
Young Won Lim
10/31/21

Interrupt Programming

Interrupt Programming 2 Young Won Lim
10/31/21

 Copyright (c) 2021 - 2014 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Interrupt Programming 3 Young Won Lim
10/31/21

Based on

ARM System-on-Chip Architecture, 2nd ed, Steve Furber

Introduction to ARM Cortex-M Microcontrollers
– Embedded Systems, Jonathan W. Valvano

Digital Design and Computer Architecture,
D. M. Harris and S. L. Harris

ARM assembler in Raspberry Pi
Roger Ferrer Ibáñez

https://thinkingeek.com/arm-assembler-raspberry-pi/

Interrupt Programming 4 Young Won Lim
10/31/21

Interrupt Service Routine

Introduction to ARM Cortex-M Microcontrollers Embedded Systems, Jonathan W. Valvano

Interrupt

Return from Interrupt

Performed
IO

Interrupt Programming 5 Young Won Lim
10/31/21

Input - Blind Cycle

Introduction to ARM Cortex-M Microcontrollers Embedded Systems, Jonathan W. Valvano

Input

Wait a fixed time

Read data

Return

Interrupt Programming 6 Young Won Lim
10/31/21

Input - Busy Wait Cycle

Introduction to ARM Cortex-M Microcontrollers Embedded Systems, Jonathan W. Valvano

Input

Read data

Return

status
Busy

Ready

Interrupt Programming 7 Young Won Lim
10/31/21

Input - Interrupt

Introduction to ARM Cortex-M Microcontrollers Embedded Systems, Jonathan W. Valvano

Input

Get data from FFIO

Return

FIFO
Empty

Some

Read data

Put data in fifo

Interrupt

Return from Interrupt

Interrupt Programming 8 Young Won Lim
10/31/21

IO Bound Input Interface

Introduction to ARM Cortex-M Microcontrollers Embedded Systems, Jonathan W. Valvano

Busy Busy BusyReady Ready

Read Process Read ProcessWait Wait Wait

Input Device

Software

time

Interrupt Programming 9 Young Won Lim
10/31/21

Output - Blind Cycle

Introduction to ARM Cortex-M Microcontrollers Embedded Systems, Jonathan W. Valvano

Output

Write data

Wait a fixed time

Return

Interrupt Programming 10 Young Won Lim
10/31/21

Output - Busy Wait Cycle

Introduction to ARM Cortex-M Microcontrollers Embedded Systems, Jonathan W. Valvano

Output

Write data

Return

status
Busy

Ready

Interrupt Programming 11 Young Won Lim
10/31/21

Output - Interrupt

Introduction to ARM Cortex-M Microcontrollers Embedded Systems, Jonathan W. Valvano

Output

Put data to FFIO

Return

FIFO
Full

Not Full

Get data from FIFO

Write data

Interrupt

Return from Interrupt

Interrupt Programming 12 Young Won Lim
10/31/21

IO Bound Output Interface

Introduction to ARM Cortex-M Microcontrollers Embedded Systems, Jonathan W. Valvano

Ready Busy BusyBusy Ready

Write WriteWrite Wait Wait

Output Device

Software

time

Generate Generate
Wait

Ready

Generate Generate

Interrupt Programming 13 Young Won Lim
10/31/21

Semaphore to synchronize threads

Introduction to ARM Cortex-M Microcontrollers Embedded Systems, Jonathan W. Valvano

Main program

Other calculation

Flag
0

1

Flag = 1

ISR

Return from Interrupt

Flag = 0
Do important stuff

Interrupt Programming 14 Young Won Lim
10/31/21

Semaphore to synchronize threads

Introduction to ARM Cortex-M Microcontrollers Embedded Systems, Jonathan W. Valvano

Main program

Flag = 1

Flag
0

1

ISR

Return from Interrupt

Flag = 0
Do important stuff

Interrupt Programming 15 Young Won Lim
10/31/21

Mailbox

Introduction to ARM Cortex-M Microcontrollers Embedded Systems, Jonathan W. Valvano

Main program

Other calculation

Status
Empty

Full

Mail = data
Status = Full

ISR

Return from Interrupt
Process Mail

Status = Empty

Read data
From input

Interrupt Programming 16 Young Won Lim
10/31/21

IO Bound Output Interface

Introduction to ARM Cortex-M Microcontrollers Embedded Systems, Jonathan W. Valvano

a c d e c d e

b b

Input
Device

Interrupt
Service
Routine

Input
Device

Input
Device

Trigger Set Trigger Set

Return from
Interrupt

Return from
Interrupt

Empty Full Empty Full Empty

Interrupt Programming 17 Young Won Lim
10/31/21

IO Bound Output Interface

Introduction to ARM Cortex-M Microcontrollers Embedded Systems, Jonathan W. Valvano

old R0
old R1
old R2
old R3
old R12
old LR
old PC
old PSR
* Stack *

0

18

0

I

IPSR

basePRI

MSP

After Interrupt

* Stack *

0

0

0

I

IPSR

basePRI

MSP

Before Interrupt

Context Switch Finish instruction
● Push registers
● PC = {0x00000048}
● Set IPSR = 18
● Set LR = 0xFFFFFFF9

