
 Young Won Lim
10/2/19

Monad P2 : State Transformer Generic Monad (1B)

 Young Won Lim
10/2/19

 Copyright (c) 2016 - 2019 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

State Transformer
Generic Monad (1B)

3 Young Won Lim
10/2/19

Based on

Haskell in 5 steps

https://wiki.haskell.org/Haskell_in_5_steps

State Transformer
Generic Monad (1B)

4 Young Won Lim
10/2/19

A State Transformer ST Example

in https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

a generic version of the State monad in Control.Monad.State.Lazy

a good example to learn State monad and general monads

do not be confused with monad transformers, StateT

and Control.Monad.ST (with reference variable STRef)

The ST monad in this example is similar to StateT monad

but is very different from the ST monad in Control.Monad.ST

State in Haskell, J. Launchbury, S. Pe Jones, 2016

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/state-lasc.pdf

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

A State Transformer

State Transformer
Generic Monad (1B)

5 Young Won Lim
10/2/19

type State = ...

type ST = State -> State

type ST a = State -> (a, State)

generalized state transformers

return a result value in addition to the modified state

 specify the result type as a parameter of the ST type

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

A Generalized State Transformer

State Transformer
Generic Monad (1B)

6 Young Won Lim
10/2/19

the state may have multiple components

ex: multiple variables whose values we might want to update

→ use a different type for State

if we want two integers, we might use the type definition

type State = (Int, Int)

the standard library includes a module Control.Monad.State

that defines a parameterized version of

the state-transformer monad

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

A Generic State Transformer (1)

State Transformer
Generic Monad (1B)

7 Young Won Lim
10/2/19

the functions which clients are allowed to use

module MyState (ST, get, put, apply) where

The type definition for a generic state transformer is very simple:

data ST s a = S (s -> (a, s))

a parameterized state-transformer monad

where the state is denoted by type s and

the return value of the transformer is the type a

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

A Generic State Transformer (2)

State Transformer
Generic Monad (1B)

8 Young Won Lim
10/2/19

type State = ...

type ST = State -> State

type ST a = State -> (a, State)

type ST State a = State -> (a, State)

data ST State a = S (State -> (a, State))

generic state transformers

return a result value in addition to the modified state

specify the state & result type as a parameter of the ST type

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

A Generic State Transformer

State Transformer
Generic Monad (1B)

9 Young Won Lim
10/2/19

We make the above a monad by declaring it to be

an instance of the monad typeclass

instance Monad (ST s) where

 return x = S (\s -> (x, s))

 st >>= f = S (\s -> let (x, s') = apply st s

 in apply (f x) s')

where the function apply is just

apply :: ST s a -> s -> (a, s)

apply (S f) x = f x

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

A Generic State Transformer (3)

st s (x,s')

f x s' (y,s')

S (s -> (x,s'))

S (s' -> (y,s'))

st :: ST s a

f :: a -> ST s a

:: S (\s -> (x, s))

:: a -> S (\s -> (x, s))

State Transformer
Generic Monad (1B)

10 Young Won Lim
10/2/19

instance Monad (ST s) where

 return x = S (\s -> (x, s))

 st >>= f = S (\s -> let (x, s') = apply st s

 in apply (f x) s')

the function apply is just

extracting the underlying state transformer function

apply :: ST s a -> s -> (a, s)

apply (S f) x = f x pattern matching apply (S f) = f

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

A Generic State Transformer (4)

st :: ST s a

f :: a -> ST s a

f x :: ST s a

apply st s :: (a, s)

(x, s') :: (a, s)

apply (f x) :: \s -> (a, s)

:: S (\s -> (x, s))

:: a -> S (\s -> (x, s))

:: S (\s -> (x, s))

apply (f x) s' :: (a, s)

State Transformer
Generic Monad (1B)

11 Young Won Lim
10/2/19

a get and put function can access and modify the state.

