
ELF1 7B Loading Background - ELF Study 1999

Young W. Lim

2020-10-22 Thr

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 1 / 107

Outline

1 Based on

2 Dynamic loading and dynamic linking
Dynamic loading
Dynamic linking
Possible Cases of loading and linking

3 Load addresses
TOC
Memory Map
Library load addresses

4 Executing dynamic executables
Entry point
Execution Sequence
Virtual memory
Memory mapped I/O

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 2 / 107

Based on

"Study of ELF loading and relocs", 1999
http://netwinder.osuosl.org/users/p/patb/public_html/elf_
relocs.html

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 3 / 107

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html
http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Compling 32-bit program on 64-bit gcc

gcc -v

gcc -m32 t.c

sudo apt-get install gcc-multilib

sudo apt-get install g++-multilib

gcc-multilib

g++-multilib

gcc -m32

objdump -m i386

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 4 / 107

TOC: Dynamic loading

dynamic loading

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 5 / 107

Dynamic loading (1)

suppose our program that is to be executed
consist of various modules.
not all the modules are loaded into the memory at once
the main module is loaded first and then starts to execute
some other modules are loaded only when they are required
until loading them, the execution is stopped

https://cs.stackexchange.com/questions/92484/difference-between-dynamic-loading-and-dynamic-linking-in-the-os

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 6 / 107

Dynamic loading (2)

Assume a linker is called to link necessary modules
into an executable module.
In dynamic loading, after the linker is called,
only main module is loaded into memory.
During execution, if main module needs another module
which is already linked in executable module,
then calling module calls relocatable linking loader
to load the called module into apporiate location
in the processes logical adress space.

https://cs.stackexchange.com/questions/92484/difference-between-dynamic-loading-and-dynamic-linking-in-the-os

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 7 / 107

Dynamic loading (3)

loading the dependent library or routine
on-demand or
at some time at run time after load time
(the time at which the main program executable is loaded).
this is contrast to loading all dependencies
with the main program.
at load-time together
The loading process completes
when the library has been successfully loaded into main memory.

https://cs.stackexchange.com/questions/92484/difference-between-dynamic-loading-and-dynamic-linking-in-the-os

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 8 / 107

Dynamic loading (4)

loading the library (or any other binary executable)
into the memory during load or run time.
dynamic loading can be imagined to be similar to plugins

an executable (main module) can actually start to run
before the dynamic loading happens

The dynamic loading example can be created using dlopen()
of Dynamically Loaded (DL) libraries

https://stackoverflow.com/questions/10052464/difference-between-dynamic-loading-and-dynamic-linking#

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 9 / 107

Dynamic loading (5)

Dynamic loading :
system library or other routine
is loaded during run time and
it is not supported by OS

when your program runs, it’s the programmer’s job
to open that library.
such programs are usually linked with libdl,
which provides the ability to open a shared library.

https://stackoverflow.com/questions/10052464/difference-between-dynamic-loading-and-dynamic-linking#

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 10 / 107

Dynamic loading (6)

dynamic loading allows a computer program

to start up without loading these libraries,
to discover and load available libraries after starting

a computer program can, at run time,

load a library or other binary into memory,
retrieve the addresses of library functions and variables
execute those functions or access those variables, and
unload the library from memory.

the 3 mechanisms by which

dynamic loading
static linking
dynamic linking.

https://stackoverflow.com/questions/10052464/difference-between-dynamic-loading-and-dynamic-linking#

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 11 / 107

Dynamic loading (7)

With dynamic loading a module is not loaded until it is called

all modules are kept on a disk in a relocatable load format.
the main program is loaded into memory and is executed

when a module needs to call another module,
the calling module first checks to see whether it has been loaded.

if not , the relocatable linking loader is called
to load the desired module into memory and
update program’s address tables to reflect this change.
then control is passed to newly loaded module

https://stackoverflow.com/questions/10052464/difference-between-dynamic-loading-and-dynamic-linking#

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 12 / 107

Dynamic loading (8)

an unused module is never loaded .

useful when the code is large

dynamic loading does not need special support from OS

it is the responsibility of a programmer

https://stackoverflow.com/questions/10052464/difference-between-dynamic-loading-and-dynamic-linking#

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 13 / 107

TOC: Dynamic linking

dynamic linking

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 14 / 107

Dynamic linking (1)

suppose a program has some function calls
whose definition is located in some system library
the header file only consists of
the declarations of functions and not definitions
during execution, if the function gets called

the system library is loaded into main memory
link the function call in the program
with the function definition in the system library.

https://cs.stackexchange.com/questions/92484/difference-between-dynamic-loading-and-dynamic-linking-in-the-os

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 15 / 107

Dynamic linking (2)

when a module needs to be called,

the called module is loaded into memory and
a link between the calling module and called module
is established by the stub (a piece of code that is linked)
in static linking time of the program.
stub is a piece of code that is linked

a temporary small function placed by the compiler
makes an indirect call to a module function

dynamic Linking mostly used with
shared libraries which different users may use.

https://cs.stackexchange.com/questions/92484/difference-between-dynamic-loading-and-dynamic-linking-in-the-os

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 16 / 107

Dynamic linking (3)

When the program makes the first call to an imported function
whose library may or may not have been loaded yet.

