
Young Won Lim
7/17/18

Applications of Pointers (1A)

Young Won Lim
7/17/18

 Copyright (c) 2010 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Series : 5.
Applications of Pointers 3 Young Won Lim

7/17/18

Double Pointers

Series : 5.
Applications of Pointers 4 Young Won Lim

7/17/18

Variables and their addresses

&a

data

int a; a

address

int * p;

int ** q;

&p p

&q q

Series : 5.
Applications of Pointers 5 Young Won Lim

7/17/18

Initialization of Variables

&a

data

int a = 100; a = 100

address

int * p = &a;

int ** q = &p;

&p p = &a

&q q = &p

Series : 5.
Applications of Pointers 6 Young Won Lim

7/17/18

Traditional arrow notations

&a

data

a = 100

address

&p p = &a

&q q = &p

&a

data

a = 100

address

&p p = &a

&q q = &p

LSB, little endian

Series : 5.
Applications of Pointers 7 Young Won Lim

7/17/18

Pointed addresses : p, q

p

data

int a; a

address

int * p = &a;

int ** q = &p;

q p

&q q

p = &a
q = &p

Series : 5.
Applications of Pointers 8 Young Won Lim

7/17/18

A dereferenced variable : *p

p

data

int a; *p

address

int * p = &a; &p p

*p ≡ a

Series : 5.
Applications of Pointers 9 Young Won Lim

7/17/18

An aliased variable : *p

int a;

int * p = &a; p = &a *p ≡ a

 p ≡ &a
*(p) ≡ *(&a)
* p ≡ a

Address
assignment

Variable
aliasing

equivalent relations after
address assignment

Series : 5.
Applications of Pointers 10 Young Won Lim

7/17/18

Dereferenced variables : *q, **q

*q

data

int a; **q

address

int * p = &a;

int ** q = &p;

q *q

&q q

**q ≡ a

*q ≡ p

Series : 5.
Applications of Pointers 11 Young Won Lim

7/17/18

Aliased variables : *q, **q

int a;

int * p = &a;

int ** q = &p; q = &p *q ≡ p

p = &a *p ≡ a

Address
assignment

Variable
aliasing

 q ≡ &p
*(q) ≡ *(&p)
* q ≡ p
**q ≡ *p
**q ≡ a

**q ≡ a

equivalent relations after
address assignment

Series : 5.
Applications of Pointers 12 Young Won Lim

7/17/18

Two aliased variables of a : *p, **q

*q **q

q *q

&q q

**q ≡ a

p *p

 &p p

*p ≡ a

&a a

a

Series : 5.
Applications of Pointers 13 Young Won Lim

7/17/18

Two more ways to access a : *p, **q

**q

*p

&a

data

a

address

&p p

&q q

1) Read / Write a
2) Read / Write *p
3) Read / Write **q

Series : 5.
Applications of Pointers 14 Young Won Lim

7/17/18

Variable Definitions

&a

data int a;

a can hold an integer
a

address

&a

a = 100;

a holds 100
a 100

dataaddress

Series : 5.
Applications of Pointers 15 Young Won Lim

7/17/18

Pointer Variable Definition

&p

int * p; *p holds
a int type data

p
int * p;

pointer to int

int

int * p;

p can hold an address

*p

p holds an address
of a int type data

p

Series : 5.
Applications of Pointers 16 Young Won Lim

7/17/18

Double Pointer Variable Definition

&q

int **q; **q holds a int type data

q

int * *q; *q holds an address of
a int type data

pointer to int

int

int ** q;

q holds an address

int ** q; q holds an address of
a pointer to int type data

pointer to
pointer to int

*qq

*q **q

Series : 5.
Applications of Pointers 17 Young Won Lim

7/17/18

Pointer Variable Examples

int a = 200;

int * p = & a;

int ** q = & p; &q 0x3CE q

dataaddress

 0x3A0

*q 0x3A0

0x3AB

q 0x3AB

&q 0x3CE

 = 0x3AB

 2000x3A0

p

**q 200

0x3A0

&p

&a a

Series : 5.
Applications of Pointers 18 Young Won Lim

7/17/18

Pointer Variable p with an arrow notation

dataaddress

p

*p

&p

 p

200

p 0x3A0

&p 0x3AB

*p

dataaddress

 0x3A00x3AB

 2000x3A0

p&p

&a a

using an arrow notation

Series : 5.
Applications of Pointers 19 Young Won Lim

7/17/18

Pointer Variable q with an arrow notation

dataaddress

*q 0x3A0

q 0x3AB

 &q 0x3CE

**q 200

0x3A0

q

*q

**q

&q

 q

*q

&q 0x3CE q

dataaddress

 0x3A00x3AB

= 0x3AB

 2000x3A0

p&p

&a a

using an arrow notation

Series : 5.
Applications of Pointers 20 Young Won Lim

7/17/18

Pointers – a type view

(int)

