
1 Young Won Lim
3/19/22

Monad P3 : Inhabitedness and Formal Logic (1E)

2 Young Won Lim
3/19/22

 Copyright (c) 2022 - 2016 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Inhabitedness and
Formal Logic (1E)

3 Young Won Lim
3/19/22

Inhabitedness and formal logic

Inhabitedness and
Formal Logic (1E)

4 Young Won Lim
3/19/22

The Void datatype is part of the Haskell standard library

Void has the following declaration

data Void

it's a datatype, with an empty collection of constructors

(this is a valid declaration).

cannot construct any value with type Void,

a fact that both programmers and the compiler can exploit.

https://ivanbakel.github.io/posts/intuitionistic-logic-in-haskell/

Void data type

Inhabitedness and
Formal Logic (1E)

5 Young Won Lim
3/19/22

Though a Void value is unconstructable,

it is still possible to write a valid Haskell term

which has the Void type.

aVoidTerm :: Void

aVoidTerm = aVoidTerm

-- Alternatively:

aVoidTerm = undefined

-- Or even:

aVoidTerm = error "Tried to evaluate a `Void` term"

https://ivanbakel.github.io/posts/intuitionistic-logic-in-haskell/

Void data type

Inhabitedness and
Formal Logic (1E)

6 Young Won Lim
3/19/22

aVoidTerm :: Void

● aVoidTerm = aVoidTerm

● aVoidTerm = undefined

● aVoidTerm = error "Tried to evaluate a `Void` term"

All these terms are non-terminating.

While lazy evaluation allows them

to appear in programs without any problem,

But, any attempt to evaluate these terms will fail:

either because of an infinite loop or a runtime error.

https://ivanbakel.github.io/posts/intuitionistic-logic-in-haskell/

Void data type

RHS is to be evaluated

recursively, infinitely

Inhabitedness and
Formal Logic (1E)

7 Young Won Lim
3/19/22

Types with inhabitants are said to be inhabited.

Void has the property of being uninhabited,

because it has no "inhabitants"

Note that valid terminating terms can have the Void type.

https://ivanbakel.github.io/posts/intuitionistic-logic-in-haskell/

Inhabited types

Inhabitedness and
Formal Logic (1E)

8 Young Won Lim
3/19/22

this reasoning about inhabited types looks a lot like formal logic.

If inhabitedness is "truth",

then uninhabitedness is "falsehood".

inhabited truth

uninhabited false

https://ivanbakel.github.io/posts/intuitionistic-logic-in-haskell/

Inhabited types and formal logic

Inhabitedness and
Formal Logic (1E)

9 Young Won Lim
3/19/22

a -> Void is uninhabited if and only if a is inhabited, and vice versa;

Either a b is inhabited if and only if at least one of a, b is inhabited

(a, b) is inhabited if and only if both a and b are inhabited

a -> b is uninhabited (false)

if and only if a is inhabited (true) and b is uninhabited (false).

https://ivanbakel.github.io/posts/intuitionistic-logic-in-haskell/

Types and logic

Inhabitedness and
Formal Logic (1E)

10 Young Won Lim
3/19/22

a -> Void not a

Either a b a or b

(a, b) a and b

a -> b a → b

https://ivanbakel.github.io/posts/intuitionistic-logic-in-haskell/

Types and logic

Inhabitedness and
Formal Logic (1E)

11 Young Won Lim
3/19/22

For a (terminating) function with type a -> b,

b can be uninhabited only if a is uninhabited

 otherwise the function could evaluate the argument of type a,

have it terminated, and be forced to produce

a terminating value of type b

: an impossibility.

b must be inhabited if a is inhabited

https://ivanbakel.github.io/posts/intuitionistic-logic-in-haskell/

a -> b type

 a -> b
inhabited inhabited

uninhabited uninhabited

Inhabitedness and
Formal Logic (1E)

12 Young Won Lim
3/19/22

Void -> a

is inhabited for any choice of a, even uninhabited choices of a

a can be uninhabited only because Void is uninhabited.

tautology

https://ivanbakel.github.io/posts/intuitionistic-logic-in-haskell/

Void -> a type

Inhabitedness and
Formal Logic (1E)

13 Young Won Lim
3/19/22

a -> Void

is inhabited only for choices of a which are uninhabited.

if a is uninhabited, then we can write

a terminating term with type a -> Void

a terminating term with type Void -> a

The result is: a -> Void is inhabited

if and only if a is uninhabited, and vice versa.

https://ivanbakel.github.io/posts/intuitionistic-logic-in-haskell/

a -> Void type

a a -> Void
 inhabited uninhabited

 uninhabited inhabited

 True False

 False True

Inhabitedness and
Formal Logic (1E)

14 Young Won Lim
3/19/22

We can extend this reasoning about inhabitants

to many other basic Haskell types.

