Background - Functions (1C)

Copyright (c) 2016-2018 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice.

Based on

http://learnyouahaskell.com/making-our-own-types-and-typeclasses\#the-functor-typeclass
http://learnyouahaskell.com/functors-applicative-functors-and-monoids
Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

First-Class Functions

first-class functions

functions are treated as first-class citizens
the function names do not have any special status they are treated like ordinary variables with a function type.
the language supports

- passing functions as arguments to other functions,
- returning functions as the values from other functions,
- assigning functions to variables

- storing functions in data structures.
- supporting anonymous functions (function literals) as well

Higher-Order and First order Functions

first-class functions are a necessity in the functional programming style where higher-order functions are widely used

A higher-order function is a function
that takes other functions as arguments
or returns a function as result.

A first-order function is a function
that does not takes other functions as arguments nor returns a function as result.
https://en.wikipedia.org/wiki/First-class_function

Higher-Order Function Example

A simple example of a higher-order function

the map function,
which takes a function and a list,
as its arguments,
returns the list formed
by applying the function
to each member of the list.
$\operatorname{map}(+3)[1,2,3]$
[4, 5, 6]
(+3) :: a -> a
A function argument

For a language to support map, (higher-ordered function)
it must support passing a function as an argument.

Functionals in mathematics

a higher-order function

(functional, functional form or functor)
is a function that does at least one of the following:
takes one or more functions as arguments
(i.e. procedural parameters),
returns a function as its result.

All other functions are first-order functions.
https://en.wikipedia.org/wiki/Functor

Functional Examples

In mathematics higher-order functions are also termed operators or functionals.

The differential operator in calculus is a common example, since it maps a function to its derivative, also a function.

$$
\begin{aligned}
& \left(D^{2}-2 D+1\right) f(x) \\
& f^{\prime \prime}(x)-2 f^{\prime}(x)+f(x)
\end{aligned}
$$

Functors in mathematics

Higher-order functions should not be confused
with other uses of the word "functor" in mathematics
a functor is a map between categories

Let \mathbf{C} and \mathbf{D} be categories.

A functor \mathbf{F} from \mathbf{C} to \mathbf{D} is a mapping that
associates to each object \mathbf{X} in \mathbf{C} an object $\mathbf{F}(\mathbf{X})$ in \mathbf{D},
associates to each morphism $\mathbf{f}: \mathbf{X} \rightarrow \mathbf{Y}$ in \mathbf{C} a morphism $F(f): F(X) \rightarrow F(Y)$ in D

Functors and morphism

Let \mathbf{C} and \mathbf{D} be categories.

A functor \mathbf{F} from \mathbf{C} to \mathbf{D} is a mapping that associates to each object X in C an object $F(X)$ in $\mathbf{D ,}$
associates to each morphism $\mathbf{f}: \mathbf{X} \rightarrow \mathbf{Y}$ in \mathbf{C} a morphism $F(f): F(X) \rightarrow F(Y)$ in D
such that the following two conditions hold:

```
F(id
F(g\circf)=F(g)}\circ\mathbf{F(f) for all morphisms
    f:X 
        functors must preserve
        identity morphisms and
        composition of morphisms.
```


Function Definition

Function Definition I.

```
square x = x * x
```

- function type is inferred \rightarrow not efficient Type Inference

Function Definition II.

```
square :: Double -> Double
square x = x * x
- function type declaration
- function definition
```

- function type declaration
- function definition
http://www.toves.org/books/hsfun/

Type Declaration

Type Declaration
the declaration of an identifier's type

identifier name :: type name ..

identifier names type names in (including function Haskell always identifiers) must begin with a always begin with a lower-case letter

Function Types and Type Classes

Function Definition I.
square $x=x$ * x

Function Definition II.

```
square :: Double -> Double
square x = x * x
```


function definition

function definition

- function type declaration

=

type class - a set of types

- function type 1
- function type 2
-
- function type n

Requirements
Subclasses

Curry \& Uncurry

```
f :: a -> b -> c the curried form of g :: (a,b) -> c
f = curry g
g = uncurry f
```

$f x y=g(x, y)$
the curried form is usually more convenient because it allows partial application.
all functions are considered curried

all functions take just one argument

Functions : First-class Data Types

functions are first-class data types
Haskell treats functions as regular data,
just like integers, or floating-point values, or other types.

