
Link 4A Library Search using -L and -l only

Young W. Lim

2024-07-23 Tue

Young W. Lim Link 4A Library Search using -L and -l only 2024-07-23 Tue 1 / 33



Outline

1 Based on

2 Search libraries using -L and -l only

TOC: Search libraries using -L and -l only

1. Example source code and dependencies

2. Making shared libraries

3. Making an application

4. Running an application

Young W. Lim Link 4A Library Search using -L and -l only 2024-07-23 Tue 2 / 33



Based on

"Study of ELF loading and relocs", 1999

http://netwinder.osuosl.org/users/p/patb/public_html/elf_

relocs.html

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This �le is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the �le under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim Link 4A Library Search using -L and -l only 2024-07-23 Tue 3 / 33

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html
http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html


Compling 32-bit program on 64-bit gcc

gcc -v

gcc -m32 t.c

sudo apt-get install gcc-multilib

sudo apt-get install g++-multilib

gcc-multilib

g++-multilib

gcc -m32

objdump -m i386

Young W. Lim Link 4A Library Search using -L and -l only 2024-07-23 Tue 4 / 33



TOC: Search libraries using -L and -l only

1 Example source code and dependencies

2 Making shared libraries

3 Making an application

4 Running an application

Young W. Lim Link 4A Library Search using -L and -l only 2024-07-23 Tue 5 / 33



TOC: 1. Example source code and dependencies

Example source codes

Function dependencies

Direct and nested dependencies of a binary

Example summary using -L and -l

Young W. Lim Link 4A Library Search using -L and -l only 2024-07-23 Tue 6 / 33



Example source codes of foo(), bar(), foobar()

1. foo.c

#include <stdio.h>

void foo(void)

{

puts(__func__);

// puts("foo");

}

2. bar.c

#include <stdio.h>

void bar(void)

{

puts(__func__);

// puts("bar");

}

3. foobar.c

extern void foo(void);

extern void bar(void);

void foobar(void)

{

foo();

bar();

}

4. main.c

extern void foobar(void);

int main(void)

{

foobar();

return 0;

}

https://stackoverflow.com/questions/49138195/whats-the-difference-between-rpath-link-and-l

Young W. Lim Link 4A Library Search using -L and -l only 2024-07-23 Tue 7 / 33



Function dependencies of foo(), bar(), foobar()

main() → foobar()

foobar() → foo(), bar()

main() in prog

foobar() in libfoobar.so

foo() in libfoo.so

bar() in libbar.so

https://stackoverflow.com/questions/49138195/whats-the-difference-between-rpath-link-and-l

Young W. Lim Link 4A Library Search using -L and -l only 2024-07-23 Tue 8 / 33



Direct and nested dependencies of a binary

binary direct nested

dependencies dependencies

libfoobar.so → libfoo.so,

→ libbar.so

prog → libfoobar.so → libfoo.so,

→ libbar.so

Young W. Lim Link 4A Library Search using -L and -l only 2024-07-23 Tue 9 / 33



Example summary using -L and -l

1 Make two shared libraries, libfoo.so and libbar.so:
$ gcc -c -Wall -fPIC foo.c bar.c

$ gcc -shared -o libfoo.so foo.o

$ gcc -shared -o libbar.so bar.o

2 Make a third shared library, libfoobar.so
$ gcc -c -Wall -fPIC foobar.c

$ gcc -shared -o libfoobar.so foobar.o -L. -lfoo -lbar

3 Make prog that depends on libfoobar.so:
$ gcc -c -Wall main.c

$ gcc -o prog main.o -L. -lfoobar -lfoo -lbar

4 Execute using LD_LIBRARY_PATH
$ export LD_LIBRARY_PATH=.

$ ./prog

foo

bar

https://stackoverflow.com/questions/49138195/whats-the-difference-between-rpath-link-and-l

Young W. Lim Link 4A Library Search using -L and -l only 2024-07-23 Tue 10 / 33



TOC: 2. Making shared libraries

Making libfoo.so, libbar.so

Using -L

Making libfoobar.so

Young W. Lim Link 4A Library Search using -L and -l only 2024-07-23 Tue 11 / 33



Making libfoo.so and libbar.so (1) summary

Make two shared libraries, libfoo.so and libbar.so:

$ gcc -c -Wall -fPIC foo.c bar.c

$ gcc -shared -o libfoo.so foo.o

$ gcc -shared -o libbar.so bar.o

https://stackoverflow.com/questions/49138195/whats-the-difference-between-rpath-link-and-l

