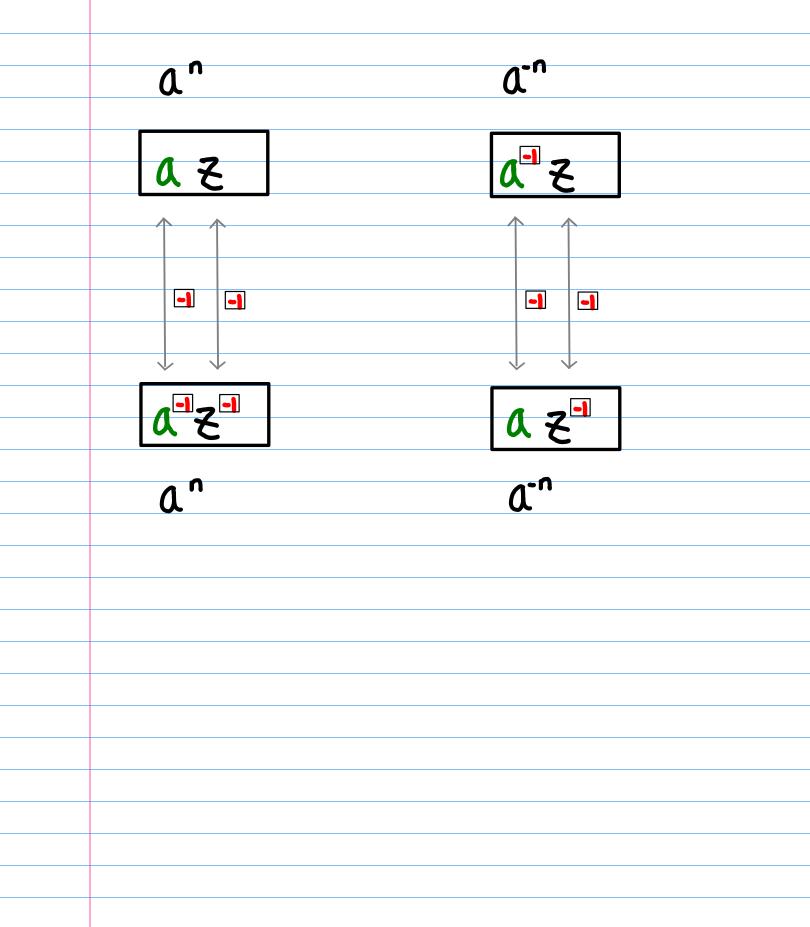
Laurent Series and z-Transform

- Geometric Series Applications (A)

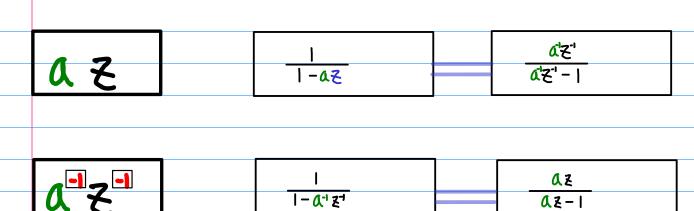
20200204 Tue

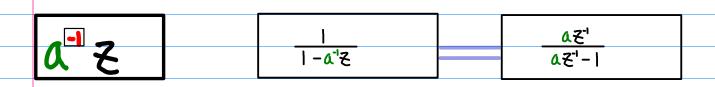
Copyright (c) 2016 - 2019 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Combinations of a and z -- common ratio



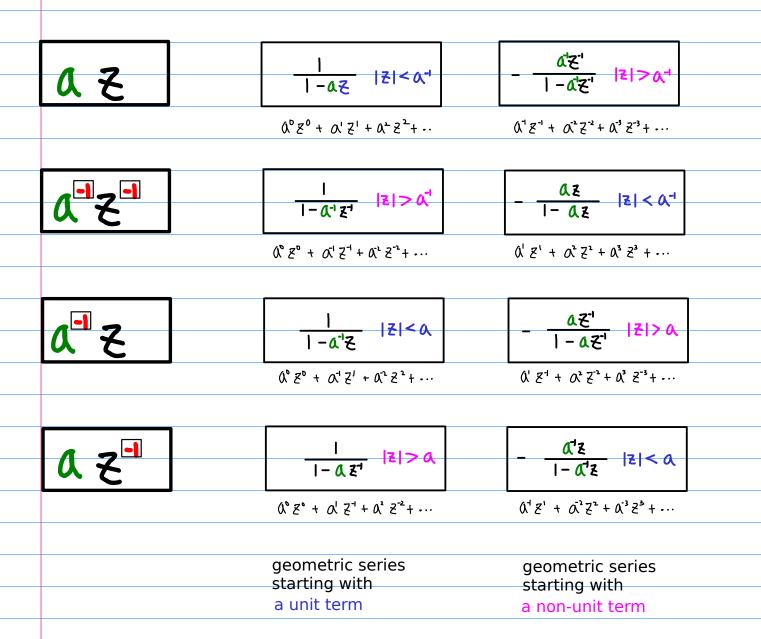
the same formula, different representations