(int *)

(int **)

Types

address

data

address

Series : 5.
Applications of Pointers 21 Young Won Lim

7/17/18

Pointers – other view

(int)

(int *)

(int **)

**q

 *q

 q

Types Variables

 q

*q

&q

Addresses

Series : 5.
Applications of Pointers 22 Young Won Lim

7/17/18

Single and double pointer examples (1)

int a ;

int * p ;

int **q ;

 *p

 a

 *q

 **q

 q

 p

p

q

*q

a, *p, and **q:
int variables

Series : 5.
Applications of Pointers 23 Young Won Lim

7/17/18

Single and double pointer examples (2)

int a ;

int * p ;

int ** q ;

 *p

 a

 *q

 **q

 q

 p

p

q

*q

p and *q :
int pointer variables
(singlepointers)

Series : 5.
Applications of Pointers 24 Young Won Lim

7/17/18

Single and double pointer examples (3)

int a ;

int * p ;

int ** q ;

 *p

 a

 *q

 **q

 q

 p

p

q

*q

q :
double int pointer variables

Series : 5.
Applications of Pointers 25 Young Won Lim

7/17/18

Double pointer variable assignments

 (int)

(int *)

(int)

 (int **)

X

(float *)

(float)

X

 (int **)

int ** p, **q, *r ; q = p;

p q

p = &r;

r

Series : 5.
Applications of Pointers 26 Young Won Lim

7/17/18

Pointed Addresses and Data

a =100&aint a ;

The variable a holds an integer data

p&pint * p ;

The pointer variable p holds an address,
at this address, an integer data is stored

200

q&qint * * q ;

The pointer variable q holds an address,
at the address q, another address *q is stored,
at the address *q, an integer data **q is stored

*q 30

Series : 5.
Applications of Pointers 27 Young Won Lim

7/17/18

Dereferencing Operations

a =100&aint a

int * p

int * * q

p&p *p=200 p

q&q *q **q=30 q *q

*(&a) = a

*(&p) = p *(p) = *p

*(&q) = q *(q) = *q *(*q) = **q

*

*

*

*

* *

Series : 5.
Applications of Pointers 28 Young Won Lim

7/17/18

Direct access to an integer a

a =100&aint a ;

&a
value

a
address

integerDirect Access

1 memory access

Series : 5.
Applications of Pointers 29 Young Won Lim

7/17/18

Indirect access *p to an integer a

p&pint * p ; *p=200

&p
value

p
address

p *p

Indirect Access

Dereference Operator *
the content of the pointed
location

 p

2 memory accesses

Series : 5.
Applications of Pointers 30 Young Won Lim

7/17/18

Double indirect access **q to an integer a

q&qint * * q ; *q **q=30

&q
value

q
address

q *q

*q **q

Double Indirect Access

Dereference Operator *

the content of the pointed location

Dereference Operator *

the content of the pointed location

 q *q

3 memory accesses

Series : 5.
Applications of Pointers 31 Young Won Lim

7/17/18

Values of variables

a =100&aint a ;

int * p ;

int * * q ;

&a
value

a
address

&p
value

p
address

p *p

&q
value

q
address

q *q
*q **q

integer

address

integer

address

integer

address

p&p *p=200 p

q&q *q **q=30 q *q

Series : 5.
Applications of Pointers 32 Young Won Lim

7/17/18

Swapping pointers

Series : 5.
Applications of Pointers 33 Young Won Lim

7/17/18

p = &a

q = &b

p = &b

q = &a

Swapping integer pointers

&p

&q

&p

&q

a = 111

b = 222

a = 111

b = 222

&a

&b

&a

&b

Series : 5.
Applications of Pointers 34 Young Won Lim

7/17/18

Swapping integer pointers

p = &a

q = &b

&p

&q

p = &b

q = &a

&p

&q

swap_pointers(&p, &q);

void swap_pointers(int **, int **);

function call

function prototype

int *p, *q ;