Maybe a, for example, is always inhabited

by the terminating term Nothing,

even for uninhabited choices of a.

tautology

https://ivanbakel.github.io/posts/intuitionistic-logic-in-haskell/

Maybe a type

a Maybe a
 inhabited nhabited

 uninhabited inhabited

 True True

 False True

for all a, always true : tautology

Inhabitedness and
Formal Logic (1E)

15 Young Won Lim
3/19/22

Either a b is inhabited provided one of a or b is inhabited,

because you could wrap the terminating term

with type a (or b) in a Left (or Right) constructor

to give a terminating term of type Either a b.

Conversely, if Either a b is inhabited,

then at least one of a or b must be inhabited

(though the proof is much more difficult to summarize).

In a similar vein, the tuple type (a, b) is inhabited

if and only if both a, b are inhabited.

https://ivanbakel.github.io/posts/intuitionistic-logic-in-haskell/

Either a b type

a b Either a b
 uninhabited uninhabited uninhabited

 uninhabited inhabited inhabited

 inhabited uninhabited inhabited

 inhabited inhabited inhabited

 False False False

 False True True

 True False True

 True True True

logical or

Inhabitedness and
Formal Logic (1E)

16 Young Won Lim
3/19/22

In a similar vein, the tuple type (a, b) is inhabited

if and only if both a, b are inhabited.

https://ivanbakel.github.io/posts/intuitionistic-logic-in-haskell/

(a, b) type

a b (a, b)
 uninhabited uninhabited uninhabited

 uninhabited inhabited uninhabited

 inhabited uninhabited uninhabited

 inhabited inhabited inhabited

 False False False

 False True False

 True False False

 True True True

logical and

Inhabitedness and
Formal Logic (1E)

17 Young Won Lim
3/19/22

Probably the most classic use of Void is in CPS.

type Continuation a = a -> Void

that is, a Continuation is

a function which never returns.

non-terminating … uninhabited

Continuation is the type version of "not."

https://stackoverflow.com/questions/14131856/whats-the-absurd-function-in-data-void-useful-for

Continuation a

Inhabitedness and
Formal Logic (1E)

18 Young Won Lim
3/19/22

https://ivanbakel.github.io/posts/intuitionistic-logic-in-haskell/

Logical Not

a a -> Void
 inhabited uninhabited … never returning … false

 uninhabited inhabited … returning … true

 True False

 False True

 forall r.

a a -> r
 inhabited never returning … uninhabited … false

 uninhabited returning … inhabited … true

Inhabitedness and
Formal Logic (1E)

19 Young Won Lim
3/19/22

type Continuation a = a -> Void

From this we get a monad of CPS (corresponding to classical logic)

newtype CPS a = Continuation (Continuation a)

since Haskell is pure, we can't get anything out of this type.

can’t get the value a back

https://stackoverflow.com/questions/14131856/whats-the-absurd-function-in-data-void-useful-for

CPS a

Inhabitedness and
Formal Logic (1E)

20 Young Won Lim
3/19/22

technically "false" should correspond to

an uninhabited data type (often called Void)

so "not (not A)" would be

(A -> Void) -> Void -- useless

Assume forall r. r stands for "false"

forall r. (A -> r) -> r -- can extract the A value, i.e.

-- double-negation elimination.

using r instead of Void lets us get value A back out.

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Logical double negation – Not Not

A Void

Void

VoidA

Inhabitedness and
Formal Logic (1E)

21 Young Won Lim
3/19/22

A function is called pure if it corresponds to a function

in the mathematical sense:

it associates each possible input value with an output value,

and does nothing else.