Getting the current state via get

- an action that leaves the state unchanged,

- but returns the state itself as a value.

get = S (\s -> (s, s))

modifying the state to some new value s'

put s' = S (_ -> ((), s'))

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Accessing and modifying state (1)

State Transformer
Generic Monad (1B)

12 Young Won Lim
10/2/19

fresh = S0 (-> (n, n+1))

realfresh :: ST Int Int

realfresh = do n <- get

 put (n+1)

 return n

which denotes an action that ignores (ie blows away the old state)

and replaces it with s'. Note that the put s' is an action

that itselds yields nothing (that is, merely the unit value.)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Accessing and modifying state (2)

State Transformer
Generic Monad (1B)

13 Young Won Lim
10/2/19

data ST s a = S (s -> (a, s))

realfresh :: ST Int Int :: S (Int -> (Int, Int))

realfresh = do n <- get

 put (n+1)

 return n

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Accessing and modifying state (2)

get = S (\s -> (s, s))
put s' = S (_ -> ((), s'))
return x = S (\s -> (x, s))

State Transformer
Generic Monad (1B)

14 Young Won Lim
10/2/19

using generic state monad to the tree labeling function

Note that the actual type definition of the generic transformer

is hidden from us, so we must use only the publicly exported functions:

get, put and apply (in addition to the default monadic functions)

the action that returns the next fresh integer.

Using the generic state-transformer, we write it as:

freshS :: ST Int Int

freshS = do n <- get

 put (n+1)

 return n

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Using a Generic State Transformer (1)

State Transformer
Generic Monad (1B)

15 Young Won Lim
10/2/19

Now, the labeling function is straightforward

mlabelS :: Tree a -> ST Int (Tree (a,Int))

mlabelS (Leaf x) = do n <- freshS

 return (Leaf (x, n))

mlabelS (Node l r) = do l' <- mlabelS l

 r' <- mlabelS r

 return (Node l' r')

ghci> apply (mlabelS tree) 0

(Node (Node (Leaf ('a', 0)) (Leaf ('b', 1))) (Leaf ('c', 2)), 3)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Using a Generic State Transformer (2)

State Transformer
Generic Monad (1B)

16 Young Won Lim
10/2/19

We can execute the action from any initial state of our choice

ghci> apply (mlabelS tree) 1000

(Node (Node (Leaf ('a',1000)) (Leaf ('b',1001))) (Leaf ('c',1002)),1003)

Now, whats the point of a generic state transformer

if we can’t have richer states.

Next, let us extend our fresh and label functions so that

 each node gets a new label (as before),

 the state also contains a map of the frequency

 with which each leaf value appears in the tree.

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Using a Generic State Transformer (2)

State Transformer
Generic Monad (1B)

17 Young Won Lim
10/2/19

Thus, our state will now have two elements,

an integer denoting the next fresh integer,

and a Map a Int denoting the number of times

each leaf value appears in the tree.

data MySt a = M { index :: Int

 , freq :: Map a Int }

 deriving (Eq, Show)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Using a Generic State Transformer (3)

State Transformer
Generic Monad (1B)

18 Young Won Lim
10/2/19

We write an action that returns the next fresh integer as

freshM = do

 s <- get

 let n = index s

 put $ s { index = n + 1 }

 return n

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Using a Generic State Transformer (4)

State Transformer
Generic Monad (1B)

19 Young Won Lim
10/2/19

we want an action that updates the frequency of a given element k

updFreqM k = do

 s <- get

 let f = freq s

 let n = findWithDefault 0 k f

 put $ s {freq = insert k (n + 1) f}

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Using a Generic State Transformer (5)

State Transformer
Generic Monad (1B)

20 Young Won Lim
10/2/19

And with these two, we are done

mlabelM (Leaf x) = do updFreqM x

 n <- freshM

 return $ Leaf (x, n)

mlabelM (Node l r) = do l' <- mlabelM l

 r' <- mlabelM r

 return $ Node l' r'

Now, our initial state will be something like

initM = M 0 empty

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Using a Generic State Transformer (6)

State Transformer
Generic Monad (1B)

21 Young Won Lim
10/2/19

and so we can label the tree

ghci> let tree2 = Node tree tree

ghci> let (lt, s) = apply (mlabelM tree) $ M 0 empty

ghci> lt

Node (Node (Node (Leaf ('a',0)) (Leaf ('b',1))) (Leaf ('c',2)))

(Node (Node (Leaf ('a',3)) (Leaf ('b',4))) (Leaf ('c',5)))

ghci> s

M {index = 6, freq = fromList [('a',2),('b',2),('c',2)]}

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Using a Generic State Transformer (6)

State Transformer
Generic Monad (1B)

22 Young Won Lim
10/2/19

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22

