
Young Won Lim
7/15/21

Exceptions and Interrupts

Assembly Programming
Exceptions and Interrupts

2 Young Won Lim
7/15/21

 Copyright (c) 2021 - 2014 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Assembly Programming
Exceptions and Interrupts

3 Young Won Lim
7/15/21

Based on

ARM System-on-Chip Architecture, 2nd ed, Steve Furber

Introduction to ARM Cortex-M Microcontrollers
– Embedded Systems, Jonathan W. Valvano

Digital Design and Computer Architecture,
D. M. Harris and S. L. Harris

ARM assembler in Raspberry Pi
Roger Ferrer Ibáñez

https://thinkingeek.com/arm-assembler-raspberry-pi/

ISA (4A) Assembler
Format – Data Processing

4 Young Won Lim
7/15/21

Status Reg to General Reg Transfer Instructions

Status Register to General Register Transfer Instructions
MRS {<cond>} Rd, CPSR | SPSR

MRS Rd, CPSR
MRS Rd, SPSR
MRS <cond> Rd, CPSR
MRS <cond> Rd, SPSR

M R S

ISA (4A) Assembler
Format – Data Processing

5 Young Won Lim
7/15/21

General Reg to Status Reg Transfer Instructions

General Register to Status Register Transfer Instructions
MSR {<cond>} CPSR_f | SPSR_f, #<32-bit immediate>
MSR {<cond>} CPSR_<field> | SPSR_<field>, Rm

_<field> is one of
_c : the control field PSR[7: 0]
_x : the extension field PSR[15: 8] (unused on current ARMs)
_s : the status field PSR[23:16] (unused on current ARMs)
_f : the flag field PSR[31:24]

MSR CPSR_f, #<32-bit immediate>
MSR SPSR_f, #<32-bit immediate>
MSR <cond> CPSR_f, #<32-bit immediate>
MSR <cond> SPSR_f, #<32-bit immediate>
MSR CPSR_<field>, Rm
MSR SPSR_<field>, Rm
MSR <cond> CPSR_<field>, Rm
MSR <cond> SPSR_<field>, Rm M S R

ISA (4A) Assembler
Format – Data Processing

6 Young Won Lim
7/15/21

CPSR and SPSR

N Z C V T mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Current Program Status Register (CPSR)

Saved Program Status Register (SPSR)

FI

To disable Interrupt (IRQ), set I

To disable Fast Interrupt (FIQ), set F

the T bit shows running in the Thumb state

0 0 0 01

0 0 0 11

0 0 1 01

0 0 1 11

0 1 1 11

1 0 1 11

1 1 1 11

 Usr (usr)

 Fast Interrupt (fiq)

 Interrupt (irq)

 Supervisor (svc)

 Abort (abt)

 Undefined (und)

 System (sys)

N Negative flag

Z Zero flag

C Carry flag

V Overflow flag

ISA (4A) Assembler
Format – Data Processing

7 Young Won Lim
7/15/21

CPSR and SPSR Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Current Program Status Register (CPSR)

Saved Program Status Register (SPSR)

CPSR_f

SPSR_f

CPSR_s

SPSR_s

CPSR_x

SPSR_x

CPSR_c

SPSR_c

flag field status field extension field control field

N Z C V T modeFI

ISA (4A) Assembler
Format – Data Processing

8 Young Won Lim
7/15/21

To a General Reg From a Status Reg

N Z C V T mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FI

PSR (Current / Saved)

MRS Rd, CPSR
MRS Rd, SPSR

M R S

M S R

ISA (4A) Assembler
Format – Data Processing

9 Young Won Lim
7/15/21

To a Status Reg From a General Reg

N Z C V T mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FI

N Z C V T mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FI

MSR CPSR_f , #<32-bit immediate>
MSR SPSR_f , #<32-bit immediate>

MSR CPSR_c , #<32-bit imm>
MSR SPSR_c , #<32-bit imm>

MSR CPSR_f , Rm
MSR SPSR_f , Rm

MSR CPSR_c , Rm
MSR SPSR_c , Rm

#<32-bit immediate>

Rm

Assembly Programming
Exceptions and Interrupts

10 Young Won Lim
7/15/21

Interrupt is an Exception

https://stackoverflow.com/questions/7295936/what-is-the-difference-between-interrupt-and-exception-context

There are four classes of exception:
● interrupt
● trap
● fault
● abort

Interrupt is one of the classes of exception.