Initially, a stub gets called instead of the imported function
the stub calls into the OS.
if the library is currently not loaded,
it gets loaded (this step is called dynamic loading).
then, the stub is modified so that it calls
the imported function directly for subsequent calls
(this step is called dynamic linking)

The component of the OS that performs both steps is called
the dynamic linker or the dynamic linking loader.

https://cs.stackexchange.com/questions/92484/difference-between-dynamic-loading-and-dynamic-linking-in-the-os

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 17 / 107

Dynamic linking (4)

dynamic linking is done during load or run time
and not when the executable is created (compile time)
the static linker does minimal work
when creating the executable
(generating stub functions)
the dynamic linker has to load the libraries
so it is called linking loader.

https://stackoverflow.com/questions/10052464/difference-between-dynamic-loading-and-dynamic-linking

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 18 / 107

Dynamic linking (5)

system library or other routine is linked
during run time and by the support of OS
when an executable is compiled
the required shared libraries must be specified
otherwise it won’t even compile.
When your program starts
it’s the system’s job to open these libraries
the required libraries can be listed using the ldd command.

https://stackoverflow.com/questions/10052464/difference-between-dynamic-loading-and-dynamic-linking

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 19 / 107

Dynamic linking (6)

Dynamic linker is a run time program that loads and binds
all of the dynamic dependencies of a program
before starting to execute that program.

find what dynamic libraries a program requires,
what libraries those libraries require . . .
(dynamic dependencies)
load all those libraries and
make all references to the functions point to the right places

the "hello world” program requires the standar C library

the dynamic linker will load the standard C library
before loading the hello world program and
will make any calls to printf() go to the right place

https://stackoverflow.com/questions/10052464/difference-between-dynamic-loading-and-dynamic-linking

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 20 / 107

Dynamic linking (7)

both dynamic loading and dynamic linking
happen at run time,
and load whatever they need into memory.
The key difference is that

dynamic loading checks
if the routine was loaded by the loader
dynamic linking checks
if the routine is in the memory.

https://stackoverflow.com/questions/10052464/difference-between-dynamic-loading-and-dynamic-linking

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 21 / 107

Dynamic linking (8)

for dynamic linking,
there is only one copy of the library code in the memory,

this may be not true for dynamic loading
That’s why dynamic linking needs OS support to check
the memory of other processes.

this feature is very important for language libraries,
which are shared by many programs.

https://stackoverflow.com/questions/10052464/difference-between-dynamic-loading-and-dynamic-linking

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 22 / 107

Dynamic loading and dynamic linking

dynamic loading refers to
mapping (or less often copying)
an executable or library into a process’s memory
after the executable has been started.

dynamic linking refers to resolving symbols

associating their names with addresses or offsets
after compile time

the reason it’s hard to make a distinction is that
the two are often done together without recognizing

https://www.quora.com/Systems-Programming/What-is-the-exact-difference-between-dynamic-loading-and-dynamic-linking/answer/Jeff-Darcy

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 23 / 107

(1) Dynamic loading, Static linking

The executable has an address/offset table
generated at compile time,
but the actual code/data aren’t loaded
into memory at process start.
old-fashioned overlay systems.
some current embedded systems may work in this way
to give the programmer control over memory use
also to avoid the linking overhead at runtime

https://www.quora.com/Systems-Programming/What-is-the-exact-difference-between-dynamic-loading-and-dynamic-linking/answer/Jeff-Darcy

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 24 / 107

(2) Static loading, Dynamic linking

when dynamic libraries specified at compile time
an executable contains a reference
to the dynamic/shared library,
but the symbol table is missing or incomplete.
both loading and linking occur at process start,
which is considered as

dynamic for linking
static for loading.

https://www.quora.com/Systems-Programming/What-is-the-exact-difference-between-dynamic-loading-and-dynamic-linking/answer/Jeff-Darcy

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 25 / 107

(3) Dynamic loading, Dynamic linking

when you call dlopen
the object file is loaded dynamically
under program control (i.e. after process start)
symbols in the calling program and in the library
are resolved based on the process’s particular memory layout
at that time.

https://www.quora.com/Systems-Programming/What-is-the-exact-difference-between-dynamic-loading-and-dynamic-linking/answer/Jeff-Darcy

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 26 / 107

(4) Static loading, Dtatic linking

everything is resolved at compile time.
everything is loaded into memory immediately
at process start
no further resolution (linking)
does not require to load a single file
but no known implementation for multiple file loading
without dynamic linking

https://www.quora.com/Systems-Programming/What-is-the-exact-difference-between-dynamic-loading-and-dynamic-linking/answer/Jeff-Darcy

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 27 / 107

TOC: Load addreses

Memory Map
Library load addreses

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 28 / 107

TOC: Memory Map

Load address
i386 Load addreses 1999 (increasing from the top)
i386 Load addreses 1999 (increasing from the bottom)
Linux run-time memory image
mmpa
sys_brk

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 29 / 107

Load address

in a typical Linux system,
the addresses 0 - 3fff_ffff (4 GB)
are available for the user program space.

exectuable binary files include header information
that indicates a load address

libraries, because they are position-independent,
do not need a load address, but contain a 0 in this field.

