
Day21 A

Young W. Lim

2017-12-06 Wed

Young W. Lim Day21 A 2017-12-06 Wed 1 / 13

Outline

1 Based on

2 File Processing
Files and Streams

Young W. Lim Day21 A 2017-12-06 Wed 2 / 13

Based on

"C How to Program",
Paul Deitel and Harvey Deitel

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim Day21 A 2017-12-06 Wed 3 / 13

Files, Streams, and Programs

views each file as a sequential stream of bytes
when a file is opened, a stream is associated with it
stream provide communication channels between files and programs

Young W. Lim Day21 A 2017-12-06 Wed 4 / 13

Standard Streams

three files and their associated streams
are opened automatically
when program execution begins

standard input (stdin)
to read data from the keyboard

standard output (stdout)
to print data on a screen

standard error (stderr)
to print error messages

Young W. Lim Day21 A 2017-12-06 Wed 5 / 13

FILE structure

a FILE structure
contains information used to process the file
includes a file descriptor

typedef struct {
...
} FILE;

opening a file returns a pointer to this FILE structure

in C library’s (GNU libc) source code.
typedef struct _IO_FILE __FILE;

Young W. Lim Day21 A 2017-12-06 Wed 6 / 13

_IO_FILE structure definition (1)

struct _IO_FILE {
int _flags; /* High-order word is _IO_MAGIC; rest is flags. */

#define _IO_file_flags _flags

/* The following pointers correspond to the C++ streambuf protocol. */
/* Note: Tk uses the _IO_read_ptr and _IO_read_end fields directly. */
char* _IO_read_ptr; /* Current read pointer */
char* _IO_read_end; /* End of get area. */
char* _IO_read_base; /* Start of putback+get area. */
char* _IO_write_base; /* Start of put area. */
char* _IO_write_ptr; /* Current put pointer. */
char* _IO_write_end; /* End of put area. */
char* _IO_buf_base; /* Start of reserve area. */
char* _IO_buf_end; /* End of reserve area. */
/* The following fields are used to support backing up and undo. */
char *_IO_save_base; /* Pointer to start of non-current get area. */
char *_IO_backup_base; /* Pointer to first valid character of backup area */
char *_IO_save_end; /* Pointer to end of non-current get area. */

struct _IO_marker *_markers;

struct _IO_FILE *_chain;

3
3

Young W. Lim Day21 A 2017-12-06 Wed 7 / 13

_IO_FILE structure definition (2)

int _fileno;
#if 0

int _blksize;
#else

int _flags2;
#endif

_IO_off_t _old_offset; /* This used to be _offset but it’s too small. */

#define __HAVE_COLUMN /* temporary */
/* 1+column number of pbase(); 0 is unknown. */
unsigned short _cur_column;
signed char _vtable_offset;
char _shortbuf[1];

/* char* _save_gptr; char* _save_egptr; */

_IO_lock_t *_lock;
#ifdef _IO_USE_OLD_IO_FILE
};

3
3

Young W. Lim Day21 A 2017-12-06 Wed 8 / 13

accessing file descriptor from a FILE pointer

member _fileno : file descriptor
fileno() returns a file descriptor

#include <stdio.h>

int main(void) {
FILE *fp;

fp = fopen("t.c", "r");

printf("%d\n", fileno(fp));

printf("%d\n", fp->_fileno);

}

3
3

Young W. Lim Day21 A 2017-12-06 Wed 9 / 13

file descriptor, file, inode tables

a file descriptor table
file descriptor

a handle used to access a file or an i/o resource
fd=0 (stdin), fd=1 (stdout), fd=2 (stderr)
an index into an array (the open file table)

a file table
contains mode information (read, write, append . . .)
contains index into inode table (Linux)

an inode table
describes the actual underlying files

from http://www.linfo.org/inode.html

Young W. Lim Day21 A 2017-12-06 Wed 10 / 13

inode

inode
stores all the information about a file or a directory

metadata: size, ownership, access permissions,
timestamps, a reference counter file type

except its name and and its actual data
each file has inode number

unique throughout the filesystem

file name -> inode number -> inode table entry -> inode

from http://www.linfo.org/inode.html

Young W. Lim Day21 A 2017-12-06 Wed 11 / 13

inode pointer structure

Unix File System (UFS) and Linux ext3 cases
use inode pointer structure
to list the addresses of a file’s data blocks
an inode has its metadata and 15 pointers

12 pointers to direct blocks (*)
1 singly indirect pointer (**)
1 doubly indirect pointer (***)
1 triply indirect pointer (****)

from https://en.wikipedia.org/wiki/Inode_pointer_structure

Young W. Lim Day21 A 2017-12-06 Wed 12 / 13

Opening a file

a FILE structure
contains information used to process the file
includes a file descriptor

a file descriptor
an index into an array : the open file table
each array element contains a file control block

a file control block (FCB)
OS uses to administer a particular file

opening a file returns a pointer to FILE structure

Young W. Lim Day21 A 2017-12-06 Wed 13 / 13

	Based on
	File Processing
	Files and Streams