- a function can take other functions as parameters
- a function takes a parameter and produces another function (curried function)

fxy	f : $\mathrm{a}->\mathrm{b}$-> c
(f x$) \mathrm{y}$	f :: a -> (b-> c)
$\mathbf{f} \mathbf{x}$ returns a function of type b-> c	
g y	g :: b -> c

http://www.toves.org/books/hsfun/

Currying Examples

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Uncurrying Examples

```
fn :: a -> b -> c -> d
uncurry $ fn :: (a, b) -> c -> d
uncurry . uncurry $ fn :: (a, b, c) -> d
```


Polymorphic Functions

specific types vs. arbitrary types
a polymorphic functions - an abstract type
each type variable is generally a lower-case letter.

Example) A translate function
takes a function \mathbf{f} and a distance \mathbf{d}
returns a new function \mathbf{g}
that is \mathbf{f} "translated" \mathbf{d} units to the right
http://www.toves.org/books/hsfun/

Polymorphic Function Examples

http://www.toves.org/books/hsfun/

Currying

Currying recursively transforms
a function that takes multiple arguments
into a function that takes just a single argument and
returns another function if any arguments are still needed.
f :: a -> b -> c

$f x y$	$f:: a->b->c$
$(f x) y$	$f:: a->(b->c)$
$g y$	$g:: b->c$

f :: a ->b -> c

$$
\begin{aligned}
& \text { f:: a -> b -> c -> d -> e } \\
& \text { f x y w = ... }
\end{aligned}
$$

(f x) y z w

g1 :: b -> c -> d ->e g1 y z w =...

$$
\begin{aligned}
& \left(\begin{array}{ll}
f & x
\end{array}\right) \quad \text { w } \\
& \mathbf{g 2}:: \mathbf{c}-\mathbf{d}->\mathbf{e} \\
& \mathbf{g} 2 \quad z \quad w=\ldots
\end{aligned}
$$

(f $x \quad y \quad z$) w

g3 :: d -> e g3 w =...

Partially Applied Functions - g1, g2, g3

Returning Functions

$\mathbf{f} \mathbf{x}$ returns $\mathbf{g 1}$ function

g1 y returns g2 function

$\mathbf{g} 2 \mathbf{z}$ returns $\mathbf{g} 3$ function

Currying Examples

f :: a -> b -> c -> d -> e

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Currying Examples

f :: a -> b -> c -> d -> e

$$
f:: a->(b->(c->(d->e)))
$$

((($(\mathrm{f} x) \mathrm{y}) \mathrm{w}) \mathrm{z})$

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Currying Examples

f :: a -> b -> c -> d -> e

f :: a -> (b -> (c -> (d -> e)))
((((f x)y) z) w)
http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Currying Examples

f :: a -> b -> c -> d -> e

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Currying Examples

f :: a -> (b-> (c->d))
(((f $x) y)$

Partial Applications

```
mult :: Int -> Int -> Int -> Int
mult \(x\) y \(z\)
mult \(\quad a_{1} \quad y \quad z \quad=\quad\) 1 \(\quad y \quad z\)
mult \(\quad a_{1} \quad a_{2} \quad z=\mathbf{g} \mathbf{z}\)
mult \(\begin{array}{lllll} & a_{1} & a_{2} & a_{3} & \text { constants }\end{array}\)
mult :: Int -> Int -> Int -> Int
mult \(x \quad y \quad z\)
mult \(\quad a_{1} \quad y \quad z \quad=\quad \mathbf{y} \quad y \quad z\)
mult \(\quad a_{1} \quad a_{2} \quad z=\mathbf{g} \quad \mathbf{z}\)
mult \(\begin{array}{llll}\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} & \text { constants }\end{array}\)
```

```
f :: Int -> (Int -> (Int -> Int))
```

f :: Int -> (Int -> (Int -> Int))
f x y z
f x :: Int -> (Int -> Int)
g1 :: Int -> (Int -> Int)
g1 y z
f x y :: Int -> Int
g2 :: Int -> Int
g2 z