Interrupt occurs asynchronously and
it is triggered by signal which is from I/O device
that are external by processor.

After exception handler finish
handling this interrupt (exception processing),
handler will always return to next instruction.

● interrupt

● trap

● fault

● abort

exceptions

Assembly Programming
Exceptions and Interrupts

11 Young Won Lim
7/15/21

Exceptions vs interrupts (1)

https://stackoverflow.com/questions/7295936/what-is-the-difference-between-interrupt-and-exception-context

Interrupts and exceptions both alter the program flow.

● interrupts are used to handle
external events (serial ports, keyboard)

● exceptions are used to handle
instruction faults (division by zero, undefined opcode).

interrupts are handled by the processor
after finishing the current instruction.

If it finds a signal on its interrupt pin,
it will look up the address of the interrupt handler
in the interrupt table and pass that routine control.

After returning from the interrupt handler routine,
it will resume program execution at the next instruction
after the interrupted instruction.

● interrupt

● trap

● fault

● abort ex
ce

p
ti

o
n

s

Assembly Programming
Exceptions and Interrupts

12 Young Won Lim
7/15/21

Exceptions vs interrupts (2)

https://stackoverflow.com/questions/7295936/what-is-the-difference-between-interrupt-and-exception-context

Exceptions on the other hand
are divided into three kinds.
Faults, Traps and Aborts.

Faults are detected and serviced
by the processor before the faulting instructions.

Traps are serviced
after the instruction causing the trap.

User defined interrupts go into this category and
can be said to be traps;

this includes the MS- DOS INT 21h
software interrupt, for example.

Aborts are used only to signal
severe system problems,
when operation is no longer possible.

● interrupt

● trap

● fault

● abort ex
ce

p
ti

o
n

s

Assembly Programming
Exceptions and Interrupts

13 Young Won Lim
7/15/21

Exceptions vs interrupts (3)

https://www.geeksforgeeks.org/difference-between-interrupt-and-exception/

Trap
 It is typically a type of synchronous interrupt

caused by an exceptional condition
(e.g., breakpoint, division by zero,
invalid memory access).

Fault
 Fault exception is used in a client application

to catch contractually-specified SOAP faults.
By the simple exception message,
you can’t identify the reason of the exception,
that’s why a Fault Exception is useful.

Abort
 It is a type of exception occurs

when an instruction fetch causes an error.

SOAP (formerly an acronym for Simple
Object Access Protocol) is a messaging
protocol specification for exchanging
structured information in the
implementation of web services in
computer networks.

Assembly Programming
Exceptions and Interrupts

14 Young Won Lim
7/15/21

Exceptions vs interrupts (4)

https://www.geeksforgeeks.org/difference-between-interrupt-and-exception/

Interrupt is one of the classes of Exception.
There are 4 classes of Exception
- interrupt, trap, fault and abort.

Even though there are many differences,
interrupt belongs to exception still

In any computer,
during its normal execution of a program,
there could be events that can cause
the CPU to temporarily halt.
Events like this are called interrupts.

Interrupts can be caused
by either software or hardware faults.

● hardware interrupts are called Interrupts external, asynchronous

● software interrupts are called Exceptions internal, instruction

● interrupt

● trap

● fault

● abort ex
ce

p
ti

o
n

s

hardware
interrupts

software
interrupts

Assembly Programming
Exceptions and Interrupts

15 Young Won Lim
7/15/21

Exceptions vs interrupts (5)

https://www.geeksforgeeks.org/difference-between-interrupt-and-exception/

The term Interrupt is usually reserved for
hardware interrupts.

They are program control interruptions caused
by external hardware events.

Here, external means external to the CPU.

Hardware interrupts usually come
from many different sources

● timer chip
● peripheral devices (keyboards, mouse, etc.)
● I/O ports (serial, parallel, etc.)
● disk drives, CMOS clock
● expansion cards (sound / video card, etc)

That means hardware interrupts
almost never occur due to some event
related to the executing program.

Exception is a software interrupt,
which can be identified
as a special handler routine.

Exception can be identified
as an automatically occurring trap.

Generally, there are no specific instructions
associated with exceptions

traps are generated
using a specific instruction
int is x86 jargon for "trap instruction"
- a call to a predefined interrupt handler.

So, an exception occurs
due to an “exceptional” condition
that occurs during program execution.