Use MSP as stack pointer

Interrupt Programming 18 Young Won Lim
10/31/21

Semaphore to synchronize threads

Introduction to ARM Cortex-M Microcontrollers Embedded Systems, Jonathan W. Valvano

Status1

Busy

In/Out Data1

Status2

Busy

In/Out Data2

Status3

Busy

In/Out Data3

Ready

Ready

Ready

Other functions

Interrupt Programming 19 Young Won Lim
10/31/21

Semaphore to synchronize threads

Introduction to ARM Cortex-M Microcontrollers Embedded Systems, Jonathan W. Valvano

Status1

Busy

In/Out Data1

Status2

Busy

In/Out Data2

Status3

Busy

In/Out Data3

Ready

Ready

Ready

Periodic Polling

Interrupt Programming 20 Young Won Lim
10/31/21

Entering and exiting an exception handler

http://classweb.ece.umd.edu/enee447.S2019/ARM-Documentation/ARM-Interrupts-3.pdf

● Preserve the address of the next instruction.
● Copy CPSR to the appropriate SPSR

one of the banked registers for each mode of operation.
● Force the CPSR mode bits to a value depending on the raised exception.
● Force the PC to fetch the next instruction from the exception vector table.
● Now the handler is running in the mode associated with the raised exception.
● When handler is done, the CPSR is restored from the saved SPSR.
● PC is updated with the value of (LR - offset) and

the offset value depends on the type of the exception.

Interrupt Programming 21 Young Won Lim
10/31/21

(9) Entering and returning exception handler

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

Entering exception handler
1. Save the address of the next instruction

in the appropriate Link Register LR.
2. Copy CPSR to the SPSR of new mode.
3. Change the mode by modifying bits in CPSR.
4. Fetch next instruction from the vector table.

Leaving exception handler
1. Move (LR - offset) to the PC.
2. Copy SPSR back to CPSR, this will automatically changes

the mode back to the previous one.
3. Clear the interrupt disable flags (if they were set)

Exception Returning Address
Reset None
Data Abort LR - 8
FIQ, IRQ, prefetch Abort LR - 4
SWI, Undefined Instruction LR

CPSR CPSR CPSR CPSR CPSR CPSR CPSR

SPSR_fiq SPSR_irq SPSR_svc SPSR_abt SPSR_und6 control registers

Interrupt Programming 22 Young Won Lim
10/31/21

Interrupt stack

http://classweb.ece.umd.edu/enee447.S2019/ARM-Documentation/ARM-Interrupts-3.pdf

Interrupt Stack

User Stack

Heap

Vector Table

Code

Interrupt Stack

User Stack

Heap

Vector Table

Code

Interrupt Programming 23 Young Won Lim
10/31/21

Interrupt Handling

http://classweb.ece.umd.edu/enee447.S2019/ARM-Documentation/ARM-Interrupts-3.pdf

1. Non-nested interrupt handling
● Handle and service individual interrupts sequentially.
● High interrupt latency.
● Relatively easy to implement and debug.
● Not suitable for complex embedded systems.

2. Nested interrupt handling
● Handle multiple interrupts without a priority assignment.
● Medium or high interrupt latency.
● Enable interrupts before the servicing of an individual interrupt is complete.
● No prioritization, so low priority interrupts can block higher priority interrupts.

3. Prioritized interrupt handling
● Handle multiple interrupts with a priority assignment mechanism.
● Low interrupt latency.
● Deterministic interrupt latency.
● Time taken to get to a low priority ISR is the same as for high priority ISR.

Interrupt Programming 24 Young Won Lim
10/31/21

1. Non-nested interrupt handling

http://classweb.ece.umd.edu/enee447.S2019/ARM-Documentation/ARM-Interrupts-3.pdf

the simplest interrupt handler.

Interrupts are disabled until control is returned back to the interrupted task.

only one interrupt can be served at a time
not suitable for complex embedded systems
which most probably have more than one interrupt source
and require concurrent handling.

the steps taken to handle an Interrupt:

Handle and service individual interrupts sequentially.
● high interrupt latency.
● relatively easy to implement and debug.
● not suitable for complex embedded systems.

Interrupt Programming 25 Young Won Lim
10/31/21

1. Non-nested interrupt handling

http://classweb.ece.umd.edu/enee447.S2019/ARM-Documentation/ARM-Interrupts-3.pdf

Initially interrupts are disabled,
when IRQ exception is raised and
the ARM processor disables
further IRQ exceptions from occurring.

The mode is changed to the new mode
depending on the raised exception.

The register CPSR is copied to the SPSR of the new mode.

Then the PC is set to the correct entry in the vector table
and the instruction there will direct the PC to the appropriate handler.

