits of a carry skip adder into groups is optimal for $2 \le T \le 7$

dividing the bits into groups by the scheme 2(i) - 2(iii) gives *m* groups

propagation time of a carry signal $\leq mT$ the maximum propagation time = mT

the maximum delay = Dthe optimal group size = m

$$(m-1)T \leq D \leq mT$$

Oklobdzija: High-Speed VLSI arithmetic units : adders and multipliers

(I) Let *m* be the smallest positive integer such that $n \leq m + \frac{1}{2}mT + \frac{1}{4}m^2T + (1 - (-1)^m)\frac{1}{2}T$ (II) Let $y_i = min\{1+iT, 1+(m+1-i)T\},\$ i = 1, ..., mand construct a histogram whose *i*-th column has height y_i (III) the area of the histogram in (II) is $m + \frac{1}{2}mT + \frac{1}{4}m^2T + (1 - (-1)^m)\frac{1}{8}T \ge n$ so these are at least *n* unit squares in the histogram starting with the first row, shade in *n* of the squares, row by row Let x_i denote the number of shaded squares in column *i* of the histogram, i = 1, ..., m

Optimal division into groups (1-2)

<u>Assume</u>

- the scheme by 2(i) 2(iii) (*m* groups) is <u>not</u> optimal
- let *D* be the maximum delay corresponding to an optimal division of the bits into groups
- there are *r* groups in the optimal division.

Since a carry in signal to the least significant bit group can skip over each group

we have $rT \le D \le mT$ so $r \le m$

if *m* is <u>not</u> optimal, <u>but</u> *r* is then $mT \ge rT$ (smaller delay *rT*) thus $m \ge r$ (smaller *r* exists)

Oklobdzija: High-Speed VLSI arithmetic units : adders and multipliers

m groups

<u>not</u> optimal division *D* = maximum delay *mT* skip delay *r* groups

optimal division *rT* skip delay

skip delay $rT \le D \le mT$

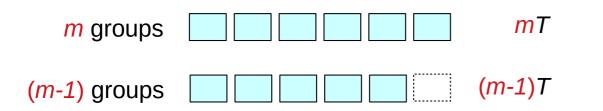
 $r \leq m$

D = max delay is assumedTo be greater than all skipdelay rT of the optimal division

Variable Block Adder (1C)

Optimal division into groups (1-2)

If the optimal division gives *m* groups



Normally, by 2(i) - 2(iii) (*m* groups) is optimal and its maximum delay *D* is less than all skip delay *mT*

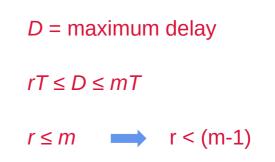
 $D \leq mT$

To prove this, first, negate that

- *m* is <u>not</u> by the optimal division, but *r* is
- D is greater than all skip delay of the optimal division

```
D \leq mT(m-1)T \leq D
```

- when optimal group size = m the maximum delay $D_m \le mT$
- when optimal group size = (m-1)the maximum delay $D_{m-1} \leq (m-1)T$



<mark>rT ≤ D ≤ mT</mark> so r ≤ m

Optimal division : r groups $D' \leq all skip delay rT (r groups)$

Non-optimal division : m groups $D \le all skip delay mT (m groups)$ too many partitions $m \quad r \le m$

Assume max delay D is greater than all skip delay rT of the optimal division

> if *m* is <u>not</u> optimal, <u>but</u> *r* is then $mT \ge rT$ (smaller delay rT) thus $m \ge r$ (smaller *r* exists)

D is max delay for m groups D' is max delay for r groups then $D' \leq rT \leq D \leq mT$

Oklobdzija: High-Speed VLSI arithmetic units : adders and multipliers

D = maximum delay $rT \le D \le mT$ $r \le m$ \longrightarrow r < (m-1)

we have $rT \le D \le mT$ so $r \le m$



we have $rT \le D \le mT$ so $r \le m$

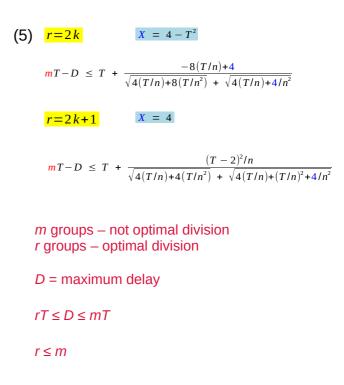
If r = m then D = mTand the **theorem** holds by **lemma** 1