Young W. Lim Link 4A Library Search using -L and -l only 2024-07-23 Tue 12 / 33



Making libfoo.so and libbar.so (2) no dependencies

$ gcc -c -Wall -fPIC foo.c bar.c

$ gcc -shared -o libfoo.so foo.o

$ gcc -shared -o libbar.so bar.o

neither foo() nor bar() does depend on other user functions

no need to specify direct dependencies

thus, -l was not used

as a result, no NEEDED entries in the .dynamic section

for direct dependencies that are speci�ed by a user

https://stackoverflow.com/questions/49138195/whats-the-difference-between-rpath-link-and-l

Young W. Lim Link 4A Library Search using -L and -l only 2024-07-23 Tue 13 / 33



Making libfoo.so and libbar.so (3) NEEDED entries

$ gcc -c -Wall -fPIC foo.c bar.c

$ gcc -shared -o libfoo.so foo.o

$ gcc -shared -o libbar.so bar.o

no NEEDED entries except lib.so.6

libc.so.6 was not explicitly speci�ed by a user

i.e., -l was not used

$ readelf -d libfoo.so | grep NEEDED

Tag Type Name/Value

0x0000000000000001 (NEEDED) Shared library: [libc.so.6]

$ readelf -d libbar.so | grep NEEDED

Tag Type Name/Value

0x0000000000000001 (NEEDED) Shared library: [libc.so.6]

https://stackoverflow.com/questions/49138195/whats-the-difference-between-rpath-link-and-l

Young W. Lim Link 4A Library Search using -L and -l only 2024-07-23 Tue 14 / 33



Using -L

the -L option (-Ldir) tells the linker (ld)

to search dir for libraries to resolve dependencies

that are speci�ed by the -l option

the linker (ld) searches the -L directories,

in their command line order;

eg. when mulitple -L options are used
like -Ldir1 -Ldir2

dir1 is searched �rst, then dir2

then it searches its con�gured default directories,

in their con�gured order.

https://stackoverflow.com/questions/49138195/whats-the-difference-between-rpath-link-and-l

Young W. Lim Link 4A Library Search using -L and -l only 2024-07-23 Tue 15 / 33



Making libfoobar.so (1) summary

Make a third shared library, libfoobar.so

that depends on the �rst two (libfoo.so, libbar.so)

$ gcc -c -Wall -fPIC foobar.c

$ gcc -shared -o libfoobar.so foobar.o -L. -lfoo -lbar

https://stackoverflow.com/questions/49138195/whats-the-difference-between-rpath-link-and-l

Young W. Lim Link 4A Library Search using -L and -l only 2024-07-23 Tue 16 / 33



Making libfoobar.so (2) NEEDED entries

$ gcc -c -Wall -fPIC foobar.c

$ gcc -shared -o libfoobar.so foobar.o -L. -lfoo -lbar

direct dependencies were speci�ed by -lfoo -lbar

these dependencies were recorded as the NEEDED entries

in the .dynamic section of libfoobar.so

$ readelf -d libfoobar.so | grep NEEDED

Tag Type Name/Value

0x0000000000000001 (NEEDED) Shared library: [libfoo.so] <---

0x0000000000000001 (NEEDED) Shared library: [libbar.so] <---

... ... ...

https://stackoverflow.com/questions/49138195/whats-the-difference-between-rpath-link-and-l

Young W. Lim Link 4A Library Search using -L and -l only 2024-07-23 Tue 17 / 33



Making libfoobar.so (3) if -L. is omitted

$ gcc -c -Wall -fPIC foobar.c

$ gcc -shared -o libfoobar.so foobar.o -lfoo -lbar

if -lfoo and -lbar are speci�ed

without -L. being speci�ed,

direct dependencies (libfoo.so and libbar.so)
were speci�ed
but where to �nd the necessary libraries (the current directory)
was not speci�ed

https://stackoverflow.com/questions/49138195/whats-the-difference-between-rpath-link-and-l

Young W. Lim Link 4A Library Search using -L and -l only 2024-07-23 Tue 18 / 33



Making libfoobar.so (4) error messages

$ gcc -c -Wall -fPIC foobar.c

$ gcc -shared -o libfoobar.so foobar.o -lfoo -lbar

/usr/bin/ld: cannot find -lfoo

/usr/bin/ld: cannot find -lbar

collect2: error: ld returned 1 exit status

if -L. is not speci�ed, error messages is displayed

saying that the direct dependency libraries

(libfoo.so and -libbar.so) could not be located

the linker (ld) didn't know where to look

to resolve -lfoo or -lbar

thus were not able to resolve them

https://stackoverflow.com/questions/49138195/whats-the-difference-between-rpath-link-and-l

Young W. Lim Link 4A Library Search using -L and -l only 2024-07-23 Tue 19 / 33



TOC: 3. Making an application

Making an application prog that uses libfooba.so

Not specifying nested dependencies
Warning and error messages
Using -L and -l to make an application