In particular, it has no side effects, that is to say,

invoking it produces no observable effect

other than the result it returns;

it cannot also e.g. write to disk, or print to a screen.

https://wiki.haskell.org/Pure

A pure function

Inhabitedness and
Formal Logic (1E)

22 Young Won Lim
3/19/22

A pure function is trivially referentially transparent -

it does not depend on anything other than its parameters,

so when invoked

in a different context or

at a different time

but with the same arguments,

it will produce the same result.

A programming language may be called purely functional

if evaluation of expressions is pure.

https://wiki.haskell.org/Pure

Referentially transparent

Inhabitedness and
Formal Logic (1E)

23 Young Won Lim
3/19/22

A universally quantified type is a type of the form forall a. f a.

A value of that type can be thought of

as a function that takes a type a as its argument

and returns a value of type f a.

Except that in Haskell these type arguments

are passed implicitly by the type system.

This function f has to give you the same value

no matter which type it receives,

so the value is polymorphic.

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

A universally quantified type

Inhabitedness and
Formal Logic (1E)

24 Young Won Lim
3/19/22

For example, consider the type forall a. [a].

A value of that type takes another type a and gives you back

a list of elements of that same type a.

There is only one possible implementation, of course.

It would have to give you the empty list []

because a could be absolutely any type.

The empty list is the only list value

that is polymorphic in its element type

(since it has no elements).

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Universally quantified type example I

Inhabitedness and
Formal Logic (1E)

25 Young Won Lim
3/19/22

Next, consider the type forall a. a -> a.

The caller of such a function provides

both a type a and a value of type a.

The implementation then has to return a value of that same type a.

There's only one possible implementation again.

It would have to return the same value that it was given.

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Universally quantified type example II

Inhabitedness and
Formal Logic (1E)

26 Young Won Lim
3/19/22

Void or (forall a. a)

This is somewhere between a style question and a sanity check.

So I think these two types are isomorphic:

runRight :: Either Void b -> b

runRight' :: Either (forall a. a) b -> b

https://www.reddit.com/r/haskell/comments/30iq0x/void_or_forall_a_a/

Uninhabited type

Inhabitedness and
Formal Logic (1E)

27 Young Won Lim
3/19/22

When applying De Morgan's laws to quantifiers;

function inputs are negated

There's an equivalence between

Either a b … implicit universal quantification

forall r. (a -> r, b -> r) -> r

which corresponds to "A or B"

being the same as "not ((not A) and (not B))".

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Logical or using De Morgan’s law and forall

forall r. (a -> r , b -> r)

(Not a) and (Not b)

forall r. (a -> r , b -> r) -> r

Not ((Not a) and (Not b))

specific
type a

any
type r

Inhabitedness and
Formal Logic (1E)

28 Young Won Lim
3/19/22

When applying De Morgan's laws to quantifiers;

function inputs are negated

There's an equivalence between

(a, b) … implicit universal quantification

forall r. (Either a -> r b -> r) -> r

which corresponds to "A and B"

being the same as "not ((not A) or (not B))".

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Logical and using De Morgan’s law and forall

forall r. (Either a -> r b -> r)

(Not a) or (Not b)

forall r. (Either a -> r b -> r) -> r

Not ((Not a) or (Not b))

specific
type a

any
type r

Inhabitedness and
Formal Logic (1E)

29 Young Won Lim
3/19/22

a function with
a specific type
must be given

exists a. a

forall r. (forall a. a -> r) -> r

for all result types r, forall r.

given a function that

for all types a forall a.

takes an argument of type a a

and returns a value of type r, -> r

we can get a result of type r. -> r

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existentially quantified type (1)

Inhabitedness and
Formal Logic (1E)

30 Young Won Lim
3/19/22

forall r. (forall a. a -> r) -> r

the overall type is not universally quantified for a

it takes an argument that itself is universally quantified for a

(forall a. a -> r)

it can then use with whatever specific type it chooses

eg) Int -> r

thus, it is existentially quantified for a

exists a. a

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existentially quantified type (2)

Inhabitedness and
Formal Logic (1E)

31 Young Won Lim
3/19/22

The relations between logical double-negation

and continuation-passing style

Due to duality, exists a. a can be expressed as

forall r. (forall a. a -> r) -> r

Due to duality, forall a. a can be expressed as

exists r. (exists a. a -> r) -> r

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existentially quantified type (3)

Inhabitedness and
Formal Logic (1E)