Assembly Programming
Exceptions and Interrupts

16 Young Won Lim
7/15/21

Exceptions vs interrupts (6)

https://www.geeksforgeeks.org/difference-between-interrupt-and-exception/

 Interrupt

● These are Hardware interrupts.

● Occurrences of hardware interrupts
usually disable other hardware
interrupts.

● These are asynchronous external
requests for service

(like keyboard or printer needs
service).

● Being asynchronous, interrupts can
occur at any place in the program.

● These are normal events and
shouldn’t interfere with the normal
running of a computer.

 Exception

● These are Software Interrupts.

● This is not a true case in terms of
Exception. (does not disable other
exceptions)

● These are synchronous internal
requests for service based upon
abnormal events

(think of illegal instructions, illegal
address, overflow etc).

● Being synchronous, exceptions occur
when there is abnormal event in your
program like, divide by zero or illegal
memory location.

● These are abnormal events and often
result in the termination of a program

Assembly Programming
Exceptions and Interrupts

17 Young Won Lim
7/15/21

Interrupt examples

https://www.geeksforgeeks.org/difference-between-interrupt-and-exception/

An event like a key press on the keyboard,
or an internal hardware timer timing out
can raise this kind of interrupt and
can inform the CPU

that a certain device needs some attention.

the CPU will stop whatever it was doing,
provides the service required by the device
and will get back to the normal program.

When hardware interrupts occur
and the CPU starts the ISR,
other hardware interrupts are disabled
(e.g. in 80×86 machines).

If you need other hardware interrupts to occur
while the ISR is running,
you need to do that explicitly
by clearing the interrupt flag

with CLI / STI instruction in 80x86
with MSR in ARM

In 80×86 machines,
clearing the interrupt flag will
only affect hardware interrupts.

Assembly Programming
Exceptions and Interrupts

18 Young Won Lim
7/15/21

Exception examples

https://www.geeksforgeeks.org/difference-between-interrupt-and-exception/

Division by zero,
execution of an illegal opcode or
memory related fault could cause exceptions.

Whenever an exception is raised,
the CPU temporarily suspends the program
it was executing and starts the ISR.

ISR will contain what to do with the exception.

It may correct the problem or
if it is not possible,

it may abort the program gracefully
by printing a suitable error message.

Although a specific instruction
does not cause an exception,
an exception will always be
caused by an instruction.

For example, the division by zero error
can only occur during the execution
of the division instruction.

Assembly Programming
Exceptions and Interrupts

19 Young Won Lim
7/15/21

(1) Mode of operations

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

● 7 modes of operation.
● most application programs execute in user mode
● Non user modes (called privileged modes)

are entered to serve interrupts or exceptions

 Usr (usr)

 Fast Interrupt (fiq)

 Interrupt (irq)

 Supervisor (svc)

 Abort (abt)

 Undefined (und)

 System (sys)

 non-user

Assembly Programming
Exceptions and Interrupts

20 Young Won Lim
7/15/21

(2) Mode of operations

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

● The system mode is special mode
for accessing protected resources.

Because exception handlers in system mode
does not use registers,

errors in exception handler cannot
corrupt registers

 Usr (usr)

 Fast Interrupt (fiq)

 Interrupt (irq)

 Supervisor (svc)

 Abort (abt)

 Undefined (und)

 System (sys)

 non-user

Assembly Programming
Exceptions and Interrupts

21 Young Won Lim
7/15/21

(3) Mode of operations

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

● switching between modes
can be done manually through modifying
the mode bits in the CPSR register.

N Z C V T mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FI

0 0 0 01

0 0 0 11

0 0 1 01

0 0 1 11

0 1 1 11

1 0 1 11

1 1 1 11

 Usr (usr)

 Fast Interrupt (fiq)

 Interrupt (irq)

 Supervisor (svc)

 Abort (abt)

 Undefined (und)

 System (sys)

Assembly Programming
Exceptions and Interrupts

22 Young Won Lim
7/15/21

(4) Mode of operations

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

Processor Mode Description
USR User Normal program execution mode
FIQ FIQ Fast data processing mode
IRQ IRQ For general purpose interrupts
SVC Supervisor A protected mode for the OS
ABT Abort When data or instruction fetch is aborted
UND Undefined For undefined instructions
SYS System Privileged mode for OS Tasks

Switching between these modes requires saving/loading register values

Assembly Programming
Exceptions and Interrupts

23 Young Won Lim
7/15/21

(4) Mode of operations

https://www.keil.com/support/man/docs/armasm/armasm_dom1359731126962.htm

● User mode is an unprivileged mode,
and has restricted access to system resources.