When the bits of a carry skip adder are grouped according to the scheme (i)-(iii), the maximum propagation time of a carry signal is mT

 $(m\text{-}1)T \leq D \leq mT$

Lemma 1 When the bits of a carry skip adder are <u>grouped</u> according to the scheme (i)-(iii), the maximum propagation time of a carry signal is mT

Theorem 1 The scheme 2(i) - 2(iii) given above for dividing the bits of a carry skip adder into groups is optimal for $2 \le T \le 7$



If r = m - 1, (r < m) *m* and *r* have different parities and it follows from (5) that $mT - D \le T$ for $2 \le T \le 7$

so that $D \ge (m-1)T$ since r = m-1, $D \ge (m-1)T = rT$ $rT \le D$

This means that a signal which skips over each of the *r* groups (*rT*) has delay less than the maximum *D*.

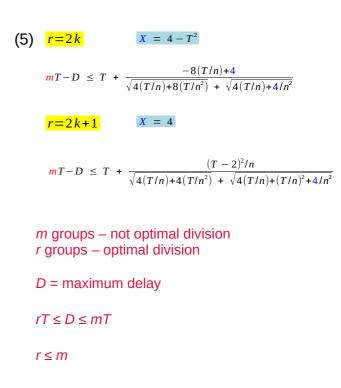
$rT \leq D \leq mT$

m is <u>not</u> optimal division *r* is optimal division

Oklobdzija: High-Speed VLSI arithmetic units : adders and multipliers

Lemma 1 When the bits of a carry skip adder are <u>grouped</u> according to the scheme (i)-(iii), the maximum propagation time of a carry signal is mT

Theorem 1 The scheme 2(i) - 2(iii) given above for dividing the bits of a carry skip adder into groups is optimal for $2 \le T \le 7$



Similarly, if r < m-1, (r < m)

 $(m-1)T \leq D$

since r < m-1, $rT < (m-1)T \le D$

so that a signal which skips over each group has delay rT < D.

$rT < D \leq mT$

m is <u>not</u> optimal division *r* is optimal division

m groups – not optimal division *r* groups – optimal division

D = maximum delay

 $rT \le D \le mT$

 $r \leq m$

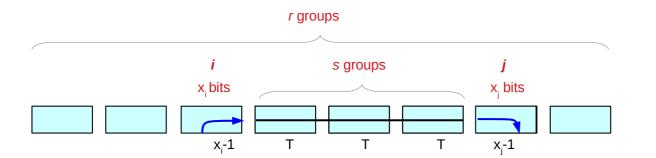


It follows that a signal with delay *D*

must <u>start</u> in a group *i*, <u>ripple</u> to the <u>end</u> of group *i*,

then skip over s < r groups and

either <u>terminate</u>, or <u>ripple</u> through the first few bits of a group j > i.