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 30 / 107

i386 load addresses 1999 (increasing from the top)

Start Len Usage
0000_0000 4k zero page
0000_1000 128M not used
0800_0000 896M app code/data space

followed by small-malloc() space
4000_0000 1G mmap space

library load space
large-malloc() space

8000_0000 1G stack space
working back from BFFF.FFE0

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 31 / 107

i386 load addresses 1999 (increasing from the bottom)

Start Len Usage
stack space

8000_0000 1G working back from BFFF.FFE0
memory mapped region
for shared libraries

4000_0000 1G large-malloc() space
small-malloc() space

0800_0000 896M app data / code space
0000_1000 128M not used
0000_0000 4k zero page

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 32 / 107

Linux Run-time Memory Image (increasing from the bottom)

memory invisible
0xc000_0000 Kernel virtual memory to the user code

User stack
created at run time ← %esp stack ptr
↓ ↓ ↓
↑ ↑ ↑
memory mapped region

0x4000_0000 for shared libraries

↑ ↑ ↑
Run time heap ← brk
created by malloc
R/W segment
(.data, .bss)
RO segment

0x0804_8000 (.init, .text, .rodata)

0x0000_0000 Unused
Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 33 / 107

mmap (1)

mmap (2) is a POSIX-compliant Unix system call that
maps files or devices into memory.
a method of memory-mapped file I/O
implements demand paging,

file contents are not read from disk directly
initially do not use physical RAM at all.

The actual reads from disk are performed in a lazy manner,
after a specific location is accessed.

https://en.wikipedia.org/wiki/Mmap

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 34 / 107

mmap (2)

#include <sys/mman.h>

void *mmap(void *addr, size_t length, int prot, int flags,
int fd, off_t offset);

int munmap(void *addr, size_t length);

creates a new mapping in the virtual address space of the
calling process
the starting address for the new mapping is specified in addr
the length argument specifies the length of the mapping
the contents of a file mapping are initialized
using length bytes starting at offset offset in the file
(or other object) referred to by the file descriptor fd

http://man7.org/linux/man-pages/man2/mmap.2.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 35 / 107

sys_brk (1)

the sys_brk system call is provided by the kernel,
to allocate memory without the need of moving it later
allocates memory right behind the application image in the memory
allows you to set the highest available address in the data section.

takes one parameter (the highest memory address)

https://www.tutorialspoint.com/assembly_programming/assembly_memory_management.htm

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 36 / 107

sys_brk (2)

#include <unistd.h>

int brk(void *addr);
void *sbrk(intptr_t increment);

brk() and sbrk() change the location of the program break, which
defines the end of the process’s data segment
the program break is the first location
after the end of the uninitialized data segment
increasing / decreasing the program break has the effect of
allocating / deallocating memory to the process;
sbrk() increments the program’s data space by increment bytes.

http://man7.org/linux/man-pages/man2/brk.2.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 37 / 107

TOC: Library load addresses

Library load addresses
Shared library address
Dyn loader names
load address example

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 38 / 107

Library load addresses (1)

The kernel has a preferred location
for mmap data objects at 0x4000_0000.
since the shared libraries are loaded by mmap, they end up here.

large mallocs are realized by creating a mmap, so
these end up in the pool at 0x4000_0000.

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 39 / 107

Library load addresses (2)

the library GLIBC that is mostly used for malloc
handles small mallocs by calling sys_brk(),
which extends the data area after the app,
at 0x0800_0000+sizeof(app).

As the mmap pool grows upward, the stack grows downward.
between them, they share 2G bytes.

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 40 / 107

Shared library address

The shared library design usually loads app first,
then the loader notices that it need support
and loads the dynamic loader library (using .interp section)
(usually /lib/ld-linux.so.2)
at 0x4000_0000
other libraries are loaded after ld.so.1
see which and where libraries will be loaded by ldd
ldd foo_app

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 41 / 107

Dynamic loader names

dynamic loader
dynamic linker
runtime linker
interpreter

ld-linux.so.2

ld-linux.so

ld.so

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 42 / 107

load address example (1)

consider a diagnostic case where the app (foo_app) is invoked by
/lib/ld-linux.so.2 foo_app foo_arg

the ld-linux.so.2 is loaded as an app
since it was built as a library, it tries to load at 0
[In ArmLinux, this is forbidden,
so the kernel pushes it up to 0x1000

Once ld-linux.so.2 is loaded, it reads it argv[1] and
loads the foo_app at its preferred location (0x0800.0000)

other libraries are loaded up a the mmap area.