Series : 5.
Applications of Pointers 35 Young Won Lim

7/17/18

Pass by integer pointer reference

void swap_pointers (int **m, int **n)
{

int* tmp;

 tmp = *m;
 *m = *n;

*n = tmp;
}

int a, b;
int *p, *q; p=&a, q=&b;

…
swap_pointers(&p, &q);

int ** m
int * *m

int * tmp

int ** n
int * *n

Series : 5.
Applications of Pointers 36 Young Won Lim

7/17/18

Array of Pointers

Series : 5.
Applications of Pointers 37 Young Won Lim

7/17/18

Array of Pointers

int a [4];

int
No. of elements = 4

int * b [4];

a [4]

Type of each element

int *
No. of elements = 4

b [4]

Type of each element

Series : 5.
Applications of Pointers 38 Young Won Lim

7/17/18

Array of Pointers – a variable view

int a [4]; int * b [4];

a[0]
a[1]
a[2]
a[3]

b[0]
b[1]

b[2]
b[3]

a b

b[0]

b[1]

b[2]

b[3]

*b[0]

*b[1]

*b[2]

*b[3]

= 11

= 22

= 33

= 44

= 11
= 22
= 33
= 44

a[0]
a[1]
a[2]
a[3]

Integers Integer pointers

taking actual
memory locations

Series : 5.
Applications of Pointers 39 Young Won Lim

7/17/18

Array of Pointers – a type view

int a [4]; int * b [4];

(int **)

Integers Integer pointers

taking actual
memory locations

(int *)

(int *)

(int *)

(int *)

(int)

(int)

(int)

(int)

(int *)

(int)

(int)

(int)

(int)

Series : 5.
Applications of Pointers 40 Young Won Lim

7/17/18

Array of Pointers – extending a dimension

int * b [4];

a[0]
a[1]
a[2]
a[3]

b[0]
b[1]

b[2]
b[3]

b

b[0]+0 = 11
= 22
= 33
= 44

b[0]+1

b[0]+2

b[0]+3

≡ b[0][0]
≡ b[0][1]

≡ b[0][2]
≡ b[0][3]

b[0] = a

a[0]
a[1]

a[2]
a[3]

≡ *(*(b+0)+0)
≡ *(*(b+0)+1)

≡ *(*(b+0)+2)
≡ *(*(b+0)+3)

equivalence

assignment

taking actual
memory locations

1st dim

2nd dim

b+0

b+1

b+2

b+3

Series : 5.
Applications of Pointers 41 Young Won Lim

7/17/18

Pointer to Arrays

Series : 5.
Applications of Pointers 42 Young Won Lim

7/17/18

Pointer to an array – variable declarations

int (*p) [4]

int a [4] int func (int a, int b) ;

int (* fp) (int a, int b) ;

int m ;

int *n ;

an integer pointer

an array pointer a function pointer

Series : 5.
Applications of Pointers 43 Young Won Lim

7/17/18

Pointer to an array – a type view

an integer pointer

an array pointer a function pointer

int

int *

int [4]

int (*) [4]

int (int, int)

int (*) (int, int)

4 byte data

4*4 byte data instructions

array pointer:
a pointer to an array

pointer array:
an array of pointers

Series : 5.
Applications of Pointers 44 Young Won Lim

7/17/18

Pointer to an array : assignment and equivalence

(*p) &(*p) p

a &a &a

q &(*q) q

a &a &a[0]

q

a

int (*p) [4] ;

int a [4] ;

int (*q) ;

int a[4] ;

1-d array pointer

0-d array pointer (= int pointer)

Series : 5.
Applications of Pointers 45 Young Won Lim

7/17/18

Pointer to an array : size of array

int (*p) [4] ;

int a [4] ;

int (*q) ;

int a[4] ;

sizeof(p)= 8 bytes : the size of a pointer

sizeof(*p)= 4*4 bytes : the whole size of

 the pointed 1-d array

sizeof(q)= 8 bytes : the size of a pointer

sizeof(*q)= 4 bytes : the whole size of

 the pointed 0-d array

p = &a;

q = a;