m groups – not optimal division *r* groups – optimal division

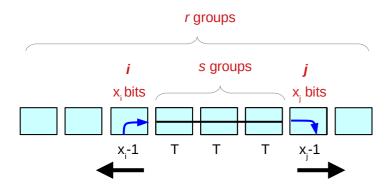
D = maximum delay

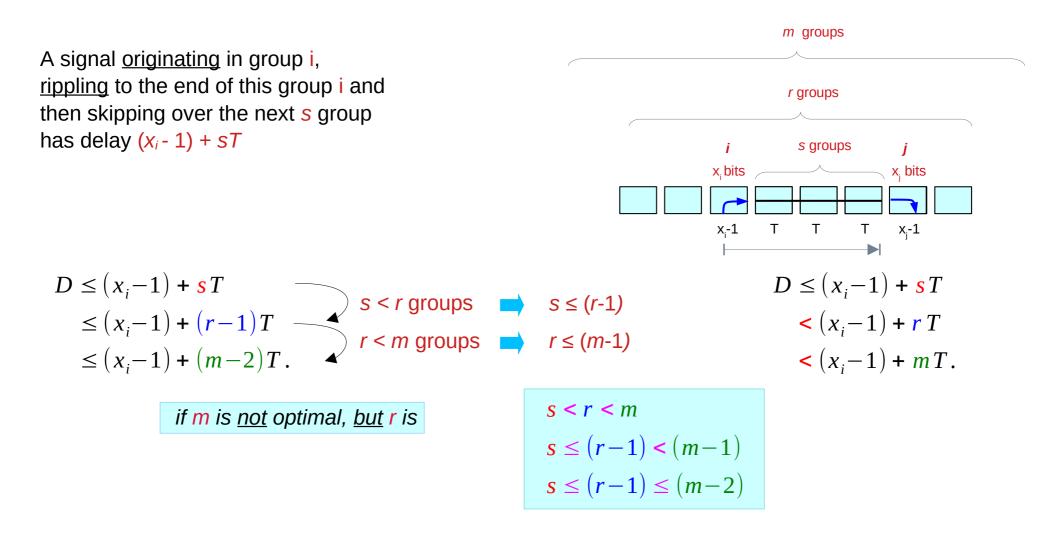
 $rT \leq D \leq mT$

 $r \le m$

Let x_i and x_j denote the lengths of the *i-th* and *j-th* groups respectively.

Assume that i is chosen as <u>small</u> as possible and j as <u>large</u> as possible. (longer path)





$D \le (x_i - 1) + sT$
$\leq (x_i - 1) + (r - 1)T$
$\leq (x_i - 1) + (m - 2)T$

 $(m-1)T \le D$ $D \le (x_i-1) + (m-2)T$ $(m-1)T \le D \le (x_i-1) + (m-2)T$ $(m-1)T \le (x_i-1) + (m-2)T$ $T \le (x_i-1)$ $T + 1 \le x_i$

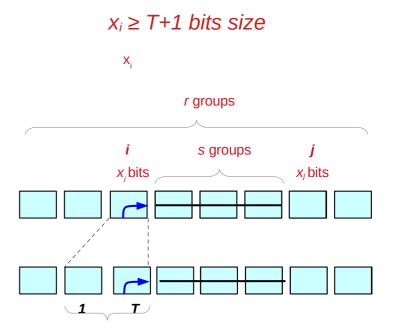
Since $D \ge (m-1)T$ this implies that $x_i \ge T+1$

Divide group *i* into two groups such that the group containing the msb has size *T*.

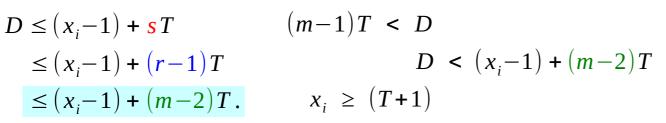
Since the *i*-th group is the first group in which a signal having maximum delay can <u>originate</u>,

this subdivision does <u>not increase</u> the delay of any carry signal of maximum delay

However, it increases the number of groups by 1



T+1 bits



Suppose now that a carry signal <u>originates</u> in a group *i*, <u>ripples</u> to its end, <u>skips</u> over $s \le r-2$ groups and finally <u>ripples</u> through the first few bits of a group *j* and <u>terminates</u>.