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 43 / 107

load address example (2)

So, in this case, the user memory map appears as

start Len Usage
0000_0000 128M ld-linux.so.2

followed by small-malloc() space
0800_0000 896M app code/data space
4000_0000 1G mmap space

lib space
large-malloc() space

8000_0000 1G stack space,
working backward from BFFF_FFE0

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 44 / 107

load address example (3)

Notice that the small malloc space is much smaller in this case
(128M),
but this is supposed to be for load testing and diagnostics

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 45 / 107

library built with -fPIC

the vast majority of pages are exactly the same for every process
different processes load the library at different logical addresses,
but they will point to the same physical pages
thus, the memory will be shared.
the data in RAM exactly matches what is on disk,
so it can be loaded only when needed by the page fault handler.

https://unix.stackexchange.com/questions/116327/loading-of-shared-libraries-and-ram-usage

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 46 / 107

library built without -fPIC

most pages of the library will need link edits,
and will be different
each process has separate physical pages
because they contain different data (as a result of execution)
that means they’re not shared.
the pages don’t match what is on disk
in the worst case, the entire library could be loaded and then
subsequently be swapped out to disk (in the swapfile)

https://stackoverflow.com/questions/311882/what-do-statically-linked-and-dynamically-linked-mean

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 47 / 107

shared library and re-entrant code (1)

the concept of re-entrant code, i.e.,
programs that cannotmodify themselves while running.
it is necessary to write libraries.

re-entrant code is useful for shared libraries
Some functions in a library may be reentrant, whereas
others in the same library are non-reentrant.

A library is reentrant if and only if
all of the functions in it are reentrant.

http://cs.boisestate.edu/~amit/teaching/297/notes/libraries-and-plugins-handout.pdf
https://bytes.com/topic/c/answers/528112-basic-doubt-shared-libraries

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 48 / 107

shared library and re-entrant code (2)

a shared library does not need to be reentrant
the code area of the library is shared by multiple processes
the data area of the library is copied separately for each process

reentrant codes are required when running in multi-thread

http://cs.boisestate.edu/~amit/teaching/297/notes/libraries-and-plugins-handout.pdf
https://bytes.com/topic/c/answers/528112-basic-doubt-shared-libraries

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 49 / 107

ELF header

defines whether to use 32-bit or 64-bit addresses.

contains three fields that are affected by
this setting and offset other fields that follow them.

e_entry (entry point)
e_phoff (program header table offset)
e_shoff (section header table offset)

The ELF header is 52 or 64 bytes long
for 32-bit and 64-bit binaries respectively.

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 50 / 107

ELF header example

$ readelf -h /bin/bash
ELF Header:

Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
Class: ELF32
Data: 2’s complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0
Type: EXEC (Executable file)
Machine: Intel 80386
Version: 0x1
Entry point address: 0x805be30
Start of program headers: 52 (bytes into file)
Start of section headers: 675344 (bytes into file)
Flags: 0x0
Size of this header: 52
Size of program headers: 32
Number of program headers: 8
Size of section headers: 40
Number of section headers: 26
Section header string table index: 25

https://greek0.net/elf.html
Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 51 / 107

ELF header fields

typedef struct { typedef struct {
unsigned char e_ident[EI_NIDENT]; unsigned char e_ident[EI_NIDENT];
Elf32_Half e_type; Elf64_Half e_type;
Elf32_Half e_machine; Elf64_Half e_machine;
Elf32_Word e_version; Elf64_Word e_version;
Elf32_Addr e_entry; Elf64_Addr e_entry;
Elf32_Off e_phoff; Elf64_Off e_phoff;
Elf32_Off e_shoff; Elf64_Off e_shoff;
Elf32_Word e_flags; Elf64_Word e_flags;
Elf32_Half e_ehsize; Elf64_Half e_ehsize;
Elf32_Half e_phentsize; Elf64_Half e_phentsize;
Elf32_Half e_phnum; Elf64_Half e_phnum;
Elf32_Half e_shentsize; Elf64_Half e_shentsize;
Elf32_Half e_shnum; Elf64_Half e_shnum;
Elf32_Half e_shstrndx; Elf64_Half e_shstrndx;

} Elf32_Ehdr; } Elf64_Ehdr;
// 52 bytes for 32-bit machines // 64 bytes for 64-bit machines

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 52 / 107

ELF header - e_ident field

0x00 4 e_ident[EI_MAG0] through e_ident[EI_MAG3]
0x04 1 e_ident[EI_CLASS]
0x05 1 e_ident[EI_DATA]
0x06 1 e_ident[EI_VERSION]
0x07 1 e_ident[EI_OSABI]
0x08 1 e_ident[EI_ABIVERSION]
0x09 7 e_ident[EI_PAD]

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 53 / 107

ELF header - e_entry field

This is the memory address of the entry point
from where the process starts executing.
This field is either 32 or 64 bits long
depending on the format defined earlier.

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 54 / 107

entry (1)

an entry point is where control is transferred
from the operating system to a computer program,
at which place the processor enters a program or
a code fragment and execution begins.