● Non-user modes
● have full access to system resources

in the current security state,
● can change mode freely,
● execute software as privileged.

● Non-user mode are entered
● to service exceptions,
● or to access privileged resources.

● Applications that require task protection
usually execute in User mode.

● Some embedded applications
might run entirely in Non-user mode.

● An application that requires full access
to system resources usually executes
in System mode.

Assembly Programming
Exceptions and Interrupts

24 Young Won Lim
7/15/21

(5) Mode of operations

https://www.quora.com/In-ARM-processor-what-is-the-difference-in-supervisor-mode-and-system-mode

● Supervisor (svc) mode: A privileged mode
entered whenever the CPU is reset or when an
SVC instruction is executed.

● whereas System mode is the only privileged mode
that is not entered by an exception.

● It can only be entered by executing an instruction
that explicitly writes to the mode bits of the
Current Program Status Register (CPSR).

● So, the exception handlers modify the CPSR
to enter System mode.

● Usage: Corruption of the link register can be a
problem when handling multiple exceptions of the
same.

● the System mode shares the same registers as
User mode,
it can run tasks that require privileged access,
and exceptions no longer overwrite the link
register.

● Linux kernel has done it this way,
so that whenever any interrupt occurs
in first level IRQ handler,
it copies IRQ registers to SVC registers and
switch the ARM to SVC mode.

Assembly Programming
Exceptions and Interrupts

25 Young Won Lim
7/15/21

(3) ARM Register Set

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

● ARM processor has 37 32-bit registers.

● 31 registers are general purpose registers.

● 6 registers are control registers

● Registers are named from R0 to R16

with some registers banked in different modes

● R13 is the stack pointer SP (banked)
R13, R13_fiq, R13_irq, R13_svc, R13_abt, R13_und

● R14 is subroutine link register LR (banked)
R14, R14_fiq, R14_irq, R14_svc, R14_abt, R14_und

● R15 is program counter PC

● R16 is current program status register CPSR (banked)
CPSR, SPSR_irq, SPSR_irq, SPSR_svc, SPSR_abt, SPSR_und

Banked registers

● R8, R8_fiq

● R9, R9_fiq

● R10, R10_fiq

● R11, R11_fiq

● R12, R12_fiq

ARM Architecture (1A)
Programmer’s Model 26 Young Won Lim

7/15/21

SPSR_fiq SPSR_irq SPSR_svc SPSR_abt SPSR_und

R13_irq

R14_irq

R13_svc

R14_svc

R13_abt

R14_abt

R13_und

R14_und

R8_fiq

R9_fiq

R10_fiq

R11_fiq

R12_fiq

R13 (SP)

R14 (LR)

R13_fiq

R14_fiq

The same registers across different modes

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

CPSR CPSR CPSR CPSR CPSR CPSR CPSR

User System Fast Interrupt Interrupt Supervisor Abort Undefined

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R15 (PC)

http://www.cs.otago.ac.nz/cosc440/readings/arm-syscall.pdf

ARM Architecture (1A)
Programmer’s Model 27 Young Won Lim

7/15/21

Actual number of different registers

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

CPSR CPSR CPSR CPSR CPSR CPSR CPSR

16+1 0 7+1 2+1 2+1 2+1 2+1

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R15 (PC)

http://www.cs.otago.ac.nz/cosc440/readings/arm-syscall.pdf

SPSR_fiq SPSR_irq SPSR_svc SPSR_abt SPSR_und

R8_fiq

R9_fiq

R10_fiq

R11_fiq

R12_fiq

R13 (SP)

R14 (LR)

R13_irq

R14_irq

R13_fiq

R14_fiq

R13_svc

R14_svc

R13_abt

R14_abt

R13_und

R14_und

31 general purpose registers

6 control registers

ARM Architecture (1A)
Programmer’s Model 28 Young Won Lim

7/15/21

ARM Processor Registers

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

CPSR CPSR CPSR CPSR CPSR CPSR CPSR

User System Fast Interrupt Interrupt Supervisor Abort Undefined

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R15 (PC)

http://www.cs.otago.ac.nz/cosc440/readings/arm-syscall.pdf

SPSR_fiq SPSR_irq SPSR_svc SPSR_abt SPSR_und

R8_fiq

R9_fiq

R10_fiq

R11_fiq

R12_fiq

R13 (SP)