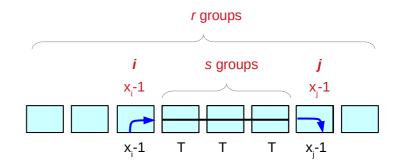
We then have

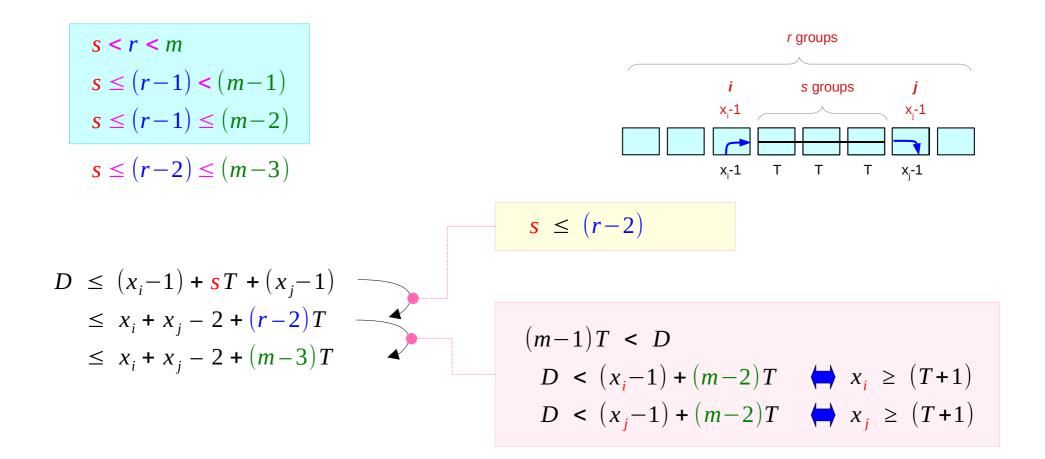
$$D \leq (x_i - 1) + sT + (x_j - 1)$$

$$\leq x_i + x_j - 2 + (m - 3)T$$

So that either $x_i \ge T+1$ or $x_j \ge T+1$

s < r groups	s < r groups
$s \leq (r-1)$ groups	$s \leq (r-2)$ groups
<i>r</i> < <i>m</i> groups	<i>r</i> < <i>m</i> groups
$r \leq (m-1)$ groups	$r \leq (m-2)$ groups





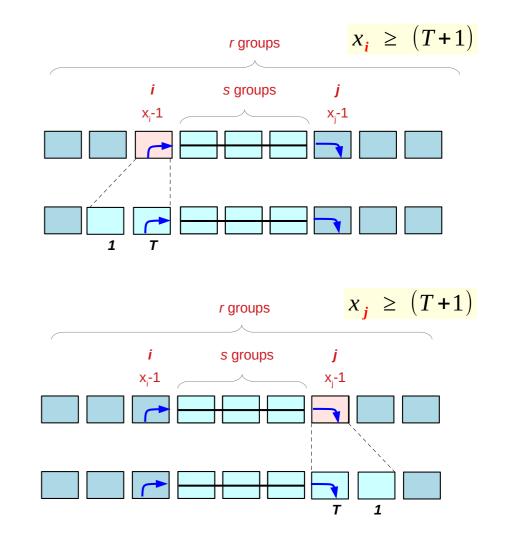
So that either $x_i \ge T+1$ or $x_j \ge T+1$

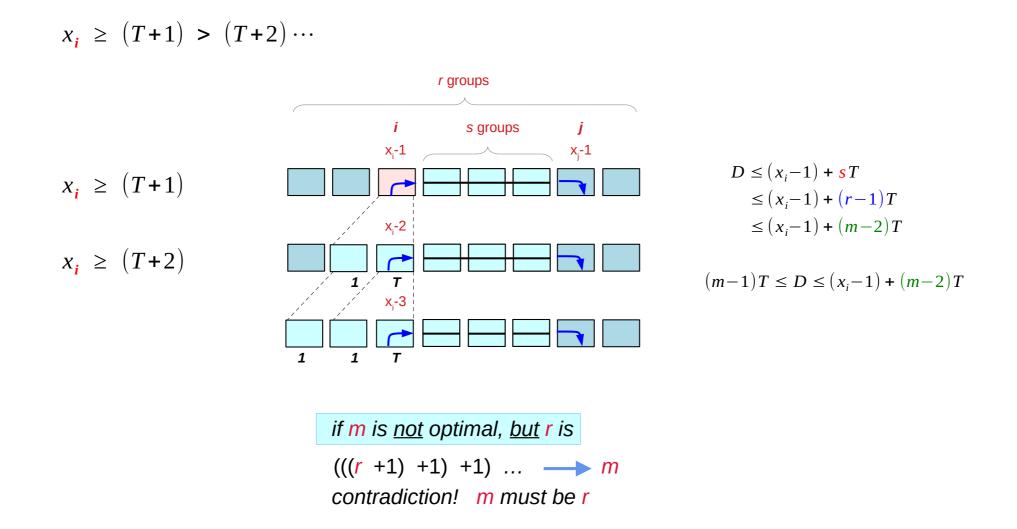
So that either $x_i \ge T+1$ or $x_j \ge T+1$