This marks the transition from load time
(and dynamic link time, if present) to run time

https://reverseengineering.stackexchange.com/questions/18088/start-analysis-at-any-position-in-elf-is-entry-point

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 55 / 107

entry (2)

1 In some operating systems or programming languages,
the initial entry is not part of the program
but of the runtime library

the runtime library initializes the program
then the runtime library enters the program.

2 In other cases, the program may call the runtime library
before doing anything when it is entered for the first time,

after the &runtime library returns,
the actual code of the program begins to execute.

https://reverseengineering.stackexchange.com/questions/18088/start-analysis-at-any-position-in-elf-is-entry-point

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 56 / 107

entry (3)

entry point is used to point at the location at which
the OS loader will start a program

for a given binary file (ELFBIN), use readelf -h ELFBIN
to read the binary’s header information (-h):

Entry point address: 0x400a80

after running objdump on the binary

0000000000400a80 <_start>:

https://reverseengineering.stackexchange.com/questions/18088/start-analysis-at-any-position-in-elf-is-entry-point

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 57 / 107

entry (4)

it is the _start function that prepares certain
parameters/registers before eventually calling main

400aa4: callq *0x20851e(%rip)
contains a program code.
the _start function is usually called
after all other sections of the binary have been loaded in memory.

after the main is done, the hlt instruction is executed
to terminate the execution in this example.

the hlt instruction is typically never reached
since __libc_start_main calls exit(2)
if main returns normall

https://reverseengineering.stackexchange.com/questions/18088/start-analysis-at-any-position-in-elf-is-entry-point

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 58 / 107

stripped executables

with gcc’s -g flag, an executable contains debugging information.

for each instruction there is information
which line of the source code generated it,
the name of the variables in the source code is retained and
can be associated to the matching memory at runtime etc.

strip can remove this debugging information
and other data included in the executable
which is not necessary for execution
in order to reduce the size of the executable.

https://unix.stackexchange.com/questions/2969/what-are-stripped-and-not-stripped-executables-in-unix

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 59 / 107

gcc -s

gcc being a compiler/linker, its -s option is
something done while linking
it’s not configurable

it has a set of information which it removes, no more no less.

removes the relocation information and the symbol table
which is not done by strip

Note that, removing relocation information
would have some effect on address space layout randomization

https://stackoverflow.com/questions/1349166/what-is-the-difference-between-gcc-s-and-a-strip-command

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 60 / 107

strip

strip can be run on an object file
which is already compiled.
has a variety of command-line options to
configure which information will be removed.
For example, -g strips only the debug information
Note that strip is not a bash command,
though you may be running it from a bash shell.
It is a command totally separate from bash,
part of the GNU binary utilities suite.

https://stackoverflow.com/questions/1349166/what-is-the-difference-between-gcc-s-and-a-strip-command

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 61 / 107

finding main function’s entry point (1)

once a program has been stripped,
there is no straightforward way to locate the function
that the symbol main would have otherwise referenced.

The value of the symbol main is not required
for program start-up:

https://stackoverflow.com/questions/9885545/how-to-find-the-main-functions-entry-point-of-elf-executable-file-without-any-s

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 62 / 107

finding main function’s entry point (2)

in the ELF format, the start of the program is specified
by the e_entry field of the ELF file header.
This field normally points to the C library’s initialization code,
and not directly to main.

While the C library’s initialization code does call main()
after it has set up the C run time environment,
this call is a normal function call
that gets fully resolved at link time

https://stackoverflow.com/questions/9885545/how-to-find-the-main-functions-entry-point-of-elf-executable-file-without-any-s

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 63 / 107

Execution sequence

1 Kernel does permission checks
2 Kernel attempts to determine the internal format.

It finds out it’s ELF and that it’s dynamically linked.
3 Kernel decodes the structure of the ELF executable,

finding the interpreter (ld—linux.so.2 or something).
It attempts to load the interpreter,
which itself is a statically linked ELF executable.

4 The interpreter, in user space, looks for and loads
the shared object files (extension .so, internal format ELF)
which are needed by the executable.
Once they are all loaded and relocated, control is passed
to the executable itself, at the entry point established.

https://www.quora.com/How-is-a-elf-file-executed-in-Linux

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 64 / 107

Manual load and execution (1)

1 Read the program headers

to find the LOAD directives and
determine the total length of mappings in pages.

2 Map the lowest-address LOAD directive
with the total length (which may be greater than the file length),
letting mmap assign you an address.
This will reserve contiguous virtual address space.