Returning Functions

Currying Examples

```
mult :: Int -> Int -> Int -> Int
```


mult
$a_{1} \quad y \quad z$
mult $\begin{array}{lll} & a_{1} & a_{2} \\ z\end{array}$
mult
$\begin{array}{lll}a_{1} & a_{2} & a_{3}\end{array}$

Anonymous Function

$$
\mid x->x+1
$$

$$
(\mid x->x+1) 4
$$

$$
5 \text { :: Integer }
$$

$$
(1 x y->x+y) 35
$$

8 :: Integer
Lambda Expression
addOne $=1 \mathrm{x}$-> $\mathrm{x}+1$
https://wiki.haskell.org/Anonymous_function

```
cylinder :: (RealFloat a) => a -> a -> a
cylinder r h =
    let sideArea \(=2\) * pi * \(r\) * \(h\)
        topArea \(=p i{ }^{*} r^{\wedge} 2\)
    in sideArea +2 * topArea
```

The form is let <bindings> in <expression>.

The names that you define in the let part are accessible to the expression after the in part.

Notice that the names are also aligned in a single column.

For now it just seems that let puts the bindings first and the expression that uses them later whereas where is the other way around.
http://learnyouahaskell.com/syntax-in-functions

\$ a single argument

\$ a convenience function that eliminates many parentheses.

When a \$ is encountered, the expression on its right is applied as the parameter to the function on its left.
writing an opening parentheses (and then writing a closing one) on the far right side of the expression.

far right side

\$ Function Application

(\$) :: (a-> b) -> $\mathrm{a}->\mathrm{b}$f \$ $\mathrm{x}=\mathrm{f} \mathrm{x}$	$f::(\mathrm{a} \mathrm{->} \mathrm{~b})$: left function
	x : ${ }^{\text {a }}$: right value
	fx : b b	: result
$f::(\mathrm{a} \mathrm{->} \mathrm{~b})$		
x : a		
Function application with a space - high precedence - left-associative	f - x	
	$\mathrm{fabc}=((\mathrm{fa}) \mathrm{b}) \mathrm{c})$	
Function application with $\$$ - the lowest precedence - right associative	f \$ \mathbf{x}	

\$ Function Application Examples

```
sum (map sqrt [1..130])
due to a low precedence
sum $ map sqrt [1..130]
sqrt 3+4+9
((sqrt 3) + (4 + 9))
sqrt (3 + 4 + 9)
sqrt $ 3 + 4 + 9
```


\$ Right Associative Examples

because $\$$ is right-associative
$f(g(z x))$
f \$ g \$ z x
sum (filter (> 10) (map (*2) [2..10]))
sum \$ filter (> 10) \$ map (*2) [2..10]
http://learnyouahaskell.com/higher-order-functions

\$ Map Function Application Examples

But apart from getting rid of parentheses, \$ means that function application
can be treated just like another function.
map function application over a list of functions.
map (\$ 3) [(4+), (10*), (^2), sqrt]
[(4+ \$ 3), (10* \$ 3), (^2 \$ 3), sqrt \$ 3]
[7.0, 30.0, 9.0, 1.7320508075688772]
http://learnyouahaskell.com/higher-order-functions

const function

```
const x _ = x
Prelude> const 3 333
3
Prelude> const 399999
3
```

useful for passing to higher-order functions when you don't need all their flexibility

For example, the monadic sequence operator >>
can be defined in terms of the monadic bind operator as
$\mathrm{x} \gg \mathrm{y}=\mathrm{x}$ >>= const y
(>>) $=($. const) $\cdot(\gg=)$
https://stackoverflow.com/questions/7402528/whats-the-point-of-const-in-the-haskell-prelude

read function

Prelude> let $x=$ read "True"
Prelude> :t x
$x:$: Read $a=>a$
x doesn't have a concrete type.
x is sort of an expression
that can provide a value of a concrete type, when we ask for it.
ask \mathbf{x} to be an Int or a Bool or anything