1-d array pointer

0-d array pointer

Series : 5.
Applications of Pointers 46 Young Won Lim

7/17/18

Pointer to an array – a variable view (1)

int (*p) [4];

a[0]
a[1]

a[2]
a[3]

a

p

&a

p = &a

points to a 1-d array –
a aggregated type data

int a [4];a

a+1

a+2

a+3

assignment

*p ≡ a

equivalence

p : int (*) [4] type

1-d array pointer

Series : 5.
Applications of Pointers 47 Young Won Lim

7/17/18

Pointer to an array – a variable view (2)

int (*q) ;

a[0]
a[1]

a[2]
a[3]

a

q

&a

points to an array element –
an integer type data

int a[4] ;a

a+1

a+2

a+3

assignment

*q ≡ *a

 q ≡ a

q = &a[0]

q = a

equivalence

q : int (*) = int * type

0-d array pointer

Series : 5.
Applications of Pointers 48 Young Won Lim

7/17/18

Pointer to an array – an aggregated type view

a[0]
a[1]

a[2]
a[3]

a

p

p

int (*p) [4];
An aggregated type
 - starting address (&a)
 - size of all the array elements (16 bytes)

4 * sizeof(int)

1-d array pointer

Series : 5.
Applications of Pointers 49 Young Won Lim

7/17/18

Incrementing an array pointer

p
p

p+1

address p+1 – address p

= (long) (p+1) - (long) (p) = 4 * sizeof(int)

int (*p) [4];

4*sizeof(int)

4*sizeof(int)

Aggregated Type Size

(p+1) ((p+1))[0]
(*(p+1))[1]

(*(p+1))[2]
(*(p+1))[3]

(*(p+0))[0]
(*(p+0))[1]

(*(p+0))[2]
(*(p+0))[3]

*(p+0)
1-d array pointer

Series : 5.
Applications of Pointers 50 Young Won Lim

7/17/18

Incrementing an array pointer – extending a dimension

p+1

4*sizeof(int)

p[1] p[1][0]
p[1][1]

p[1][2]
p[1][3]

p+1

4*sizeof(int)

(p+1) ((p+1))[0]
(*(p+1))[1]

(*(p+1))[2]
(*(p+1))[3]

(*(p+1)) : array name

p[1] : array name

p

1-d array pointer
p

Series : 5.
Applications of Pointers 51 Young Won Lim

7/17/18

A 1-d array pointer and a 1-d array

int a [4];

a[0]
a[1]

a[2]
a[3]

a

p

&a

(*p)[0]
(*p)[1]

(*p)[2]
(*p)[3]

p

p *p

int (*p) [4] = &a;

p = &a

*p ≡ a

equivalence

assignment

p[0][0]
p[0][1]

p[0][2]
p[0][3]

1-d array pointer 1-d array pointer

Series : 5.
Applications of Pointers 52 Young Won Lim

7/17/18

A 1-d array pointer and a 2-d array

int c [4][4];

c[0][0]
c[0][1]

c[0][2]
c[0][3]

c[0]

p

&c[0]

p

p *p

int (*p) [4] = &c[0];

p = &c[0] p ≡ c

equivalenceassignment

p = c

c

(*p)[0]
(*p)[1]

(*p)[2]
(*p)[3]

p[0][0]
p[0][1]

p[0][2]
p[0][3]

1-d array pointer 1-d array pointer

Series : 5.
Applications of Pointers 53 Young Won Lim

7/17/18

A 1-d array pointer and a 1-d array – a type view

(int)
(int)

(int)
(int)

(int *)

(int (*)[4])

(int)
(int)

(int)
(int)

(int [4])

(int (*)[4])

(int)
(int)

(int)
(int)

(int *)

(int (*)[4])

(int)
(int)

(int)
(int)

(int [4])

(int (*)[4])

int a [4]; int (*p) [4] = &a;

a[0] (*p)[0]

a *p

 p p

(int *)

p[0][0]

1-d array pointer 1-d array pointer

Series : 5.
Applications of Pointers 54 Young Won Lim

7/17/18

A 1-d array pointer and a 2-d array – a type view

(int)
(int)

(int)
(int)

(int *)

(int (*)[4])

(int)
(int)

(int)
(int)

(int [4])

(int (*)[4])

(int)
(int)

(int)
(int)

(int *)

(int (*)[4])

(int)
(int)

(int)
(int)

(int [4])

(int (*)[4])

c[0][0]

c[0]

(int *) (int (*)[4]) c

int c [4][4]; int (*p) [4] = &c[0];

*p

p[0][0]

 p p

(int *)

p[0][0]