R14 (LR)

R13_irq

R14_irq

R13_fiq

R14_fiq

R13_svc

R14_svc

R13_abt

R14_abt

R13_und

R14_und

Assembly Programming
Exceptions and Interrupts

29 Young Won Lim
7/15/21

(4) Exceptions

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

An exception is any condition that needs
to halt normal execution of the instructions

Examples

● Resetting ARM core
● Failure of fetching instructions
● HWI
● SWI

● interrupt

● trap

● fault

● abort

HWI

SWI

exceptions

Assembly Programming
Exceptions and Interrupts

30 Young Won Lim
7/15/21

(5) Exceptions and modes

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

Each exception causes the ARM core to enter a specific mode.

Exception Mode Purpose
Fast Interrupt Request FIQ Fast Interrupt handling
Interrupt Request IRQ Normal interrupt handling
SWI and RESET SVC Protected mode for OS
Pre-fetch or data abort ABT Memory protection handling
Undefined Instruction UND SW emulation of HW coprocessors

HWI

SWI

Assembly Programming
Exceptions and Interrupts

31 Young Won Lim
7/15/21

(6) Vector table

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

a table of addresses that the ARM core branches to
when an exception is raised

there is always branching instructions
that direct the core to the ISR.

At this place in memory, we find a branching instruction

ldr pc, [pc, #_IRQ_handler_offset]

0x0000 0000 ldr pc, [pc, #offset0]
0x0000 0004 ldr pc, [pc, #offset1]
0x0000 0008 ldr pc, [pc, #offset2]
0x0000 000C ldr pc, [pc, #offset3]
0x0000 0010 ldr pc, [pc, #offset4]
0x0000 0014 ldr pc, [pc, #offset5]
0x0000 0018 ldr pc, [pc, #offset6]
0x0000 001C ldr pc, [pc, #offset7]

Assembly Programming
Exceptions and Interrupts

32 Young Won Lim
7/15/21

(7) Exception priorities

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

Exception Priority I bit F bit
Reset 1 1 1
Data Abort 2 1 -
FIQ 3 1 1
IRQ 4 1 -
Prefetch 5 1 -
SWI 6 1 -
Undefined 6 1 -

Priority decides which of the currently raised
exceptions is more important

I bit and F bit decide if the exception handler
itself can be interrupted during execution or not?

Exception Mode Priority
Fast Interrupt Request FIQ 3
Interrupt Request IRQ 4
SWI and RESET SVC 6, 1
Pre-fetch or data abort ABT 5, 2
Undefined Instruction UND 6

SWI and Undefined instruction :
both are caused by an instruction
entering the execution stage of
the ARM instruction pipeline

Assembly Programming
Exceptions and Interrupts

33 Young Won Lim
7/15/21

(8) Link register offset

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

Link Register OffsetThis register is used to return the PC to the appropriate place in the interrupted
task since this is not always the old PCvalue.It is modified depending on the type of exception.

The PChas advanced beyond the instruction causing the exception. Upon exit of the prefetch abort
exception handler, software must re-load the PC back one instruction from the PCsaved at the time of
the exception

Exception Returning Address
Reset None
Data Abort LR-8
FIQ, IRQ, prefetch Abort LR-4
SWI, Undefined Instruction LR

Assembly Programming
Exceptions and Interrupts

34 Young Won Lim
7/15/21

(9) Entering and returning exception handler

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

Entering exception handler
1.Save the address of the next instruction in the appropriate Link Register LR.
2.Copy CPSRto the SPSRof new mode.
3.Change the mode by modifying bits in CPSR.
4.Fetch next instruction from the vector table.

Leaving exception handler
1.Move the Link Register LR(minus an offset) to the PC.
2.Copy SPSRback to CPSR, this will automatically changes the mode back to the previous one.
3.Clear the interrupt disable flags (if they were set)

Assembly Programming
Exceptions and Interrupts

35 Young Won Lim
7/15/21

(10) Assigning interrupts

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

It is up to the system designer who can decide which HW peripheral can produce which interrupt.