Prelude> x :: Bool
True

Input: read "12"::Int
Output: 12

Input: read "12"::Double
Output: 12.0

Input: read "1.22"::Double
Output: 1.22

replicate, take, repeat, cycle, iterate

```
replicate Int -> a -> [a]
```

creates a list of length given by the first argument
and the items having value of the second argument
take Int -> [a] -> [a]
creates a list, the first argument determines,
how many items should be taken from the list passed
as the second argument
repeat a \quad-> [a]
it creates an infinite list where all items are the first argument
cycle [a] -> [a]
it creates a circular list from a finite one

Iterate $\quad(a->a)->a->$ [a]
creates an infinite list where the first item is calculated
by applying the function on the second argument, the second item
by applying the function on the previous result and so on.
http://zvon.org/other/haskell/Outputprelude/cycle_f.html

replicate, take, repeat, cycle, iterate examples

Input: replicate 35
Output: [5,5,5]

Input: replicate 4 "aa"
Output: ["aa","aa","aa","aa"]

Input: replicate 5 'a'
Output: "aaaaa"

Input: take 5 [1,2,3,4,5,6,7]
Output: [1,2,3,4,5]
Input: take 5 [1,2]
Output: [1,2]

Input: take 0 [1,2,3,4,5,6,7]
Output: []

Input: take 5 (repeat 3) Output: [3,3,3,3,3]

Input: take 7 (iterate (2*) 1) Output: [1,2,4,8,16,32,64]

Input: take 10 (cycle [1,2,3]) Output: [1,2,3,1,2,3,1,2,3,1]

Input: take 4 (repeat 3)
Output: [3,3,3,3]
Input: take 6 (repeat ' A ')
Output: "AAAAAA"

Input: take 5 (repeat "A")
Output: ["A","A","A","A","A"]

Input: take 10 (cycle [1,2,3])
Output: [1,2,3,1,2,3,1,2,3,1]
Input: take 10 (cycle "ABC")
Output: "ABCABCABCA"
http://zvon.org/other/haskell/Outputprelude/cycle_f.html

```
flip :: (a -> b -> c) -> b -> a -> c
flipfxy \(=f y x\)
```

flip f takes its (first) two arguments in the reverse order of f.

```
flip :: (a-> b -> c) -> b -> a -> c
flip \(f x y=f y x\)
flip :: (a -> b -> c) -> b -> a -> c
flip \(f x y=g\)
where
g=fyx
flip :: (a-> b -> c) -> b -> a -> c
flip \(f=g\)
    where
    \(g x y=f y x\)
flip \(::(\mathrm{a}->\mathrm{b}->\mathrm{c})\)-> b-> a-> c
flipfxy \(=\mathrm{gxy}\)
    where
    \(\mathbf{g a b}=\mathbf{f} \mathbf{b} \mathbf{a}\)
flipfxy \(=g x y\)
flip \(f x=g x\)
flip \(f=g\)
```

```
flip :: (a->b -> c) -> b->a->c
```

flip :: (a->b -> c) -> b->a->c
flip f = g
flip f = g
where
where
gab=fba

```
    gab=fba
```


flip

```
flip :: (a -> b -> c) -> b -> a -> c
flipfxy \(=f y x\)
```

flip f takes its (first) two arguments in the reverse order of \mathbf{f}.

```
f :: (a -> b -> c)
flip f :: (b -> a -> c)
```

https://www.haskell.org/hoogle/?hoogle=flip

flip implementation

```
flip \(\quad:(\mathbf{a ~ - > ~ b ~ - > ~ c ) ~ - > ~ b ~ - > ~ a ~ - > ~ c ~}\)
flipfxy \(=f y x\)
```

flip :: (a -> b -> c) -> b -> a -> c
flip $f x y=g$
where
$g=f y x$
flipfxy $=g x y$
flip $f x=g x$
flip $f=g$

```
flip \(\quad:(\mathrm{a}->\mathrm{b}->\mathrm{c})\)-> b -> a -> c
flipfxy \(=g x y\)
    where
        \(\mathbf{g a b}=\mathbf{f} \mathbf{b} \mathbf{a}\)
```

```
flip :: (a -> b -> c) -> b -> a -> c
flip f = g
    where
    gab=fba
```

flip :: (a->b->c) -> b->a->c
flip $f=g$
where
gxy=fyx

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