1-d array pointer 1-d array pointer

Series : 5.
Applications of Pointers 55 Young Won Lim

7/17/18

A 1-d array pointer – extending a dimension

p

p *p

p[0][0]
p[0][1]
p[0][2]
p[0][3]

p+1 *(p+1)

p[1][0]
p[1][1]

p[1][2]
p[1][3]

p+2 *(p+2)

p[2][0]
p[2][1]

p[2][2]
p[2][3]

int (*p) [4] ;

can be viewed as a 2-d array name
: an additional dimension is added

1st dim

2nd dim

1-d array pointer

Series : 5.
Applications of Pointers 56 Young Won Lim

7/17/18

Double pointer to a 1-d array – a variable view

(int)
(int)

(int)
(int)

(int *)

(int (*)[4]) p

(int (*)[4]) q

int a[4] ;

int (*p) [4] = &a ;

int (**q) [4] = &p ;

1-d array pointer

pointer to a 1-d array pointer

a[0]
a[1]

a[2]
a[3]

a&a

&p

Series : 5.
Applications of Pointers 57 Young Won Lim

7/17/18

Double pointer to a 1-d array – a type view

(int)
(int)

(int)
(int)

(int *)

(int (*)[4])

(int)
(int)

(int)
(int)

(int [4])

(int (*)[4])

(int (*)[4]) (int (**)[4])

a pointer to an array

a pointer to a pointer to an array

a pointer to an int(int *)

p = &a ;

q = &p ;

int a[4] ;

int (*p) [4] = &a ;

int (**q) [4] = &p ;

Series : 5.
Applications of Pointers 58 Young Won Lim

7/17/18

Pointer to Multi-dimensional Arrays

Series : 5.
Applications of Pointers 59 Young Won Lim

7/17/18

Integer pointer type

(int)
(int)

(int)
(int)

(int *) (int)
(int)

(int)
(int)

(int *)

(int *)

(int (*)[4])

(int [4]) (int *) (int [4])

a pointer to an int

a pointer to an array
int [4] = (int [] ≡ int *)

equivalent in the sense that
each of these types points
to an int type data

an int array name

(int (*)[4]) type can point
only to int [4] type
– an int array name

(int *)

1-d array pointer

Series : 5.
Applications of Pointers 60 Young Won Lim

7/17/18

Series of array pointers – a type view

(int)
(int)

(int)
(int)

(int)
(int)

(int)
(int)

(int *)

(int (*)[4])

(int [4]) (int *) (int [4])

(int *) (int [4]) (int *) (int [4])

(int *) (int [4]) (int *) (int [4])

a pointer to an array
the name of an int array

the name of an int array

(int (*)[4])

(int (*)[4])

the name of an int array

a pointer to an array

a pointer to an array

1-d array pointers

Series : 5.
Applications of Pointers 61 Young Won Lim

7/17/18

Series of array pointers – a variable view

(int)
(int)

(int)
(int)

(int *) a[0]
a[1]

a[2]
a[3]

r

p1

a

b

c

a pointer to an array

p2

p3

(int)
(int)

(int)
(int)

b[0]
b[1]

b[2]
b[3]

p1 = &a
p2 = &b
p3 = &c

(*p1) ≡ p1[0] ≡ a
(*p2) ≡ p2[0] ≡ b
(*p3) ≡ p3[0] ≡ c

assignment equivalence

int a[4]; int (*p1)[4]; int (*r);
int b[4]; int (*p2)[4];
int c[4]; int (*p3)[4];

a pointer to an array

a pointer to an array

1-d array pointers
assume that
array a, b, and c
are contiguous
in the memory

Series : 5.
Applications of Pointers 62 Young Won Lim

7/17/18

Pointer array – a variable view

(int)
(int)

(int)
(int)

(int *) (int (*)[4]) (int [4]) q (int *)

(int *) (int [4]) (int *) q[1]

(int *) (int [4]) (int *) q[2]

(int)
(int)

(int)
(int)
(int)
(int)

(int)
(int)

p+1

p+2

q[0]

q[0][0]

q[0][1]

q[0][2]

q[0][3]

q[1][0]

q[1][1]

q[1][2]

q[1][3]
q[2][0]

q[2][1]

q[2][2]

q[2][3]