32 Young Won Lim
3/19/22

forall r. (forall a. a -> r) -> r

exists a. a

exists r. (exists a. a -> r) -> r

forall a. a

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existentially quantified type (4)

Inhabitedness and
Formal Logic (1E)

33 Young Won Lim
3/19/22

An existentially quantified type like exists a. a -> a means that,

for some particular type "a", we can implement a function

whose type is a -> a.

for example, let’s choose Boolean as a particular type:

func :: exists a. a -> a

func True = False

func False = True

func :: Boolean -> Boolean

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

exists a. a -> a (1)

Inhabitedness and
Formal Logic (1E)

34 Young Won Lim
3/19/22

func :: exists a. a -> a

func True = False

func False = True

the "not" function on booleans.

But we can't use it as a “not” function,

because all we know about the type "a" is that it exists.

any information about which type “a” might be has been discarded,

which means we can't apply func to any values.

This is not very useful.

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

exists a. a -> a (2)

Inhabitedness and
Formal Logic (1E)

35 Young Won Lim
3/19/22

func :: exists a. a -> a

func True = False

func False = True

So what can we do with func?

we know that it's a function

with the same type for its input and output,

so we could compose it with itself, for example.

Essentially, the only things you can do with something

that has an existential type are the things you can do

based on the non-existential parts of the type.

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

exists a. a -> a (3)

Inhabitedness and
Formal Logic (1E)

36 Young Won Lim
3/19/22

Similarly, given something of type exists a. [a]

we can find its length, or concatenate it to itself,

or drop some elements,

or anything else we can do to any list.

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

exists a. [a]

Inhabitedness and
Formal Logic (1E)

37 Young Won Lim
3/19/22

That last bit brings us back around to universal quantifiers,

and the reason why Haskell doesn't have existential types directly

since things with existentially quantified types

can only be used with operations

that have universally quantified types,

we can write the type exists a. a

as forall r. (forall a. a -> r) -> r

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

De Morgan’s law and forall

Inhabitedness and
Formal Logic (1E)

38 Young Won Lim
3/19/22

● the things being quantified over are types

(ignoring certain language extensions, at least),

● logical statements are also types

● a "true" logical statement as "can be implemented".

● technically "false" should correspond to

an uninhabited data type (often called Void)

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Haskell quantification

Inhabitedness and
Formal Logic (1E)

39 Young Won Lim
3/19/22

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential types and forall

forall r. (a -> r) -> r

forall r. (forall a. a -> r) -> r

exists a. a

think a callback function forall a. a -> r

forall a. a -> Int

forall a. a -> String a caller chooses type r

forall a. a -> Double

The caller of the overall function

(a -> r) -> r

chooses any type r

The body of the overall function

(a -> r) -> r

chooses any type a

the body of the callback function

must handle for all type a

Inhabitedness and
Formal Logic (1E)

40 Young Won Lim
3/19/22

id :: forall a. a -> a

id x = x

for any possible type a, quantified over types

a function whose type is a -> a

can be implemented a true logical statement

id works for all a.

a will unify with (or will be fixed to) any type

that caller of id may choose.

https://markkarpov.com/post/existential-quantification.html

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

id function example

universally quantified type variables

in a type signature are

existentially quantified

in a function body

Inhabitedness and
Formal Logic (1E)

41 Young Won Lim
3/19/22

universally quantified type variables in a type signature

will be fixed when the corresponding function

is used (called)

in a type signature, a is universally quantified

but in the body of the function

we know nothing about the argument a,

we cannot inspect the argument a

(a is fixed when the function is used)

https://markkarpov.com/post/existential-quantification.html

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

A type signature and a function body

id :: forall a. a -> a

id x = x

universally quantified type variables

existentially quantified in a function body

Inhabitedness and
Formal Logic (1E)

42 Young Won Lim
3/19/22

universally quantified type variables in a type signature

callers can pass (choose) anything to id

but due to the lack of information

about the argument in the body of id

a caller can only pass a value to id

without doing anything meaningful

So, id x = x is the only possible function of the type a -> a

https://markkarpov.com/post/existential-quantification.html

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Lack of information in a function body

id :: forall a. a -> a

id x = x

a caller chooses values for

universally quantified variables

in the body of a such function,

must handle any type values

which is given by a caller :

existentially quantified variable

Inhabitedness and
Formal Logic (1E)