3 map the remainin LOAD directives
over top of parts of this mapping using MAP_FIXED.

https://stackoverflow.com/questions/6554825/how-do-i-load-and-execute-an-elf-binary-executable-manually

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 65 / 107

Manual load and execution (2)

4 Use the program headers to find the DYNAMIC vector,
which will in turn give you the address
of the relocation vectors

5 Apply the relocations
Assuming your binary was a static-linked PIE binary,
they should consist entirely of RELATIVE relocations
(just adding the base load address),
meaning you don’t have to perform any symbol lookups
or anything fancy.

https://stackoverflow.com/questions/6554825/how-do-i-load-and-execute-an-elf-binary-executable-manually

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 66 / 107

Manual load and execution (3)

6 Construct an ELF program entry stack
consisting of the following sequence of
system-word-sized values in an array on the stack:
ARGC ARGV[0] ARGV[1] ... ARGV[ARGC-1] 0 \

ENVIRON[0] ENVIRON[1] ... ENVIRON[N] 0 0

7 (This step requires ASM!)
Point the stack pointer at the beginning of this array and
jump to the loaded program’s entry point address
(which can be found in the program headers).

https://stackoverflow.com/questions/6554825/how-do-i-load-and-execute-an-elf-binary-executable-manually

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 67 / 107

ELF program header (1)

The program header table tells the system
how to create a process image
it is found at file offset e_phoff
and consists of e_phnum entries
each with size e_phentsize

The layout is slightly different in 32-bit ELF vs 64-bit ELF,
because the p_flags are in a different structure location
for alignment reasons.

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 68 / 107

ELF program header (2)

The Program Header Table contains information
for the kernel on how to start the program.

the LOAD directives specifies a loadable segment
parts of the ELF file get mapped into memory
The INTERP directive specifies an ELF interpreter
normally /lib/ld-linux.so.2

The DYNAMIC entry points to the .dynamic section
contains information used by the ELF interpreter
to setup the binary

https://www.ics.uci.edu/~aburtsev/143A/hw/hw2/hw2-elf.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 69 / 107

ELF program header example

Program Headers:
Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
PHDR 0x000034 0x08048034 0x08048034 0x00100 0x00100 R E 0x4
INTERP 0x000134 0x08048134 0x08048134 0x00013 0x00013 R 0x1

[Requesting program interpreter: /lib/ld-linux.so.2]
LOAD 0x000000 0x08048000 0x08048000 0xa0200 0xa0200 R E 0x1000
LOAD 0x0a0200 0x080e9200 0x080e9200 0x04b44 0x09728 RW 0x1000
DYNAMIC 0x0a0214 0x080e9214 0x080e9214 0x000d8 0x000d8 RW 0x4
NOTE 0x000148 0x08048148 0x08048148 0x00020 0x00020 R 0x4
GNU_EH_FRAME 0x0a0138 0x080e8138 0x080e8138 0x0002c 0x0002c R 0x4
GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x4

https://greek0.net/elf.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 70 / 107

ELF program header fields (1)

typedef struct { typedef struct {
Elf32_Word p_type; Elf64_Word p_type;
Elf32_Off p_offset; Elf64_Word p_flags;
Elf32_Addr p_vaddr; Elf64_Off p_offset;
Elf32_Addr p_paddr; Elf64_Addr p_vaddr;
Elf32_Word p_filesz; Elf64_Addr p_paddr;
Elf32_Word p_memsz; Elf64_Xword p_filesz;
Elf32_Word p_flags; Elf64_Xword p_memsz;
Elf32_Word p_align; Elf64_Xword p_align;

} Elf32_Phdr; } Elf64_Phdr;
// 52 bytes for 32-bit machines // 64 bytes for 64-bit machines

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 71 / 107

ELF program header fields (2)

p_type : the kind of segment
this array element describes or how to interpret
the array element’s information.

p_offset : the offset from the beginning of the file
at which the first byte of the segment resides

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 72 / 107

ELF program header fields (3)

p_vaddr : the virtual address
at which the first byte of the segment resides in memory.

p_paddr : the segment’s physical address for systems
in which physical addressing is relevant

the system ignores physical addressing
for application programs,
this member has unspecified contents
for executable files and shared objects

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 73 / 107

ELF program header fields (4)

p_filesz : the number of bytes
in the file image of the segment, which can be zero.

p_memsz : the number of bytes
in the memory image of the segment, which can be zero.

p_flags : flags relevant to the segment.

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 74 / 107

ELF program header fields (5)

p_align : loadable process segments
must have congruent values
for p_vaddr and p_offset, modulo the page size.

this member gives the value
to which the segments are aligned
in memory and in the file
values 0 and 1 mean no alignment is required.
otherwise, p_align should be a positive,
integral power of 2,
p_vaddr should equal p_offset, modulo p_align

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 75 / 107

ELF program header field p_type (1)

PT_NULL 0 unused
PT_LOAD 1 a loadable segment
PT_DYNAMIC 2 dynamic linking information
PT_INTERP 3 an interpreter path name
PT_NOTE 4 auxiliary information
PT_SHLIB 5 unspecified semantics
PT_PHDR 6 the program header table
PT_LOSUNW 0x6ffffffa sun microsystems
PT_SUNWBSS 0x6ffffffb sun microsystems
PT_SUNWSTACK 0x6ffffffa sun microsystems
PT_HISUNW 0x6fffffff sun microsystems
PT_LOPROC 0x70000000 a processor specific semantics
PT_HIPROC 0x7fffffff a processor specific semantics

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 76 / 107

p_type = PT_LOAD segment entry

specifies a loadable segment, described by

p_filesz (the segment’s file size) and
p_memsz (the segment’s memory size)