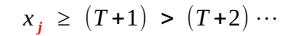
This means that we can subdivide one of the groups *i*, *j* without increasing *D* not both of them

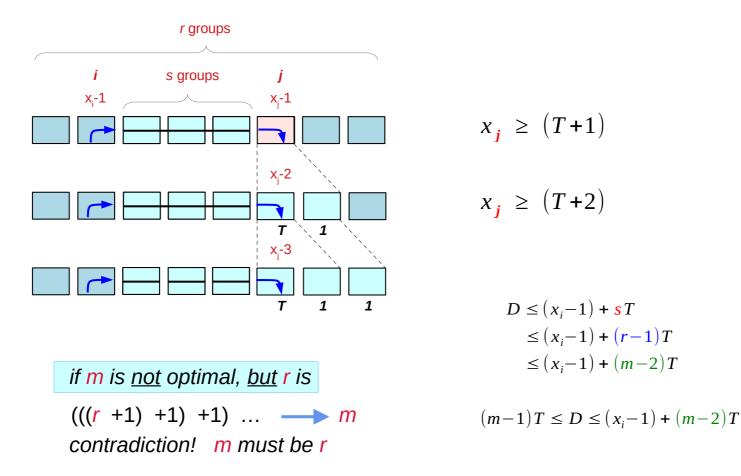
Continuing in this way, we can always increase the number *r* of group in an optimal division of a carry chain by 1 without increasing *D* if r < m

This means that we can arrive at an optimal division of the carry chain into *m* groups.

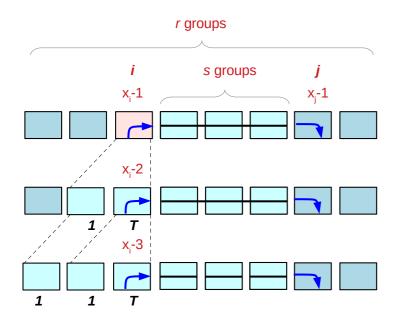


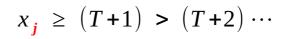


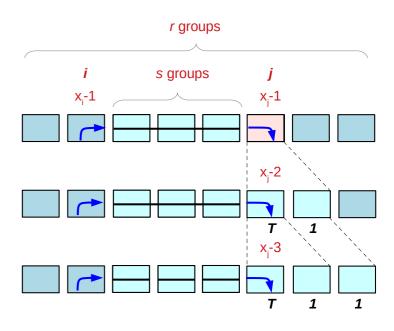


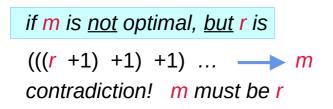


$$x_i \geq (T+1) > (T+2) \cdots$$









Oklobdzija: High-Speed VLSI arithmetic units : adders and multipliers

if *m* is <u>not</u> optimal, <u>but</u> *r* is (((*r* +1) +1) +1) ... \longrightarrow *m* contradiction! *m* must be *r* Normally, by 2(i) - 2(iii) (*m* groups) is optimal and its maximum delay *D* is less than all skip delay *mT*

$D \leq mT$

To prove this, first, negate that

- *m* is <u>not</u> by the optimal division, but *r* is
- **D** is greater than all skip delay of the optimal division

<u>Assume</u>

- the scheme by 2(i) 2(iii) (*m* groups) is <u>not</u> optimal
- let **D** be the maximum delay corresponding to an optimal division
- there are *r* groups in the optimal division.

(...(((r+1)+1)+1) ... +1) \rightarrow m : optimal

if **m** is <u>not</u> optimal, <u>but</u> **r** is

((((r +1) +1) +1) ... ----- m

contradiction! m must be r

We must then have $D \ge mT$ which, together with **Lemma 2**, Implies D = mT

This completes the proof of the theorem

m groups – not optimal division *r* groups – optimal division

D = maximum delay

 $rT \le D \le mT$

 $r \le m$

Lemma 2

Let *D* denote the maximum delay of a carry signal in a *n* bit carry skip adder with group sizes chosen optimally.

 $(m-1)T \leq D \leq mT$

Theorem 1

The scheme 2(i) - 2(iii) given above for dividing the bits of a carry skip adder into groups is optimal for $2 \le T \le 7$