43 Young Won Lim
3/19/22

An existentially quantified type could be better explained

using the fictitious exists a. syntax

exists a. a -> a

for a certain type a,

we can implement a function whose type is a -> a.

any function will do,

then the “not” function on Bool satisfies the type a -> a

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Fictitious syntax exists a.

func :: exists a. a -> a

func True = False

func False = True

Inhabitedness and
Formal Logic (1E)

44 Young Won Lim
3/19/22

the function implementation on booleans

func :: exists a. a -> a

func True = False

func False = True

but we cannot use (apply) it as the “not“ function

because all we know about the type a is

that it exists.

Any information about which type it might be

has been discarded (i.e, is not used),

this means we can't apply func to any values

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Function implementations and applications

Existentials are always about

throwing type information away.

sometimes we want to work with types

that we don’t know at compile time.

Inhabitedness and
Formal Logic (1E)

45 Young Won Lim
3/19/22

in pseudo-Haskell:

 (exists x. p x x) -> c ≅ forall x. p x x -> c

a function p that takes an existential type x

is equivalent to a polymorphic function

using a universal quantifier forall x

because the function p must be prepared

to handle any one of the types x

that may be encoded in the existential type. exists x.

Haskell does not need an existential quantifier

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential types and forall

Inhabitedness and
Formal Logic (1E)

46 Young Won Lim
3/19/22

a function that accepts a sum type must be implemented as

a case statement, with a tuple of handlers,

one for every type present in the sum.

Here, the sum type is replaced by a coend,

and a family of handlers becomes an end,

or a polymorphic function.

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential types and forall

Inhabitedness and
Formal Logic (1E)

47 Young Won Lim
3/19/22

This fact brings us back to universal quantifiers,

and the reason why Haskell doesn't have existential types directly

(exists a. above is entirely fictitious)

since things with existentially quantified types

can only be used with operations

that have universally quantified types,

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

No direct existential types

● for the callers of myPrettyPrinter

b is existentially quantified

● in the body of myPrettyPrinter

b is universally quantified

Inhabitedness and
Formal Logic (1E)

48 Young Won Lim
3/19/22

universal quantification is the default

any type variables in a type signature are

implicitly universally quantified,

id :: a -> a

id :: forall a. a -> a

also known as parametric polymorphism

in some other languages (e.g., C#) known as generics.

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Parametric polymorphism (1)

Inhabitedness and
Formal Logic (1E)

49 Young Won Lim
3/19/22

Parametric polymorphism refers to

when the type of a value contains

one or more (unconstrained) type variables,

beginning with a lowercase letter

without constraints (nothing to the left of a =>)

so that the value may adopt any type

that results from substituting those type variables

with concrete types.

https://wiki.haskell.org/Polymorphism

Parametric polymorphism (2)

data Maybe a = Just a | Nothing

Just 2.0 :: Maybe Double

Just 'a' :: Maybe Char

Just True :: Maybe Boolean

Inhabitedness and
Formal Logic (1E)

50 Young Won Lim
3/19/22

Polymorphic datatypes

data Maybe a = Nothing | Just a

data List a = Nil | Cons a (List a)

data Either a b = Left a Right b

Polymorphic functions

reverse :: [a] -> [a]

fst :: (a, b) -> a

id :: a -> a

http://sm-haskell-users-group.github.io/pdfs/Ben%20Deane%20-%20Parametric%20Polymorphism.pdf

Parametric polymorphism (3)

Just 2.0 :: Maybe Double

Just 'a' :: Maybe Char

Just True :: Maybe Boolean

Inhabitedness and
Formal Logic (1E)

51 Young Won Lim
3/19/22

Since a parametrically polymorphic value does not know

anything about the unconstrained type variables,

it must behave identically for all type (regardless of its type)

(related to universally quantification)

This is a somewhat limiting but extremely useful property

known as parametricity.

https://wiki.haskell.org/Polymorphism

Parametric polymorphism (4)

data Maybe a = Nothing | Just a

reverse :: [a] -> [a]

Inhabitedness and
Formal Logic (1E)

52 Young Won Lim
3/19/22

the function id :: a -> a contains

an unconstrained type variable a in its type,

and so can be used in a context requiring

Char -> Char or

Integer -> Integer or

(Bool -> Maybe Bool) -> (Bool -> Maybe Bool) or

any of a literally infinite list of other possibilities.

if a single type variable appears multiple times,

it must take the same type everywhere it appears

→ the result type of id must be the same as the argument type

https://wiki.haskell.org/Polymorphism

Parametric polymorphism (5)

Inhabitedness and
Formal Logic (1E)

53 Young Won Lim
3/19/22

A variable is universally quantified

when the consumer of the variable’s expression

can choose what it will be.

