Automata Theory (2B)

- PushDown Automata (PDA)

Copyright (c) 2018 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Deterministic Pushdown Automaton (PDA)

Deterministic PDA (1) - transition relation

```
An element (p, a, A, q, \alpha) \in \delta is a transition of M.
in state p G Q,
on the input a }\in\Sigma\cup{\varepsilon}\mathrm{ and
with A }\in\Gamma\mathrm{ as topmost stack symbol,
M may
- read a,
- change the state to q ,
- pop A,
- replacing it by pushing \(\alpha \in \Gamma^{*}\).
```


Deterministic PDA (1) - input operations

on the input $a \in \Sigma \cup\{\varepsilon\}$
the $(\Sigma \cup\{\varepsilon\})$ component of the transition relation is used to formalize that the PDA can either read a letter from the input, $\quad \Sigma$ or proceed leaving the input untouched. ε

Deterministic PDA (2) - transition function

δ is the transition function, mapping $\mathrm{Q} \times(\Sigma \cup\{\varepsilon\}) \times \Gamma$

$$
\delta(p, a, A) \rightarrow(q, \alpha)
$$

into finite subsets of $\mathrm{Q} \times \Gamma^{*}$

Here $\delta(p, a, A)$ contains all possible actions in state p with A on the stack, while reading a on the input.

An element $(p, a, A, q, \alpha) \in \delta$ is a transition of \mathbf{M}.

Deterministic PDA (2) - transition function

δ is the transition function, mapping $\mathrm{Q} \times(\Sigma \cup\{\varepsilon\}) \times \Gamma$

$$
\delta(p, a, A) \rightarrow(q, \alpha)
$$

into finite subsets of $\mathrm{Q} \times \Gamma^{*}$

Here $\delta(p, a, A)$ contains all possible actions in state p with A on the stack, while reading a on the input.

One writes for example $\delta(p, a, A)=\{(q, B A)\}$
precisely when $(q, B A) \in\{(q, B A)\},(q, B A) \in \delta(p, a, A)$
Because $((p, a, A),\{(q, B A)\}) \in \delta$.
Note that finite in this definition is essential.

Deterministic PDA Example (1) - description

The following is the formal description of the PDA which recognizes the language $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ by final state:
$M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, Z, F\right)$, where

states:	$Q=\{p, q, r\}$
input alphabet:	$\Sigma=\{0,1\}$
stack alphabet:	$\Gamma=\{A, Z\}$
start state:	$q_{0}=p$
start stack symbol:	Z
accepting states:	$F=\{r\}$

0; $Z / A Z$
0; $A / A A$

Deterministic PDA Example (2) - instructions

The transition relation δ consists of the following six instructions:

the instruction (p, a, A, q, α) by an edge from state p to state q labelled by a; A/ α (read a; replace A by α).

Deterministic PDA Example (3) - instruction description

$(p, 0, Z, p, A Z), \quad$ in state p any time the symbol 0 is read,
($p, 0, A, p, A A)$,
(p, ϵ, Z, q, Z), at any moment the automaton may move
$(p, \epsilon, A, q, A), \quad$ from state p to state q.
$(q, 1, A, q, \epsilon), \quad$ in state q, for each symbol 1 read, one A is popped.
(q, ϵ, Z, r, Z). the machine may move from state q to accepting state r only when the stack consists of a single Z.

Deterministic PDA Computation (1) - ID

to formalize the semantics of the pushdown automaton a description of the current situation is introduced.
Any 3-tuple $(p, w, \beta) \in Q \times \Sigma^{*} \times \Gamma^{*}$ is called
an instantaneous description (ID) of
$M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, Z, F\right)$ which includes
the current state, the part of the input tape that has not been read, and the contents of the stack (topmost symbol written first).

Deterministic PDA Computation (2) - step-relation

The transition relation δ defines
the step-relation \vdash_{M} on instantaneous descriptions.

For instruction $(p, a, A, q, \alpha) \in \delta$
there exists a step $(p, a x, A y) \vdash M(q, x, \alpha y)$, for every $x \in \Sigma^{\star}$ and every $y \in \Gamma^{*}$.
p, q : states

ax, x:inputs
Ay, αy : stack elementes

Deterministic PDA Computation (3) - non-deterministic

Nondeterministic :

in a given instantaneous description (p, w, β)
there may be several possible steps.
Any of these steps can be chosen in a computation.