1-d array names

q[0] = a
q[1] = b
q[2] = c

q[0] ≡ *(q+0) ≡ a
q[1] ≡ *(q+1) ≡ b
q[2] ≡ *(q+2) ≡ c

equivalenceassignment

int *q[3]; taking actual
memory locations

if arrays a, b, c
are consecutive

an array of pointers

Series : 5.
Applications of Pointers 63 Young Won Lim

7/17/18

p+1

p+2

p+3

p+0

Array pointer to consecutive 1-d arrays

p[0]

p[1]

p[2]

p[3]

p[0][0]
p[0][1]
p[0][2]
p[0][3]
p[1][0]
p[1][1]
p[1][2]
p[1][3]
p[2][0]
p[2][1]
p[2][2]
p[2][3]
p[3][0]
p[3][1]
p[3][2]
p[3][3]

a pointer to an array

p

*(p+0) ≡ p[0] ≡ a
*(p+1) ≡ p[1] ≡ b
*(p+2) ≡ p[2] ≡ c
*(p+2) ≡ p[2] ≡ d

int (*p)[4];

assignment equivalence

p = &a

if arrays a, b, c, d
are consecutive

1-d array pointer

Series : 5.
Applications of Pointers 64 Young Won Lim

7/17/18

A 2-d array and its sub-arrays – a variable view

c[0]
c[1]
c[2]
c[3]

c

c[0][0]
c[0][1]
c[0][2]
c[0][3]
c[1][0]
c[1][1]
c[1][2]
c[1][3]
c[2][0]
c[2][1]
c[2][2]
c[2][3]
c[3][0]
c[3][1]
c[3][2]
c[3][3]

a 2-d array
with 4 rows
and 4 columns

the array name c of a 2-d array
as a 1-d array pointer which
points to its 1st 1-d sub-array

c is the 1-d array pointer
c[i]’s are the 1-d sub-array name

c[0] the 1st 1-d sub-array name
c[1] the 2nd 1-d sub-array name
c[2] the 3rd 1-d sub-array name
c[3] the 4th 1-d sub-array name

Compilers can make c[i]’s require
no actual memory locations

c

c+1

c+2

c+3

Series : 5.
Applications of Pointers 65 Young Won Lim

7/17/18

A 2-d array and its sub-arrays – a type view

(int [])

(int [])

(int [])

(int [])

(int (*) [4])

(int)

(int)

(int)

(int)

(int)

(int)

(int)

(int)

(int)

(int)

(int)

(int)

(int)

(int)

(int)

(int)

a 2-d array
with 4 rows
and 4 columns

c

c+1

c+2

c+3

1-d array pointer

1-d array name
1-d array name
1-d array name
1-d array name

Series : 5.
Applications of Pointers 66 Young Won Lim

7/17/18

1-d subarray aggregated data type

c[0]

c[1]

c[2]

c[3]

(int [])

(int [])

(int [])

(int [])

(int)

(int)

(int)

(int)

c[0][0]
c[0][1]
c[0][2]
c[0][3]

(int)

(int)

(int)

(int)

c[1][0]
c[1][1]
c[1][2]
c[1][3]

(int)

(int)

(int)

(int)

c[2][0]
c[2][1]
c[2][2]
c[2][3]

The 1st subarray c[0]

The 2nd subarray c[1]

The 3rd subarray c[2]

The 4th subarray c[3] (int)

(int)

(int)

(int)

c[3][0]
c[3][1]
c[3][2]
c[3][3]

sizeof(c[0]) = 16 bytes

sizeof(c[0]) = 16 bytes

sizeof(c[0]) = 16 bytes

sizeof(c[0]) = 16 bytes

Series : 5.
Applications of Pointers 67 Young Won Lim

7/17/18

2-d array aggregated data type

c[0]

c[1]

c[2]

c[3]

(int [])

(int [])

(int [])

(int [])

(int)

(int)

(int)

(int)

c[0][0]
c[0][1]
c[0][2]
c[0][3]

(int)

(int)

(int)

(int)

c[1][0]
c[1][1]
c[1][2]
c[1][3]

(int)

(int)

(int)

(int)

c[2][0]
c[2][1]
c[2][2]
c[2][3]

c(int (*) [4]) 2-d array :
sizeof(c) = 64 bytes

1-d sub-arrays :
sizeof(*c) = 16 bytes

(int)

(int)

(int)

(int)

c[3][0]
c[3][1]
c[3][2]
c[3][3]

Series : 5.
Applications of Pointers 68 Young Won Lim

7/17/18

2-d array name as a pointer to a 1-d subarray

c[0]

c[1]

c[2]

c[3]

(int [])

(int [])

(int [])

(int [])

(int)

(int)

(int)

(int)

c[0][0]
c[0][1]
c[0][2]
c[0][3]