But system designers have adopted a standard design for assigning interrupts:
•SWI are used to call privileged OS routines.
•IRQ are assigned to general purpose interrupts like periodic timers.
•FIQ is reserved for one single interrupt source that requires fast response time.

Assembly Programming
Exceptions and Interrupts

36 Young Won Lim
7/15/21

(11) Interrupt latency

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

It is the interval of time from an external interrupt signal being raised to the first fetch of an instruction
of the ISR of the raised interrupt signal.

System architects try to achieve two main goals:
•To handle multiple interrupts simultaneously.
•To minimize the interrupt latency.

And this can be done by 2 methods:
•allow nested interrupt handling
•give priorities to different interrupt sources

Assembly Programming
Exceptions and Interrupts

37 Young Won Lim
7/15/21

(12) Enabling and disabling interrupts

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

This is done by modifying the CPSR, this is done using only 3 ARM instruction:

MRS To read CPSR
MSR To store in CPSR
BIC Bit clear instruction
ORR OR instruction

Enabling an IRQ/FIQ Interrupt
MRS r1, cpsr
BIC r1, r1, #0x80/0x40
MSR cpsr_c, r1

Disabling an IRQ/FIQ Interrupt
MRS r1, cpsr
ORR r1, r1, #0x80/0x40
MSR cpsr_c, r1

Assembly Programming
Exceptions and Interrupts

38 Young Won Lim
7/15/21

(13) Interrupt stack

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

Stacks are needed extensively for context switching between different modes when interrupts are
raised.

The design of the exception stack depends on two factors:
•OS Requirements.
•Target hardware.

A good stack design tries to avoid stack overflow because it cause instability in embedded systems.

Assembly Programming
Exceptions and Interrupts

39 Young Won Lim
7/15/21

(14) Interrupt stack

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

Two design decisions need to be made for the stacks:
•The location
•The size

Traditional memory layout

The benefit of this layout is that the vector table remains untouched if a stack overflow occured!!

Assembly Programming
Exceptions and Interrupts

40 Young Won Lim
7/15/21

(15) Interrupt handling

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

Non-nested interrupt handling scheme

•This is the simplest interrupt handler.
•Interrupts are disabled until control is returned back to the interrupted task.
•One interrupt can be served at a time.
•Not suitable for complex embedded systems.

Assembly Programming
Exceptions and Interrupts

41 Young Won Lim
7/15/21

(15) Nested interrupt handling

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

Nested interrupt handling scheme(1)

•Handling more than one interrupt at a time is possible by enabling interrupts before fully serving the
current interrupt.

•Latency is improved.

•System is more complex.

•No difference between interrupts by priorities, so normal interrupts can block critical interrupts.

Assembly Programming
Exceptions and Interrupts

42 Young Won Lim
7/15/21

(16) Nested interrupt handling

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

•The handler tests a flag that is updated by the ISR

•Re enabling interrupts requires switching out of current interrupt mode to either SVC or system mode.

•Context switch involves emptying the IRQ stack into reserved blocks of memory on SVC stack called
stack frames

Assembly Programming
Exceptions and Interrupts

43 Young Won Lim
7/15/21

(16) Priortized interrupt handling

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

associate a priority level with a particular interrupt source.
•Handling prioritization can be done by means of software or hardware.
•When an interrupt signal is raised, a fixed amount of comparisons is done.

•So the interrupt latency is deterministic.
•But this could be considered a disadvantage!!

Assembly Programming
Exceptions and Interrupts

44 Young Won Lim
7/15/21

(17) other interrupt handling

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

There are some other schemes, which are actually modifications to the previous schemes as follows:

•“Re-entrant interrupt handler”: re-enable interrupts earlier and support priorities, so the latency is
reduced.

•“Prioritized standard interrupt handler”: arranges priorities in a special way to reduce the time needed
to decide on which interrupt will be handled.

•“Prioritized grouped interrupt handler”: groups some interrupts into subset which has a priority level,
this is good for large amount of interrupt sources.

Assembly Programming
Exceptions and Interrupts

45 Young Won Lim
7/15/21

(18) other interrupt handling

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

Availability of different modes of operation in ARM helps in exception handling in a structured way.

Context switching is one of the main issues affecting interrupt latency, and this is resolved in ARM FIQ
mode by increasing number of banked registers.

We can’t decide on one interrupt handling scheme to be used as a standard in all systems, it depends
on the nature of the system:

What type of interrupts are there?
How many interrupts are there?