Deterministic PDA Computation (4) - pop operation

With the above definition in each step always a single symbol (top of the stack) is popped, replacing it with as many symbols as necessary.

As a result no step is defined when the stack is empty.

Deterministic PDA Computation (5) - initial description

Computations of the pushdown automaton are sequences of steps.

The computation starts in the initial state q_{0} with the initial stack symbol Z on the stack, and a string w on the input tape, thus with initial description $\left(q_{0}, w, Z\right)$.

Deterministic PDA Computation (6) - acceptance modes

There are two modes of accepting.
either accepts by final state,
which means after reading its input the automaton reaches an accepting state (in F)
uses the internal memory (state)
or it accepts by empty stack (ε),
which means after reading its input the automaton empties its stack.
uses the external memory (stack).

Computation Example (1)

The following illustrates how the above PDA computes on different input strings.

The subscript M from the step symbol
\vdash is here omitted.

		A	A			
	A	A	A	A		
Z						
p	p	p	q	q	q	r
0	0	ε	1	1	ε	

Computation Example (2)

input string = 0011.
There are various computations, depending on the moment the move from state p to state q is made.
Only one of these is accepting.
($\mathrm{p}, 0011, \mathrm{Z}) \vdash$
(p, ϵ, Z, q, Z),
(q , 0011, Z) \vdash
(q, $\in, Z, r, Z)$.

1. ($p, 0, Z, p, A Z)$
2. ($p, 0, A, p, A A)$
3. (p, \in, Z, q, Z)
4. (p, \in, A, q, A)
5. ($q, 1, A, q, \epsilon)$
6. ($q, \in, Z, r, Z)$

Computation Example (3)

The final state is accepting, but the input is not accepted this way as it has not been read.
($\mathrm{p}, 0011, \mathrm{Z}) \vdash$ ($\mathrm{p}, 011, \mathrm{~A} Z) \vdash$ ($\mathrm{q}, 011, \mathrm{~A}$ Z)
$(p, 0, Z, p, A Z)$
($q, 1, A, q, \epsilon$)

No further steps possible.

Computation Example (4)

$(\mathrm{p}, 0011, \mathrm{Z}) \vdash$	$(\mathrm{p}, 0, \mathrm{~A}, \mathrm{p}, \mathrm{AA})$
$(\mathrm{p}, 011, A Z) \vdash$	$(\mathrm{p}, 0, \mathrm{~A}, \mathrm{p}, \mathrm{A} A)$
$(\mathrm{p}, 11, A A Z) \vdash$	$(\mathrm{p}, \epsilon, \mathrm{A}, \mathrm{q}, \mathrm{A})$
$(\mathrm{q}, 11, A A Z) \vdash$	$(\mathrm{q}, 1, A, \mathrm{q}, \epsilon)$
$(\mathrm{q}, 1, A Z) \vdash$	$(\mathrm{q}, 1, A, \mathrm{q}, \epsilon)$
$(\mathrm{q}, \epsilon, \mathrm{Z}) \vdash$	$(\mathrm{q}, \epsilon, \mathrm{Z}, \mathrm{r}, \mathrm{Z})$
$(\mathrm{r}, \epsilon, \mathrm{Z})$	

Accepting computation: ends in accepting state, while complete input has been read.

		A	A			
	A	A	A	A		
Z	Z	Z	Z	Z	Z	Z
$\begin{array}{lllllllll} p & p & p & q & q & q & r \\ 0 & 0 & \varepsilon & 1 & 1 & \varepsilon \end{array}$						

$(p$,	0011,	$Z)$
$(p$,	$\vdash 11$,	$A Z)$
$(p$,	11,	$A A Z)$
$(q$,	11,	$A A Z)$
$(q$,	1,	$A Z)$
$(q$,		
$(q$,	ε,	$Z)$
$(r$,	ε,	$Z)$

Computation Example (5)

Input string = 00111. Again there are various computations. None of these is accepting.

```
(p,00111, Z )\vdash
(q,00111, Z)\vdash
```

(r, 00111, Z)

1. ($p, 0, Z, p, A Z)$
2. ($p, 0, A, p, A A)$
3. (p, \in, Z, q, Z)
4. (p, \in, A, q, A)
5. ($q, 1, A, q, \epsilon)$
6. ($q, \in, Z, r, Z)$

The final state is accepting, but the input is not accepted this way as it has not been read.