The bytes from the file are mapped
to the beginning of the memory segment

case 1) p_memsz > p_filesz,
the extra bytes are defined to hold the value 0 and
to follow the segment’s initialized area
case 2) p_memsz < p_filesz : not possible

loadable segment entries in the program header table
appear in ascending order, sorted on the p_vaddr member.

https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-83432/index.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 77 / 107

p_type = PT_DYNAMIC segment entry

specifies dynamic linking information

https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-83432/index.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 78 / 107

p_type = PT_INTERNP segment entry

specifies the location and size
of a null-terminated path name to invoke as an interpreter
this segment type is mandatory for dynamic executable files and
can occur in shared objects.
but cannot occur more than once in a file.
this type, if present,
it must precede any loadable segment entry.

https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-83432/index.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 79 / 107

Sections and segments (1)

section: tell the linker if a section is either:

raw data to be loaded into memory,
e.g. .data, .text, etc, or
formatted meta data about other sections,
that will be used by the linker, but disappear at runtime
e.g. .symtab, .srttab, .rela.text

segment: tells the operating system:

where should a segment be loaded into virtual memory
what permissions the segments have (read, write, execute).

https://cirosantilli.com/elf-hello-world
https://stackoverflow.com/questions/14361248/whats-the-difference-of-section-and-segment-in-elf-file-format

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 80 / 107

Sections and segments (2)

ELF files are composed of sections and segments

sections gather all needed information
to link a given object file
and build an executable,

while Program Headers split the executable
into segments with different attributes,
which will eventually be loaded into memory.

https://www.intezer.com/blog/research/executable-linkable-format-101-part1-sections-segments/

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 81 / 107

Sections and segments (3)

segments can be viewed as
a tool to help the linux loader,
as they group sections by attributes into single segments
for more efficient loading process of the executable,
instead of loading each individual section into memory.

https://www.intezer.com/blog/research/executable-linkable-format-101-part1-sections-segments/

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 82 / 107

Sections and segments (4)

segments’ offsets and virtual addresses must be
congruent modulo the page size

their p_align field must be a multiple of the system page size

The reason for this alignment is to prevent
the mapping of two different segments
within a single memory page.

https://www.intezer.com/blog/research/executable-linkable-format-101-part1-sections-segments/

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 83 / 107

Sections and segments (5)

this is due to the fact that different segments
usually have different access attributes,

these cannot be enforced
if two segments are mapped within the same memory page.

therefore, the default segment alignment
for PT_LOAD segments is usually a system page size

The value of this alignment will vary in different architecture

https://www.intezer.com/blog/research/executable-linkable-format-101-part1-sections-segments/

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 84 / 107

Virtual address and physical address (1)

Physical addresses are provided directly by the machine

one physical address space per machine
addresses typically range
from some minumum (sometimes0) to some maximum,
though some portions of this range are usually used
by the OS and/or devices,
but not available for user processes

https://www.student.cs.uwaterloo.ca/~cs350/F07/notes/mem.pdf

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 85 / 107

Virtual address and physical address (2)

Virtual addresses (or logical addresses) are
addresses provided by the OS

one virtual address space per process
addresses typically start at zero, but not necessarily
space may consist of several segments

https://www.student.cs.uwaterloo.ca/~cs350/F07/notes/mem.pdf

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 86 / 107

Virtual address and physical address (3)

address translation (or address binding) means
mapping virtual addresses to physical addresses

https://www.student.cs.uwaterloo.ca/~cs350/F07/notes/mem.pdf

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 87 / 107

Virtual address and physical address (4)

size of each section except stack is specified in ELF file
sections which are initialized from the ELF file

code (i.e., .text)
read-only data
initialized data segments

other remaining sections are initially zero-filled
sections have their own specified alignment
segments are page aligned
3 segments = (.text + .rodata), (.data + .sbss + .bss), (stack)
not all programs contain this many segments and sections

https://www.student.cs.uwaterloo.ca/~cs350/F07/notes/mem.pdf

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 88 / 107

Single address space (1)

simple systems
sharing the same memory space

memory and peripherals
all processes and OS

no memory proctection

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 89 / 107

Single address space (2)

CPUs with single address space

8086 - 80286
ARM Cortex-M
8 / 16-bit PIC
AVR
most 8- and 16-bit systems

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 90 / 107

Single address space (3)

portable c programs expect flat memory
multiple memory access methods limit portability

management is tricky
need to know / detect total RAM
need to keep processes separated

no protection

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 91 / 107

Virtual memory (1)

a system that uses an address mapping
maps virtual address space to physical address space

to physical RAM
to hardware devices

PCI devices
GPU RAM
On-SOC IP blocks

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 92 / 107

Virtual memory (2)

Advantages

each process can have a different memory mapping
one process’ RAM is invisible to other processes
built in memory protection
kernel RAM is invisiable to user space processes
memory can be moved
memory can be swapped to disk

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 93 / 107

Virtual memory (3)

Advantages (continued)

hardware device memory can be mapped
into process’ address space
requires the kernel to perform the mapping
physical RAM can be mapped
into multiple processes at once
shared memory
memory regions can have access permissions
read / write / execute