A variable is existentially quantified

when the consumer of the variable’s expression

has to deal with the fact that the choice was made for him.

https://markkarpov.com/post/existential-quantification.html

Quantified variable choice

Universally quantified variable:

the consumer chooses a value

Existentially quantified variable:

the choice is made for the consumer

callers of a
function

the body of
such a function

consumers of a function

Inhabitedness and
Formal Logic (1E)

54 Young Won Lim
3/19/22

Both universally and existentially quantified variables

are introduced with forall.

There is no exists in Haskell.

In fact, it’s not necessary.

https://markkarpov.com/post/existential-quantification.html

Quantified variables with forall

Inhabitedness and
Formal Logic (1E)

55 Young Won Lim
3/19/22

data Something where

 Something :: forall a. a -> Something

one way to have existentials –

by putting values in wrappers

that “hide” type variables from signatures.

 Something a :: Something

 the type variable a is hidden in the type Something

https://markkarpov.com/post/existential-quantification.html

Making existentials – hiding type variables

Inhabitedness and
Formal Logic (1E)

56 Young Won Lim
3/19/22

data Something where

 Something :: forall a. a -> Something

 Something a :: Something

 Something 2.0 :: Something

 Something 'a' :: Something

 Something True :: Something

the constructor function Something return

data value of type Something

https://markkarpov.com/post/existential-quantification.html

Existential wrappers – data and type constructors

data Point a = Pt a a

Pt 2.0 3.0 :: Point Float

Pt 'a' 'b' :: Point Char

Pt True False :: Point Bool

data constructor

type constructor +
bounded type parameter
: a concrete type

polymorphic type

type constructor

Inhabitedness and
Formal Logic (1E)

57 Young Won Lim
3/19/22

data Something where

 Something :: forall a. a -> Something

 findx :: Something -> Float

 findx (Something x) -> x

The constructor accepts any a we like,

but after construction we

lose the type information

and pattern matching afterwards only reveals

that there is some a,

but nothing regarding what it is.

https://markkarpov.com/post/existential-quantification.html

Existential wrappers – pattern matching

data Point a = Pt a a

pointx :: Point Float -> Float

pointx (Pt x _) = x

pointy :: Point Float -> Float

pointy (Pt _ y) = y

Inhabitedness and
Formal Logic (1E)

58 Young Won Lim
3/19/22

data Something where

 Something :: forall a. a -> Something

the constructor function Something return

existentially quantified data of type Something

https://markkarpov.com/post/existential-quantification.html

Existential wrappers – constructing and using a value

Something a :: Something

a data value is
constructed

a data value is
used

universally
quantified

existentially
quantified aa

Something 1 :: Something

Something ’a’ :: Something

Something 2.0 :: Something

a function parameter,
pattern matching

Inhabitedness and
Formal Logic (1E)

59 Young Won Lim
3/19/22

● passing a value to id: (universally quantified)

we can pass anything to id but we lack any information

about the argument in the body of id.

● passing a value to Something (existentially quantified)

existential wrappers

➔ return existentially quantified data from a function.

➔ avoid unification of existentials with outer context

➔ avoid escaping of type variables.

https://markkarpov.com/post/existential-quantification.html

Returning existentially quantified data

id 1 :: Int

id ‘a’ :: Char

Id 2.0 :: Double

Something 1 :: Something

Something ’a’ :: Something

Something 2.0 :: Something

findx (Something x) -> x

not possible !!!

cannot extract type variable a

Inhabitedness and
Formal Logic (1E)