Assembly Programming
Exceptions and Interrupts

46 Young Won Lim
7/15/21

Exception entry and return sequence (1)

At exception entry, the processor saves
R0-R3, R12, LR, PC and PSR on the stack.

Saving PC means that
the address of the next instruction to be executed
after return from the exception handler
is saved on the stack.

LR is also updated with EXC_RETURN and that
when the EXC_RETURN value is loaded to the PC,
the exception return sequence begins.

LR ← EXC_RETURN
PC ← LR

https://community.arm.com/developer/ip-products/processors/f/cortex-m-forum/4557/cortex-m4-exception-return-sequence

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15

FP
IP
SP
LR
PC

a0
a1
a2
a3
v1
v2
v3
v4
v5
v6
v7
v8

SB

Assembly Programming
Exceptions and Interrupts

47 Young Won Lim
7/15/21

Exception entry and return sequence (2)

the EXC_RETURN values are special values
that are recognized by the hardware
rather than proper pc values.

Loading an EXC_RETURN value into the PC
initiates the hardware sequence
– the reverse of the interrupt sequence
– the return sequence

That reverse sequence will then
load the actual pc to resume at.

You don't explicitly load the various registers,
that is all done automatically by the return sequence.

https://community.arm.com/developer/ip-products/processors/f/cortex-m-forum/4557/cortex-m4-exception-return-sequence

Return Sequence

LR ← EXC_RETURN
PC ← LR

Automatic Hardware Sequence
● no explicit register loading
● only have to change

the EXC_RETURN value

Assembly Programming
Exceptions and Interrupts

48 Young Won Lim
7/15/21

Exception entry and return sequence (3)

Loading PC with the value of LR is suffiient.

LR already holds EXC_RETURN, and
you do not have to worry about
which stack you need to use;
the EXC_RETURN in LR is
pre-encoded with the correct value.

Normally you only have to
change the EXC_RETURN value
when you're writing a context-switcher.

https://community.arm.com/developer/ip-products/processors/f/cortex-m-forum/4557/cortex-m4-exception-return-sequence

LR ← EXC_RETURN
PC ← LR

Assembly Programming
Exceptions and Interrupts

49 Young Won Lim
7/15/21

Exception entry and return sequence (4)

The EXC_RETURN is a nice feature of the Cortex architecture.

No need to have a RFI instruction (Return From Interrupt)

no difference in writing an interrupt-routine
and a normal subroutine
for a Cortex-M based microcontroller.

https://community.arm.com/developer/ip-products/processors/f/cortex-m-forum/4557/cortex-m4-exception-return-sequence

Assembly Programming
Exceptions and Interrupts

50 Young Won Lim
7/15/21

Exception entry and return sequence (5)

1. An interrupt is signalled; a pending-flag is set.
2. The interrupt is started, the registers xPSR, PC, LR, R12, R3-R0 are

all pushed onto the interrupt-stack.
3. The processor state is changed to use the interrupt-state.
4. The LR is loaded with the EXC_RETURN value

(which is one of these: 0xFFFFFFF1, 0xFFFFFFF9,
0xFFFFFFFD, 0xFFFFFFE1, 0xFFFFFFE9 or 0xFFFFFFED).

5. The PC is loaded with the address from the interrupt-vector.
6. Your Interrupt Service Routine (ISR) is executed.
7. You make sure the LR register is saved/restored if it's changed.
8. You finish your Interrupt Service Routine by executing a BX LR instruction.
9. The EXC_RETURN value from the LR register is now moved into PC.

The core now sees that this is a special return-address,
so it restores the registers from the current stack.

10.When the registers are restored, the execution continues where it was interrupted.

https://community.arm.com/developer/ip-products/processors/f/cortex-m-forum/4557/cortex-m4-exception-return-sequence

Assembly Programming
Exceptions and Interrupts

51 Young Won Lim
7/15/21

Exception entry and return sequence (5)

2. The interrupt is started, the registers xPSR, PC, LR, R12, R3-R0 are
all pushed onto the interrupt-stack.

9. The EXC_RETURN value from the LR register is now moved into PC.
The core now sees that this is a special return-address,
so it restores the registers from the current stack.

https://community.arm.com/developer/ip-products/processors/f/cortex-m-forum/4557/cortex-m4-exception-return-sequence

Assembly Programming
Exceptions and Interrupts

52 Young Won Lim
7/15/21

Exception entry and return sequence (5)

Interrupt code typically uses stacks.
And there is a separate R13 for each mode (except one).
So there is a separate stack per mode
and at machine startup, it needs to be initialized.