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 94 / 107

Memory-mapped I/O (1)

On modern operating systems, it is possible
to mmap a file to a region of memory
then, the file can be accessed just like an array

This is more efficient than read or write,
as only the regions of the file
that a program actually accesses are loaded.

https://www.gnu.org/software/libc/manual/html_node/Memory_002dmapped-I_002fO.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 95 / 107

Memory-mapped I/O (2)

accesses to not-yet-loaded parts of the mmapped region
are handled in the same way as swapped out pages.

since mmapped pages can be stored back to their file
when physical memory is low,
it is possible to mmap files orders of magnitude
larger than both the physical memory and swap space

https://www.gnu.org/software/libc/manual/html_node/Memory_002dmapped-I_002fO.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 96 / 107

Memory-mapped I/O (3)

The only limit is address space.

the theoretical limit is 4GB on a 32-bit machine -

the actual limit will be smaller
since some areas will be reserved for other purposes.

If the LFS (Large File Storage) interface is used

the file size on 32-bit systems is not limited to 2GB
offsets are signed which reduces the addressable area
of 4GB by half
the full 64-bit are available.

https://www.gnu.org/software/libc/manual/html_node/Memory_002dmapped-I_002fO.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 97 / 107

Memory-mapped I/O (4)

mmap is a POSIX-compliant Unix system call
that maps files or devices into memory.

a method of memory-mapped file I/O
implements demand paging

file contents are not read from disk directly
and initially do not use physical RAM at all
the actual reads from disk are
performed in a lazy manner,
after a specific location is accessed.

https://en.wikipedia.org/wiki/Mmap

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 98 / 107

Memory-mapped I/O (5)

after the memory is no longer needed,
it is important to munmap the pointers to it.
protection information can be managed using mprotect

special treatment can be enforced using madvise

https://en.wikipedia.org/wiki/Mmap

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 99 / 107

Memory-mapped I/O (6)

demand paging is a method of virtual memory management
(as opposed to anticipatory paging)

the os copies a disk page into physical memory
only if an attempt is made to access it
and that page is not already in memory (page fault)

https://en.wikipedia.org/wiki/Demand_paging

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 100 / 107

Memory-mapped I/O (7)

it follows that a process begins execution
with none of its pages in physical memory,
and many page faults will occur
until most of a process’s working set of pages
are located in physical memory.
this is an example of a lazy loading technique.

https://en.wikipedia.org/wiki/Demand_paging

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 101 / 107

Memory-mapped I/O (8)

void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset)

mmap() creates a new mapping
in the virtual address space of the calling process
the starting address for the new mapping is specified in addr

the length argument specifies
the length of the mapping
(which must be greater than 0).

https://man7.org/linux/man-pages/man2/mmap.2.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 102 / 107

Memory-mapped I/O (9)

void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset)

If addr is NULL, then the kernel chooses
the (page-aligned) address
at which to create the mapping;
this is the most portable method of creating a new mapping.
If addr is not NULL, then the kernel takes it
as a hint about where to place the mapping;

https://man7.org/linux/man-pages/man2/mmap.2.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 103 / 107

Memory-mapped I/O (10)

void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset)

on Linux, the kernel will pick a nearby page boundary
but always above or equal to the value specified
by /proc/sys/vm/mmap_min_addr
and attempt to create the mapping there.
If another mapping already exists there,
the kernel picks a new address
that may or may not depend on the hint
The address of the new mapping is returned
as the result of the call.

https://man7.org/linux/man-pages/man2/mmap.2.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 104 / 107

Memory-mapped I/O (11)

void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset)

The contents of a file mapping
(as opposed to an anonymous mapping),
are initialized using length bytes
starting at offset offset in the file (or other object)
referred to by the file descriptor fd

offset must be a multiple of the page size
as returned by sysconf(_SC_PAGE_SIZE).

https://man7.org/linux/man-pages/man2/mmap.2.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 105 / 107

Memory-mapped I/O (12)

void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset)

After the mmap() call has returned,
the file descriptor, fd, can be closed immediately
without invalidating the mapping.

https://man7.org/linux/man-pages/man2/mmap.2.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 106 / 107

Memory-mapped I/O (13)

void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset)

The prot argument describes
the desired memory protection of the mapping
and must not conflict with the open mode of the file
It is either PROT_NONE or the bitwise OR of
one or more of the following flags:

PROT_EXEC Pages may be executed.
PROT_READ Pages may be read.
PROT_WRITE Pages may be written.
PROT_NONE Pages may not be accessed.

https://man7.org/linux/man-pages/man2/mmap.2.html

Young W. Lim ELF1 7B Loading Background - ELF Study 1999 2020-10-22 Thr 107 / 107

	Based on
	Dynamic loading and dynamic linking
	Dynamic loading
	Dynamic linking
	Possible Cases of loading and linking

	Load addresses
	TOC
	Memory Map
	Library load addresses

	Executing dynamic executables
	Entry point
	Execution Sequence
	Virtual memory
	Memory mapped I/O