(int)

(int)

(int)

(int)

c[1][0]
c[1][1]
c[1][2]
c[1][3]

(int)

(int)

(int)

(int)

c[2][0]
c[2][1]
c[2][2]
c[2][3]

c(int (*) [4])

c+1

c+2

c+3 (int)

(int)

(int)

(int)

c[3][0]
c[3][1]
c[3][2]
c[3][3]

(int (*) [4])

(int (*) [4])

(int (*) [4])

The 1st subarray

The 2nd subarray

The 3rd subarray

The 4th subarray

1-d array pointer

1-d array pointer

1-d array pointer

1-d array pointer

Series : 5.
Applications of Pointers 69 Young Won Lim

7/17/18

2-d array and 1-d and 2-d array pointers

p = &c[0];

int c[4] [4] ;

int (*p) [4] ;

p = c;

q = &c;

int c

int (*q) [4][4] ;

[4][4] ;

(*q)[0] ≡ q[0][0] ≡ c[0]
(*q)[1] ≡ q[0][0] ≡ c[1]
(*q)[2] ≡ q[0][0] ≡ c[2]
(*q)[3] ≡ q[0][0] ≡ c[3]

p[0] ≡ c[0]
p[1] ≡ c[1]
p[2] ≡ c[2]
p[3] ≡ c[3]

(int (*) [4]) (int(*)[4][4])

1-d array pointer 2-d array pointer

Series : 5.
Applications of Pointers 70 Young Won Lim

7/17/18

1-d array and 0-d and 1-d array pointers

m = &c[0];

int c[4] ;

int (*m) ;

m = c;

n = &c;

int c

int (*n) [4] ;

[4] ;

(*n)[0] ≡ n[0][0] ≡ c[0]
(*n)[1] ≡ n[0][0] ≡ c[1]
(*n)[2] ≡ n[0][0] ≡ c[2]
(*n)[3] ≡ n[0][0] ≡ c[3]

m[0] ≡ c[0]
m[1] ≡ c[1]
m[2] ≡ c[2]
m[3] ≡ c[3]

(int (*)) (int(*)[4])

0-d array pointer : int pointer 1-d array pointer

Series : 5.
Applications of Pointers 71 Young Won Lim

7/17/18

2-d array and 1-d array pointer

c[0]

c[1]

c[2]

c[3]

(int [])

(int [])

(int [])

(int [])

(int)

(int)

(int)

(int)

c[0][0]
c[0][1]
c[0][2]
c[0][3]

(int)

(int)

(int)

(int)

c[1][0]
c[1][1]
c[1][2]
c[1][3]

(int)

(int)

(int)

(int)

c[2][0]
c[2][1]
c[2][2]
c[2][3]

c(int (*) [4])

p&p (int (*) [4])

p = c;

An array pointer:
sizeof(p) = 8 bytes

1-d sub-arrays :
sizeof(*p) = 16 bytes

(int)

(int)

(int)

(int)

c[3][0]
c[3][1]
c[3][2]
c[3][3]

c+1

c+2

c+3

p = &c[0];

1-d array pointer

Series : 5.
Applications of Pointers 72 Young Won Lim

7/17/18

2-d array and 2-d array pointer

c[0]

c[1]

c[2]

c[3]

(int [])

(int [])

(int [])

(int [])

(int)

(int)

(int)

(int)

c[0][0]
c[0][1]
c[0][2]
c[0][3]

(int)

(int)

(int)

(int)

c[1][0]
c[1][1]
c[1][2]
c[1][3]

(int)

(int)

(int)

(int)

c[2][0]
c[2][1]
c[2][2]
c[2][3]

c(int (*) [4])

c+1

c+2

c+3

q&q (int(*)[4][4])

q+1

q = &c;

An array pointer:
sizeof(q) = 8 bytes

1-d sub-arrays :
sizeof(*q) = 64 bytes

(int)

(int)

(int)

(int)

c[3][0]
c[3][1]
c[3][2]
c[3][3]

2-d array pointer

Series : 5.
Applications of Pointers 73 Young Won Lim

7/17/18

Using a 1-d array pointer to a 2-d array

p[0]
p[1]
p[2]
p[3]

c(int (*) [4])

p[0][0]
p[0][1]
p[0][2]
p[0][3]
p[1][0]
p[1][1]
p[1][2]
p[1][3]
p[2][0]
p[2][1]
p[2][2]
p[2][3]
p[3][0]
p[3][1]
p[3][2]
p[3][3]

p&p

a 2-d array
with 4 rows
and 4 columns

p
(int (*) [4])

int c[4] [4]

int (*p) [4] ;

p = c;

p[0]

p[1]

p[2]

p[3]
p[0] ≡ c[0]
p[1] ≡ c[1]
p[2] ≡ c[2]
p[3] ≡ c[3]