60 Young Won Lim
3/19/22

● passing a value to id: (universally quantified)

universally quantified variable

the consumer chooses

id :: forall a. a -> a

● passing a value to Something (existentially quantified)

existentially quantified variable

the choice is made for the consumer

data Something where

Something :: forall a. a -> Something

https://markkarpov.com/post/existential-quantification.html

Returning existentially quantified data

id Int :: Int

id Char :: Char

id Double :: Double

example consumer function

foo :: Something -> Int

foo x = …

 x :: Something

type variable a is already chosen

could be one of these

Something 1 :: Something

Something ’a’ :: Something

Something 2.0 :: Something

Inhabitedness and
Formal Logic (1E)

61 Young Won Lim
3/19/22

data Something where

 Something :: forall a. a -> Something

data r where

 r :: forall a. a -> r

forall r. (forall a. a -> r) -> r
 Assume the callback function name is r

the type variable a is hidden in the type r

https://markkarpov.com/post/existential-quantification.html

Existential wrappers – similar forms

Something 1 :: Something
Something ’a’ :: Something
Something 2.0 :: Something

r 1 :: r
r ’a’ :: r
r 2.0 :: r

r 1 :: Int
r ’a’ :: Int
r 2.0 :: Int

r 1 :: Char
r ’a’ :: Char
r 2.0 :: Char

r 1 :: Double
r ’a’ :: Double
r 2.0 :: Double

Inhabitedness and
Formal Logic (1E)

62 Young Won Lim
3/19/22

data Something where

 Something :: forall a. a -> Something

data r where

 r :: forall a. a -> r

forall r. (forall a. a -> r) -> r
 Assume the callback function name is r

the type variable a is hidden in the type r

https://markkarpov.com/post/existential-quantification.html

Existential wrappers – similar forms

 r a :: r

a data value is
constructed

a data value is
used

universally
quantified

existentially
quantified aa
the type variable a
is hidden in the type r

Inhabitedness and
Formal Logic (1E)

63 Young Won Lim
3/19/22

https://markkarpov.com/post/existential-quantification.html

Existential wrappers – rank-2 type

Inner level Outer level

callback function
body

callback function
as an argument

universally
quantified

existentially
quantified aaexponentially

quantified a

universally
quantified a

argument callbackforall r. -> r

(forall a. a -> r)

forall r. (forall a. a -> r) -> r

Outer level

Inner level
the type variable a
is hidden in the type r

Inhabitedness and
Formal Logic (1E)

64 Young Won Lim
3/19/22

we can write the type

exists a. a

as

forall r. (forall a. a -> r) -> r

for all result types r,

given a function a -> r

that takes an argument of type a, for all types a

and returns a value of type r,

we can get a result of type r

a caller supplies the callback function of the type a -> r

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential types and forall

a r

A caller supplies the callback function
with the type a -> r

Inhabitedness and
Formal Logic (1E)

65 Young Won Lim
3/19/22

we can write the type

exists a. a

as

forall r. (forall a. a -> r) -> r

a caller supplies the callback function of the type a -> r

for a given type r

 forall a. a -> Int

 forall a. a -> String a caller chooses type r

 forall a. a -> Double

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential types and forall

a String

any
type a

specific
type r

a caller of the overall type
determines the specific type r

Int

Double

Inhabitedness and
Formal Logic (1E)

66 Young Won Lim
3/19/22

 forall r. (forall a. a -> r) -> r

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential types and forall

any
type a

specific
type r

a caller of the overall type function
chooses the specific type r

The body of the overall type function
must handle any type r

universally
quantified

existentially
quantified

r

r

for the callers
of the function

in the body of
the function

universally
quantified

existentially
quantified

universally
quantified

existentially
quantified

r
a

r
a

Inhabitedness and
Formal Logic (1E)

67 Young Won Lim
3/19/22

 forall r. (forall a. a -> r) -> r

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential types and forall

any
type a

specific
type r

a caller of the overall type function
must handle any type a

The body of the overall type function
chooses the specific type a

for the callers
of the function

in the body of
the function

universally
quantified

existentially
quantified

universally
quantified

existentially
quantified

r
a

r
a

The body of the callback function
must also handle any type a

universally
quantified

existentially
quantified

a

a

Inhabitedness and
Formal Logic (1E)