Young W. Lim Link 4A Library Search using -L and -l only 2024-07-23 Tue 20 / 33



Making an application prog that uses libfoobar.so (1)

make a program prog that depends on libfoobar.so:

$ gcc -c -Wall main.c

$ gcc -o prog main.o -L. -lfoobar

libfoo.so and libbar.so are
the direct dependencies of libfoobar.so, and thus
the nested dependencies of prog

only direct dependency is speci�ed (-lfoobar)
with the correct search path (-L.)

nested dependencies are not speci�ed (-lfoo -lbar)
but libfoo.so and libbar.so can be found
in the speci�ed search path (-L.)

https://stackoverflow.com/questions/49138195/whats-the-difference-between-rpath-link-and-l

Young W. Lim Link 4A Library Search using -L and -l only 2024-07-23 Tue 21 / 33



Making an application prog that uses libfoobar.so (2)

make a program prog that depends on libfoobar.so:

$ gcc -c -Wall main.c

$ gcc -o prog main.o -L. -lfoobar -Wl,-rpath-link=$(pwd)

only direct dependency was speci�ed (-lfoobar)
with the correct search path (-L.)

nested dependencies were not speci�ed (-lfoo -lbar)
but can be handled by -rpath-link=$(pwd)

libfoo.so and libbar.so are

the direct dependencies of libfoobar.so, and thus

the nested dependencies of prog

https://stackoverflow.com/questions/49138195/whats-the-difference-between-rpath-link-and-l

Young W. Lim Link 4A Library Search using -L and -l only 2024-07-23 Tue 22 / 33



Creating NEEDED entries

make a program prog that depends on libfoobar.so:

$ gcc -c -Wall main.c

$ gcc -o prog main.o -L. -lfoobar -Wl,-rpath-link=$(pwd)

in the .dynamic section of prog

direct dependecy speci�ed by -lfoobar

was recorded as NEEDED entries

nested dependecy, even though speci�ed by -lfoo -lbar,
are not recorded as NEEDED entries

$ readelf -d prog | grep NEEDED

Tag Type Name/Value

0x0000000000000001 (NEEDED) Shared library: [libfoobar.so] <---

0x0000000000000001 (NEEDED) Shared library: [libc.so.6]

https://stackoverflow.com/questions/49138195/whats-the-difference-between-rpath-link-and-l

Young W. Lim Link 4A Library Search using -L and -l only 2024-07-23 Tue 23 / 33



NEEDED entries and nested dependencies (1)

libfoo.so, libbar.so :

these are the direct dependencies of libfoobar.so

thus, these are the nested dependencies of prog

when libfoobar.so was made, its direct dependencies
were speci�ed with -lfoo -lbar

this allows the direct dependencies of libfoobar.so
to be recorded as NEEDED entries
in the .dynamic section of libfoobar.so

https://stackoverflow.com/questions/49138195/whats-the-difference-between-rpath-link-and-l

Young W. Lim Link 4A Library Search using -L and -l only 2024-07-23 Tue 24 / 33



Not specifying nested dependencies

although -lfoo and -lbar are not speci�ed,

$ gcc -c -Wall main.c

$ gcc -o prog main.o -L. -lfoobar

by looking into NEEDED entry
of the .dynamic section of libfoobar.so,

the linker (ld) detects the nested dynamic dependencies
but they were not speci�ed with -lfoo -lbar

warning : not found libfoo.so, not found libbar.so

the linker (ld) did not resolve the nested dependencies
because they were not speci�ed

error: undefined reference to foo, undefined reference to bar

https://stackoverflow.com/questions/49138195/whats-the-difference-between-rpath-link-and-l

Young W. Lim Link 4A Library Search using -L and -l only 2024-07-23 Tue 25 / 33



Warning and error messages

make a program prog that depends on libfoobar.so:

the nested dependencies are not speci�ed (-lfoo -lbar)
though with the correct search path (-L.)

not found libfoo.so ← -lfoo not speci�ed
not found libbar.so ← -lbar not speci�ed
unde�ned reference to bar ← -lbar not resolved
unde�ned reference to foo ← -lfoo not resolved

$ gcc -c -Wall main.c

$ gcc -o prog main.o -L. -lfoobar

/usr/bin/ld: warning: libfoo.so, needed by ./libfoobar.so, not found

(try using -rpath or -rpath-link)

/usr/bin/ld: warning: libbar.so, needed by ./libfoobar.so, not found

(try using -rpath or -rpath-link)

./libfoobar.so: undefined reference to `bar'

./libfoobar.so: undefined reference to `foo'

collect2: error: ld returned 1 exit status

https://stackoverflow.com/questions/49138195/whats-the-difference-between-rpath-link-and-l