1-d array pointer

Series : 5.
Applications of Pointers 74 Young Won Lim

7/17/18

(*q)[0]
(*q)[1]
(*q)[2]
(*q)[3]

c(int (*) [4])

(*q)[0][0]
(*q)[0][1]
(*q)[0][2]
(*q)[0][3]
(*q)[1][0]
(*q)[1][1]
(*q)[1][2]
(*q)[1][3]
(*q)[2][0]
(*q)[2][1]
(*q)[2][2]
(*q)[2][3]
(*q)[3][0]
(*q)[3][1]
(*q)[3][2]
(*q)[3][3]

a 2-d array
with 4 rows
and 4 columns

*q

Using a 2-d array pointer to a 2-d array

q&p

q = &c;

(int(*)[4][4])

int c

int (*q) [4][4] ;

[4][4] ;

(*q)[0]

(*q)[1]

(*q)[2]

(*q)[3]
(*q)[0] ≡ c[0]
(*q)[1] ≡ c[1]
(*q)[2] ≡ c[2]
(*q)[3] ≡ c[3]

2-d array pointer

Series : 5.
Applications of Pointers 75 Young Won Lim

7/17/18

Pointer to multi-dimensional arrays (1)

int a[4] ; 1-d array
int (*p) ; 0-d array pointer

int b[4] [2]; 2-d array
int (*q) [2]; 1-d array pointer

int c[4] [2][3]; 3-d array
int (*r) [2][3]; 2-d array pointer

int d[4] [2][3][4]; 4-d array
int (*s) [2][3][4]; 3-d array pointer

Series : 5.
Applications of Pointers 76 Young Won Lim

7/17/18

Pointer to multi-dimensional arrays (2)

b[0]

d[0]

c[0]

q

r

s

b

d

c

a[0]

p

a

int a[4] ; p = &a[0];
int (*p) ; p = a;

int b[4] [2]; q = &b[0];
int (*q) [2]; q = b;

int c[4] [2][3]; r = &c[0];
int (*r) [2][3]; r = c;

int d[4] [2][3][4]; s = &d[0];
int (*s) [2][3][4]; s = d;

Series : 5.
Applications of Pointers 77 Young Won Lim

7/17/18

d[0]

Pointer to multi-dimensional arrays (3)

a[0]

[0]

[0]
[1]
[2]

[1]

c[0]

[0]
[1]
[2]

[0]
[1]
[2]

[3]

[0]

[0]
[1]
[2]
[3]

[1]

[0]
[1]
[2]
[3]

[2]

[0]

[0]
[1]
[2]
[3]

[0]

[0]
[1]
[2]
[3]

[1]

[0]
[1]
[2]
[3]

[2]

[1]

int c[4] [2][3];
int (*r) [2][3];

int d[4] [2][3][4];
int (*s) [2][3][4];

int a[4] ;
int (*p) ;

p

r

s

p = a; (=&a[0]);
q = b; (=&b[0]);
r = c; (=&c[0]);
s = d; (=&d[0]);

[0]
[1]

b[0]

int b[4] [2];
int (*q) [2];

q

Series : 5.
Applications of Pointers 78 Young Won Lim

7/17/18

To pass array name

void funa(int (*p), …);

void funb(int (*q)[2], …);

void func(int (*r)[2][3], …);

void fund(int (*s)[2][3][4], …);

prototypecall

prototype

call

prototype

call

prototype

call

int a[4] ;
int (*p) ;

int b[4] [2];
int (*q) [2];

int c[4] [2][3];
int (*r) [2][3];

int d[4] [2][3][4];
int (*s) [2][3][4];

funa(a, …);

funb(b, …);

func(c, …);

fund(d, …);

prototypecall

prototypecall

prototypecall

Young Won Lim
7/17/18

References

[1] Essential C, Nick Parlante
[2] Efficient C Programming, Mark A. Weiss
[3] C A Reference Manual, Samuel P. Harbison & Guy L. Steele Jr.
[4] C Language Express, I. K. Chun

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79