Interrupt Programming 26 Young Won Lim
10/31/21

1. Non-nested interrupt handling

http://classweb.ece.umd.edu/enee447.S2019/ARM-Documentation/ARM-Interrupts-3.pdf

then the context of the current task is saved a subset
of the current mode non banked register.

then the interrupt handler executes some code
to identify the interrupt source and
decide which ISR will be called.
Then the appropriate ISR is called.

finally the context of the interrupted task is restored,
interrupts are enabled again
and the control is returned to the interrupted task.

Interrupt Programming 27 Young Won Lim
10/31/21

1. Non-nested interrupt handling

http://classweb.ece.umd.edu/enee447.S2019/ARM-Documentation/ARM-Interrupts-3.pdf

Disable Interrupt

Save Context

Interrupt Handler

ISR

Restore Context

Enable Interrupt

Interrupt

Return
to task

Interrupt Programming 28 Young Won Lim
10/31/21

2. Nested interrupt handling

http://classweb.ece.umd.edu/enee447.S2019/ARM-Documentation/ARM-Interrupts-3.pdf

In the nested interrupt handling scheme handling
more than one interrupt at a time is possible.

this is achieved by re-enabling interrupts
before the handler has fully served the current interrupt.

This feature increases the complexity of the system
but decreases the latency.

The scheme should be designed carefully
to protect the context saving and restoration
from being interrupted.

should balance between efficiency and safety
by using defensive coding style
that assumes problems will occur.

Interrupt Programming 29 Young Won Lim
10/31/21

2. Nested interrupt handling

http://classweb.ece.umd.edu/enee447.S2019/ARM-Documentation/ARM-Interrupts-3.pdf

handle multiple interrupts without a priority assignment.
● Medium or high interrupt latency.
● enable interrupts before the servicing of an individual interrupt is complete.
● no prioritization, so low priority interrupts can block higher priority interrupts.

The goal of nested handling is
● to respond to interrupts quickly and
● to execute periodic tasks without any delays.

Re-enabling interrupts requires
switching out of the IRQ mode to user mode
to protect link register from being corrupted.

Interrupt Programming 30 Young Won Lim
10/31/21

2. Nested interrupt handling

http://classweb.ece.umd.edu/enee447.S2019/ARM-Documentation/ARM-Interrupts-3.pdf

Also performing context switch requires
emptying the IRQ stack
because the handler will not perform switching
if there is data on the IRQ stack,
so all registers saved on the IRQ stack
have to be transferred to task stack.

The part of the task stack used in this process
is called stack frame.

The main disadvantage of this interrupt handling scheme is that
it doesn’t differ between interrupts by priorities,
so lower priority interrupt can block higher priority interrupts.

Interrupt Programming 31 Young Won Lim
10/31/21

2. Nested interrupt handling

http://classweb.ece.umd.edu/enee447.S2019/ARM-Documentation/ARM-Interrupts-3.pdf

Disable Interrupt

Save Context

Interrupt Handler

Restore Context

Done

Prepare Stack
Switch mode

Construct a frame
Enable interrupts

Complete int service

Interrupt

Return
to task

complete
the service

still
serving

Interrupt Programming 32 Young Won Lim
10/31/21

3. Prioritized interrupt handling

http://classweb.ece.umd.edu/enee447.S2019/ARM-Documentation/ARM-Interrupts-3.pdf

In the prioritized interrupt handling scheme
the handler will associate a priority level
with a particular interrupt source.

A higher priority interrupt will take precedence over a lower priority interrupt.

Handling prioritization can be done by means of software or hardware.

In case of hardware prioritization the handler is simpler to design
because the interrupt controller will give the interrupt signal
of the highest priority interrupt requiring service.

But on the other side the system needs more initialization code at start-up
since priority level tables have to be constructed before the system being switched on.

Interrupt Programming 33 Young Won Lim
10/31/21

3. Prioritized interrupt handling

http://classweb.ece.umd.edu/enee447.S2019/ARM-Documentation/ARM-Interrupts-3.pdf

Handle multiple interrupts with a priority assignment mechanism.
● Low interrupt latency.
● Deterministic interrupt latency.
● Time taken to get to a low priority ISR is the same as for high priority ISR.

When an interrupt signal is raised,
a fixed amount of comparisons
with the available set of priority levels is done,
so the interrupt latency is deterministic
but at the same point this could be considered a disadvantage
because both high and low priority interrupts take the same amount of time.

Interrupt Programming 34 Young Won Lim
10/31/21

3. Prioritized interrupt handling

http://classweb.ece.umd.edu/enee447.S2019/ARM-Documentation/ARM-Interrupts-3.pdf

Disable Interrupt

Save Context

Get exit int status

Identify int priority
Make lower priority

Enable IRQ

Jump to ISR

Create a context

Serve Interrupt

Switch on int int
Followed by ext int

Restore Context

Interrupt

Return
to task

Interrupt Programming 35 Young Won Lim
10/31/21

References

[1] http://wiki.osdev.org/ARM_RaspberryPi_Tutorial_C
[2] http://blog.bobuhiro11.net/2014/01-13-baremetal.html
[3] http://www.valvers.com/open-software/raspberry-pi/
[4] https://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/os/downloads.html

http://wiki.osdev.org/ARM_RaspberryPi_Tutorial_C

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