Young W. Lim Link 4A Library Search using -L and -l only 2024-07-23 Tue 26 / 33



Using only -L and -l to make an application

to resolve the nested dependencies,

we will consider the following ways
1 -L and -l
2 -rpath-link
3 -rpath

let us �rst ignore the gcc compiler's advice

try using -rpath or -rpath-link

to handle nested dependencies, try �rst using -L and -l

search path for nested dependencies : -L.
(the same directory speci�ed for libfoobar.so)
nested dependencies : -lfoo -lbar

$ gcc -o prog main.o -L. -lfoobar -lfoo -lbar

https://stackoverflow.com/questions/49138195/whats-the-difference-between-rpath-link-and-l

Young W. Lim Link 4A Library Search using -L and -l only 2024-07-23 Tue 27 / 33



TOC: 4. Running an application

Need to specify runtime search paths

More experiment with nested dependencies

Specifying the runtime shared library paths

Using LD_LIBRARY_PATH to run an application

Young W. Lim Link 4A Library Search using -L and -l only 2024-07-23 Tue 28 / 33



Need to specify runtime search paths

now, the application prog can be made,

but cannot be made to run:

$ gcc -o prog main.o -L. -lfoobar -lfoo -lbar

$ ./prog

./prog: error while loading shared libraries: libfoobar.so:\

cannot open shared object file: No such file or directory

at the runtime, the loader (ld.so)
could not �nd libfoobar.so nor libfoo.so nor libbar.so

need to specify the runtime search paths

https://stackoverflow.com/questions/49138195/whats-the-difference-between-rpath-link-and-l

Young W. Lim Link 4A Library Search using -L and -l only 2024-07-23 Tue 29 / 33



More experiment with nested dependencies

before specifying runtime search paths,

let's experiment more with nested dependencies

move libfoo.so and libbar.so libraries to lib2

$ mkdir lib2

$ mv libfoo.so libbar.so lib2

then, make prog as before

$ gcc -o prog main.o -L. -lfoobar -lfoo -lbar

the nested dependencies were speci�ed (-lfoo -lbar)
but the linker (ld) could not �nd libfoo.so and libbar.so

at the speci�ed directory (-L.)

/usr/bin/ld: cannot find -lfoo

/usr/bin/ld: cannot find -lbar

collect2: error: ld returned 1 exit status

the correct search path -Llib2 must also be speci�ed

https://stackoverflow.com/questions/49138195/whats-the-difference-between-rpath-link-and-l

Young W. Lim Link 4A Library Search using -L and -l only 2024-07-23 Tue 30 / 33



Specifying the runtime shared library paths

now move libfoo.so, libbar.so back to the current directory .

and make prog again

mv lib2/libfoo.so lib2/libbar.so .

$ gcc -o prog main.o -L. -lfoobar -lfoo -lbar

the -L option is used to tell the linker (ld)

where to �nd the libraries (shared objects)

at the compile, and link time

lots of ways to tell the runtime linker (dynamic loader ld.so)

where to �nd the libraries (shared objects) at the runtime

-R

LD_LIBRARY_PATH

LD_RUN_PATH

https://stackoverflow.com/questions/31455979/how-to-specify-libraries-paths-in-gcc

Young W. Lim Link 4A Library Search using -L and -l only 2024-07-23 Tue 31 / 33



Using LD_LIBRARY_PATH to run an application

prog is made by using -L and -l only

not by using -rpath nor -rpath-link

$ gcc -o prog main.o -L. -lfoobar -lfoo -lbar

prog is made run by us LD_LIBRAY_PATH

$ export LD_LIBRARY_PATH=.

$ ./prog

foo

bar

at the runtime, LD_LIBRARY_PATH enables the loader (ld.so)

to �nd libfoobar.so, libfoo.so, and libbar.so

in the current directory .

export LD_LIBRARY_PATH=.

https://stackoverflow.com/questions/49138195/whats-the-difference-between-rpath-link-and-l

Young W. Lim Link 4A Library Search using -L and -l only 2024-07-23 Tue 32 / 33



NEEDED entries of each binary

binary dependencies entry section

prog libfoobar.so NEEDED .dynamic

libfoobar.so libfoo.so, NEEDED .dynamic

libbar.so

https://stackoverflow.com/questions/49138195/whats-the-difference-between-rpath-link-and-l

Young W. Lim Link 4A Library Search using -L and -l only 2024-07-23 Tue 33 / 33


	Based on
	Search libraries using -L and -l only
	TOC: Search libraries using -L and -l only
	1. Example source code and dependencies
	2. Making shared libraries
	3. Making an application
	4. Running an application