the same formula with different ROCs

different Geometric Series

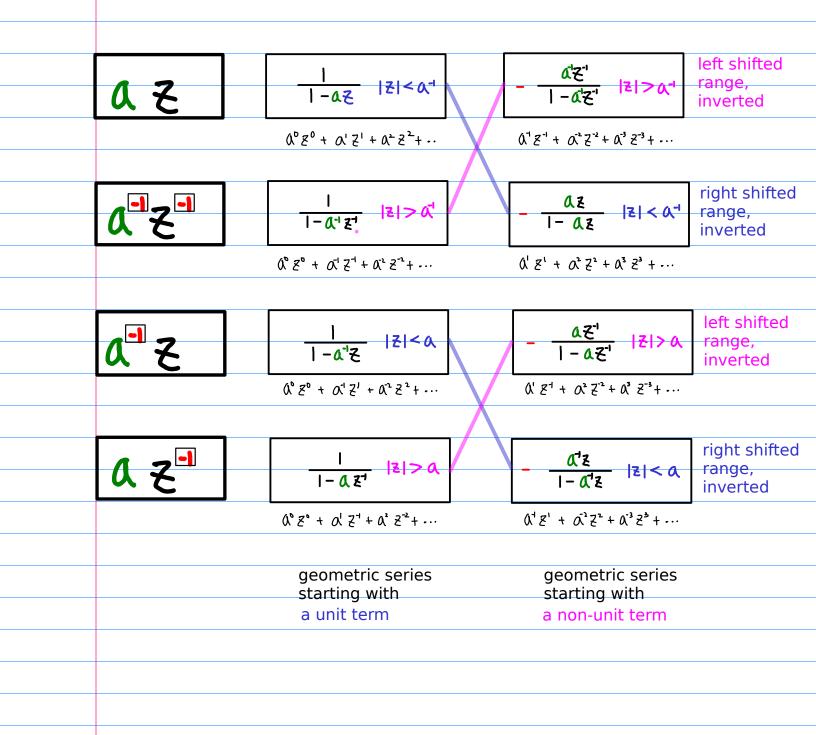


Each representation has it own ROC (Region of Convergence)

Geometric Power Series Property

the same formula with different ROCs

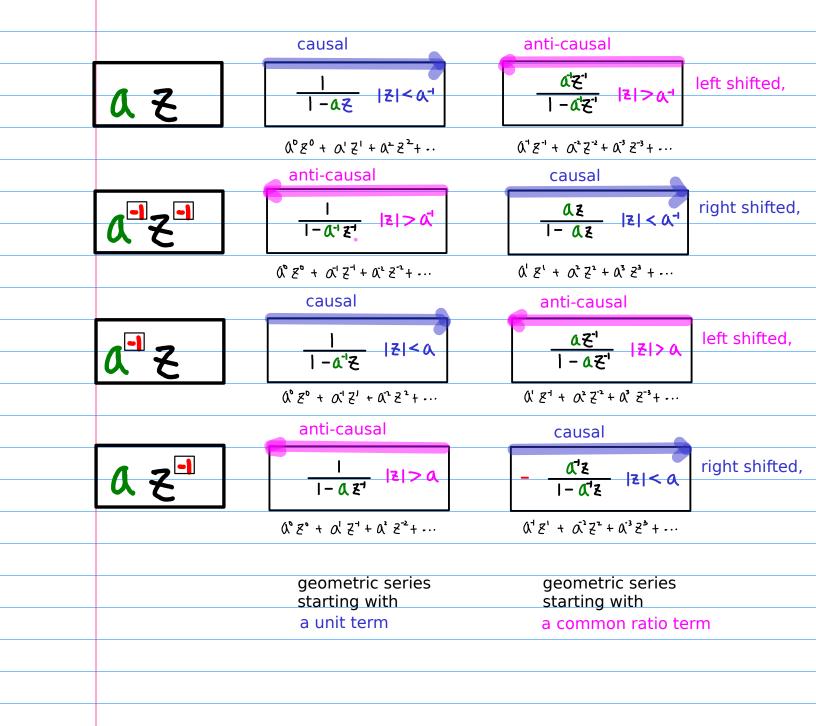
different Geometric Series -- Shifted Range



