Boolean Algebra (2E)

Copyright (c) 2011-2013 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".
Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Distributive

$$x \cdot (y + z) = x \cdot y + x \cdot z$$

$$\neq x \cdot y + z$$

This parenthesis cannot be deleted

$$x + (y \cdot z) = (x + y) \cdot (x + z) = x + y \cdot z$$

This parenthesis can be deleted

Operator precedence : (> +

Inclusion

$$x \cdot (x + y) = x$$

$$x \cdot (x + y) = x \cdot x + x \cdot y$$

$$= x + x \cdot y$$

$$= x \cdot (1 + y)$$

$$= x$$

$$x + y$$

$$x + xy = x$$

$$x + xy = x \cdot 1 + x \cdot y$$

$$= x \cdot (1 + y)$$

$$= x$$

Eliminate

$$x \cdot (\overline{x} + y) = x y$$

$$x \cdot (\overline{x} + y) = x \cdot \overline{x} + x \cdot y$$

$$= 0 + x \cdot y$$

$$= x \cdot y$$

$$x + \overline{x}y = x + y$$

$$x + \overline{x}y = (x + \overline{x}) \cdot (x + y)$$

$$= 1 \cdot (x + y)$$

$$= x + y$$

Consensus

$$x \cdot y + \overline{x} \cdot z + y \cdot z = x \cdot y + \overline{x} \cdot z$$

$$(x + y) \cdot (\overline{x} + z) \cdot (y + z) = (x + y) \cdot (\overline{x} + z)$$

(x+y)(x+z) = x+yz

$$(x + y)(x + z) = x + yz$$

$$(x + y)(x + z) = xx + xz + xy + yz$$

$$= x + xy + xz + yz$$

$$= x + xz + yz$$

$$= x + yz$$

$$x + xz = x$$

x + x'y = x + y

$$x + \overline{x} y = x + y$$

$$x + \overline{x}y = (x + \overline{x}) \cdot (x + y)$$
$$= 1 \cdot (x + y)$$
$$= x + y$$

4/19/13

8

References

References

- [1] http://en.wikipedia.org/
- [2] M. M. Mano, C. R. Kime, "Logic and Computer Design Fundamentals", 4th ed.
- [3] D.M. Harris, S. L. Harris, "Digital Design and Computer Architecture"