Boolean Algebra (2E)

Copyright (c) 2011-2013 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Distributive

$$
x \cdot(y+z)=x \cdot y+x \cdot z \quad \neq x \cdot y+z
$$

This parenthesis cannot be deleted

$$
x+(y \cdot z)=(x+y) \cdot(x+z)=x+y \cdot z
$$

This parenthesis can be deleted

Operator precedence : $\cdot>+$

Inclusion

$$
\begin{aligned}
& x \cdot(x+y)=x \\
& \begin{aligned}
x \cdot(x+y) & =x \cdot x+x \cdot y \\
& =x+x \cdot y \\
& =x \cdot(1+y) \\
& =x \\
x+x y & =x \\
x+x y & =x \cdot 1+x \cdot y \\
& =x \cdot(1+y) \\
& =x
\end{aligned}
\end{aligned}
$$

$$
x+y
$$

$x y$

Eliminate

$$
\begin{aligned}
x \cdot(\bar{x}+y) & =x y \\
x \cdot(\bar{x}+y) & =x \cdot \bar{x}+x \cdot y \\
& =0+x \cdot y \\
& =x \cdot y \\
x+\bar{x} y & =x+y \\
x+\bar{x} y & =(x+\bar{x}) \cdot(x+y) \\
& =1 \cdot(x+y) \\
& =x+y
\end{aligned}
$$

$\bar{x} y$

Consensus

$$
x \cdot y+\bar{x} \cdot z+y \cdot z=x \cdot y+\bar{x} \cdot z
$$

$$
(x+y) \cdot(\bar{x}+z) \cdot(y+z)=(x+y) \cdot(\bar{x}+z)
$$

$(x+y)(x+z)=x+y z$

$$
\begin{aligned}
(x+y)(x+z) & =x+y z \\
(x+y)(x+z) & =x x+x z+x y+y z \\
& =\underline{x+x y}+x z+y z \\
& =\underline{x+x z}+y z \\
& =x+y z
\end{aligned}
$$

$$
x+x y=x
$$

$x y$

$$
x+x z=x
$$

$x+x^{\prime} y=x+y$

$$
\begin{aligned}
x+\bar{x} y & =x+y \\
x+\bar{x} y & =(x+\bar{x}) \cdot(x+y) \\
& =1 \cdot(x+y) \\
& =x+y
\end{aligned}
$$

References

References

[1] http://en.wikipedia.org/
[2] M. M. Mano, C. R. Kime, "Logic and Computer Design Fundamentals", $4^{\text {th }}$ ed.
[3] D.M. Harris, S. L. Harris, "Digital Design and Computer Architecture"