68 Young Won Lim
3/19/22

Existential types and forall

forall r. (forall a. a -> r) -> r

specific
type a

the overall type can choose
whatever specific type r

existentially
quantified a

universally
quantified r

forall r. (forall a. a -> r) -> r

specific
type r

the callback function type can
choose whatever specific type a

existentially
quantified r

universally
quantified a

overall function type callback function type

the 1st argument of the overall type
is a callback function
its 1st argument a is selected somehow
in the body of the overall function

 Caller

 Body

For the caller of the function For the body of the function

the caller of the overall function
supplies a callback function for a
specific return type r

for the callers
of the function

in the body of
the function

universally
quantified

existentially
quantified

universally
quantified

existentially
quantified

r
a

r
a

Inhabitedness and
Formal Logic (1E)

69 Young Won Lim
3/19/22

we can write the type

exists a. a

as

forall r. (forall a. a -> r) -> r

the overall type is not universally quantified for a

only its argument (forall a. a -> r) is universally quantified for a

The overall type takes an argument … (forall a. a -> r)

that itself is universally quantified for a,

The overall type can then use

with whatever specific type r it chooses.

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential types and forall

The overall type can choose
whatever specific type r
Universally quantified

for the callers
of the function

in the body of
the function

universally
quantified

existentially
quantified

universally
quantified

existentially
quantified

r
a

r
a

Inhabitedness and
Formal Logic (1E)

70 Young Won Lim
3/19/22

data Foo = forall a. MkFoo a (a -> Bool) | Nil

the data type Foo has two constructors with types:

MkFoo :: forall a. a -> (a -> Bool) -> Foo

Nil :: Foo

Notice that the type variable a does not appear

in the type of MkFoo and

in the data type itself, Foo

Hidden

https://downloads.haskell.org/~ghc/6.6/docs/html/users_guide/type-extensions.html

Existentially quantified data constructors (1)

MkFoo 3 even :: Foo

MkFoo 'c' isUpper :: Foo

even :: Integer -> Bool

isUpper :: Char -> Bool

Inhabitedness and
Formal Logic (1E)

71 Young Won Lim
3/19/22

MkFoo :: forall a. a -> (a -> Bool) -> Foo

a valid expression example

 [MkFoo 3 even, MkFoo 'c' isUpper] :: [Foo]

(MkFoo 3 even) packages an integer with a function

(MkFoo 'c' isUpper) packages a character with a function

Each of these are of type Foo and can be put in a list.

https://downloads.haskell.org/~ghc/6.6/docs/html/users_guide/type-extensions.html

Existentially quantified data constructors (2)

even :: Integer -> Bool

isUpper :: Char -> Bool

Inhabitedness and
Formal Logic (1E)

72 Young Won Lim
3/19/22

What can we do with a value of type Foo?.

In particular, what happens when we pattern-match on MkFoo?

 f (MkFoo val fn) = ???

Since all we know about val and fn is that they are compatible,

the only (useful) thing we can do with them is

to apply fn to val to get a boolean.

cannot extract val and fn

https://downloads.haskell.org/~ghc/6.6/docs/html/users_guide/type-extensions.html

Existentially quantified data constructors (3)

f :: Foo -> Bool

fn :: a -> Bool

f (MkFoo val fn) = fn val

Inhabitedness and
Formal Logic (1E)

73 Young Won Lim
3/19/22

data Foo = forall a. MkFoo a (a -> Bool) | Nil

MkFoo :: forall a. a -> (a -> Bool) -> Foo

 [MkFoo 3 even, MkFoo 'c' isUpper] :: [Foo]

What this allows us to do is

to package heterogenous values together

with a bunch of functions that manipulate them,

and then treat that collection of packages in a uniform manner.

In this way, you can express object-oriented-like programming

https://downloads.haskell.org/~ghc/6.6/docs/html/users_guide/type-extensions.html

Existentially quantified data constructors (4)

fn :: a -> Bool

even :: Integer -> Bool

isUpper :: Char -> Bool

Inhabitedness and
Formal Logic (1E)

74 Young Won Lim
3/19/22

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60
	Diapositiva 61
	Diapositiva 62
	Diapositiva 63
	Diapositiva 64
	Diapositiva 65
	Diapositiva 66
	Diapositiva 67
	Diapositiva 68
	Diapositiva 69
	Diapositiva 70
	Diapositiva 71
	Diapositiva 72
	Diapositiva 73
	Diapositiva 74