Computation Example (6)

$(p, 00111, Z) \vdash$	$(p, 0, Z, p, A Z)$
$(p, 0111, A Z) \vdash$	(p, \in, A, q, A)
$(q, 0111, A Z)$	
No further steps possible.	

1. ($p, 0, Z, p, A Z)$
2. ($p, 0, A, p, A A)$
3. (p, \in, Z, q, Z)
4. (p, \in, A, q, A)
5. $(q, 1, A, q, \epsilon)$
6. ($q, \in, Z, r, Z)$

Computation Example (7)

$(p, 00111, Z) \vdash$	($\mathrm{p}, 0, \mathrm{z}, \mathrm{p}, \mathrm{A} Z)$
$(\mathrm{p}, 0111, \mathrm{~A}$) $) \vdash$	($\mathrm{p}, 0, \mathrm{z}, \mathrm{p}, \mathrm{A}$)
$\left.(\mathrm{p}, 111, A \mathrm{~A})^{\prime}\right) \vdash$	(p, ϵ, A, q, A)
$\left.(\mathrm{q}, 111, A \mathrm{~A})^{\prime}\right) \vdash$	$(\mathrm{q}, 1, A, q, \epsilon)$
$(\mathrm{q}, 11, A Z) \vdash$	($q, 1, A, q, \epsilon$)
$(\mathrm{q}, 1, \mathrm{Z}) \vdash$	(q, ϵ, Z, r, Z)
(r, 1, Z)	

1. ($p, 0, Z, p, A Z)$
2. ($p, 0, A, p, A A)$
3. (p, \in, Z, q, Z)
4. (p, \in, A, q, A)
5. $(q, 1, A, q, \epsilon)$
6. ($q, \in, Z, r, Z)$

The final state is accepting, but the input is not accepted this way as it has not been (completely) read.

PDA and Context Free Language (1)

Every context-free grammar can be transformed
into an equivalent nondeterministic pushdown automaton.
The derivation process of the grammar is simulated in a leftmost way

Where the grammar rewrites a nonterminal, the PDA takes the topmost nonterminal from its stack and replaces it by the right-hand part of a grammatical rule (expand).

Where the grammar generates a terminal symbol, the PDA reads a symbol from input when it is the topmost symbol on the stack (match).

In a sense the stack of the PDA contains
the unprocessed data of the grammar, corresponding to a pre-order traversal of a derivation tree.

PDA and Context Free Language (1)

Every context-free grammar can be transformed
into an equivalent nondeterministic pushdown automaton.

The derivation process of the grammar is simulated in a leftmost way

In a sense the stack of the PDA contains the unprocessed data of the grammar, corresponding to a pre-order traversal of a derivation tree.

PDA and Context Free Language (2)

The derivation process of the grammar
is simulated in a leftmost way

Where the grammar rewrites a nonterminal, the PDA takes the topmost nonterminal from its stack and replaces it by the right-hand part
of a grammatical rule (expand).

Where the grammar generates a terminal symbol, the PDA reads a symbol from input when it is the topmost symbol on the stack (match).

I

Computation Example (3)

Technically, given a context-free grammar, the PDA has a single state, 1, and its transition relation is constructed as follows.
$(1, \varepsilon, A, 1, \alpha)$ for each rule $A \rightarrow \alpha$ (expand)
($1, a, a, 1, \varepsilon$) for each terminal symbol a (match)

PDA and Context Free Language (2)

Technically, given a context-free grammar, the PDA has a single state, 1 , and its transition relation is constructed as follows.
$(1, \varepsilon, A, 1, \alpha)$ for each rule $A \rightarrow \alpha$ (expand)
$(1, a, a, 1, \varepsilon)$ for each terminal symbol a (match)

The PDA accepts by empty stack.
Its initial stack symbol is the grammar's start symbol.

References

[1] http://en.wikipedia.org/
[2]