● Initialization via a MSR (move into status register) instruction to change mode.
● Then store a value to (that) SP.
● Then use a MSR to put mode back

http://www2.unb.ca/~owen/courses/2253-2017/slides/08-interrupts.pdf

Assembly Programming
Exceptions and Interrupts

53 Young Won Lim
7/15/21

Exception entry and return sequence (5)

Mrs. MRS
●MSR moves to a status register.
–Status registers are CPSR, SPSR
–Underscores after (eg CPSR_cf) indicate
which sub-parts of the status register are affected.
Used in book code but not described... _cxsf is all of it?.
●MRS moves a status register into a regular register.

https://community.arm.com/developer/ip-products/processors/f/cortex-m-forum/4557/cortex-m4-exception-return-sequence

Assembly Programming
Exceptions and Interrupts

54 Young Won Lim
7/15/21

Exception entry and return sequence (6)

the hardware entry and return sequence
allows the processor not actually
to do the return sequence
if there is a pending interrupt

Instead, it immediately start
handling the new interrupt
without having to load the registers on return
and then store them again
before entering the new interrupt handler.

https://community.arm.com/developer/ip-products/processors/f/cortex-m-forum/4557/cortex-m4-exception-return-sequence

bl f2bl f1

bx lr

bx lr

lr

ISR1

ISR2

calling

Exception Entry

Exception Entry

Exception Return

Assembly Programming
Exceptions and Interrupts

55 Young Won Lim
7/15/21

Exception entry and return sequence (7)

If an exception is still in pending state
when another exception handler has been completed,

instead of returning to the interrupted program
and then entering the exception sequence again,

a tail-chain scenario will occur,
where the processor will not have to
restore all register values from the stack and
push them back to the stack again.

The tail-chaining of exceptions allows
lower exception processing overhead
and better energy efficiency.

https://stackoverflow.com/questions/13029201/tail-chaining-of-interrupts

bl f2bl f1

bx lr

bx lr

lr

ISR1

ISR2

calling

Exception Entry

Exception Entry

Exception Return

Assembly Programming
Exceptions and Interrupts

56 Young Won Lim
7/15/21

Exception entry and return sequence (8)

it's possible that another interrupt will be handled by tail-chaining.

This may occur between step 8 and step 9.

8. You finish your Interrupt Service Routine by executing a BX LR instruction.
9. The EXC_RETURN value from the LR register is now moved into PC.
 The core now sees that this is a special return-address,
 so it restores the registers from the current stack.

the registers R0-R3 and R12 will not contain values identical
to what is on the stack on interrupt entry.

In fact, you can never trust what's in R0-R3 and R12,
so if you need those values

for instance if you're using SVC,
or if you're making some debug-facility,

then fetch them from the stack.

https://community.arm.com/developer/ip-products/processors/f/cortex-m-forum/4557/cortex-m4-exception-return-sequence

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15

IP

LR
PC

a0
a1
a2
a3

Assembly Programming
Exceptions and Interrupts

57 Young Won Lim
7/15/21

Exception entry and return sequence (9)

That makes sense given the wonderful features
such as Tail chaining or pop pre-emption.

As the AAPCS calls for, R0-R3 can be used
as input parameters/arguments to the function being called,
but it is rather safer that the function/subroutine
should fetch the values from stack
instead of directly referring to.

It is seemed that the handler would not know under
which circumstances it is executing -
either because of tail chaining or
it entering the handler from the thread mode.

If the handler is entered from thread mode
executing normal user program,
then the R0-R3 will be having correct value
but if it is something like tail chaining,
those may not be correct.

https://community.arm.com/developer/ip-products/processors/f/cortex-m-forum/4557/cortex-m4-exception-return-sequence

Assembly Programming
Exceptions and Interrupts

58 Young Won Lim
7/15/21

References

[1] http://wiki.osdev.org/ARM_RaspberryPi_Tutorial_C
[2] http://blog.bobuhiro11.net/2014/01-13-baremetal.html
[3] http://www.valvers.com/open-software/raspberry-pi/
[4] https://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/os/downloads.html

http://wiki.osdev.org/ARM_RaspberryPi_Tutorial_C

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