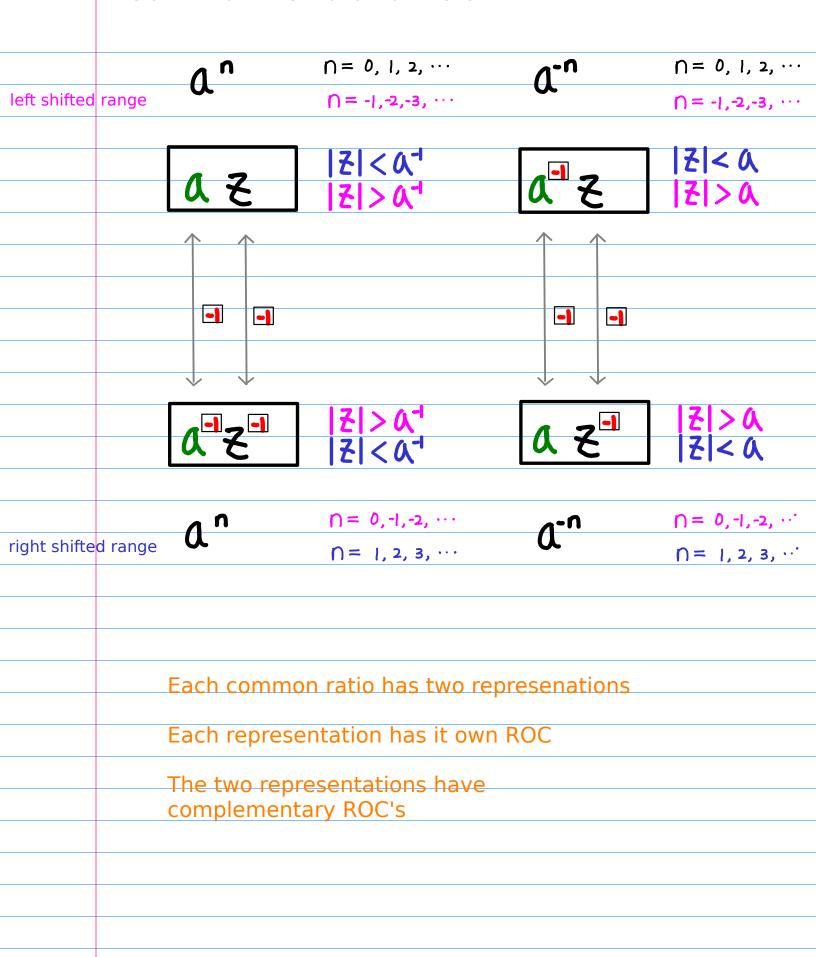
the same formula with different ROCs

different Geometric Series -- Complementary Relation

* inverted relation is ignored



Common Ratio and ROC



each common ratio is associated with2 different sequences (represenations)

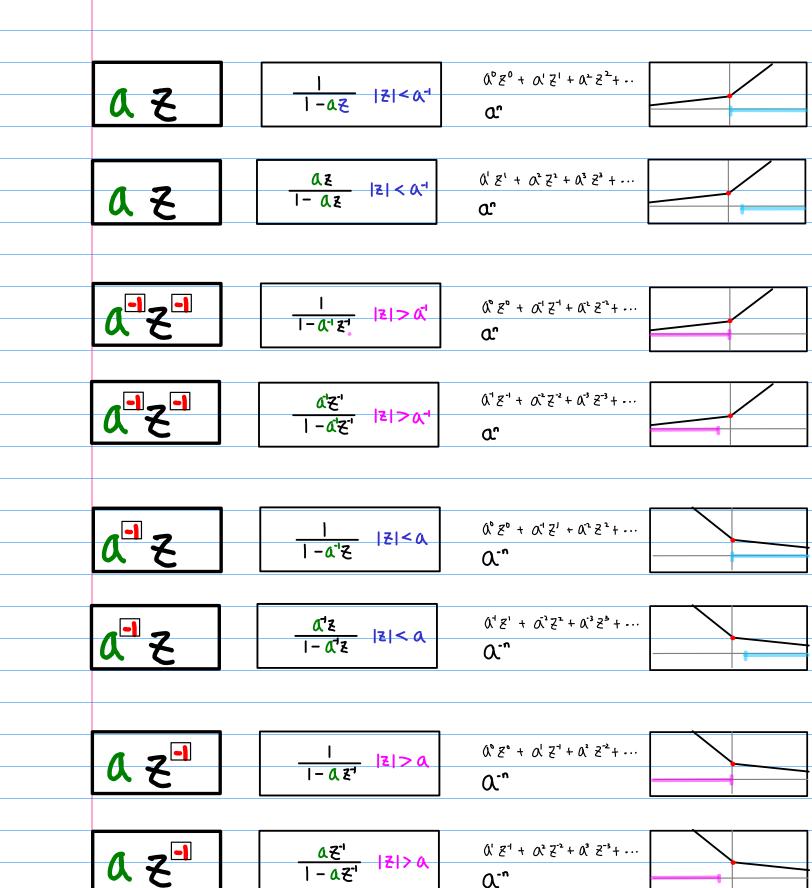
. 7	1 -az z <a< th=""><th>۵° 8° + ۵' ۶' + ۵° 8° + ۰۰</th><th></th></a<>	۵° 8° + ۵' ۶' + ۵° 8° + ۰۰	
starting with a common	- 1-a'z' z >a-	Q181+ Q287+ Q38-3+	left shifted range, inverted
-1 ₂ -1		Ω° E° + Ω¹ E¹ + Ω¹ E⁻¹ + ···	
starting with a common ratio term	1- QZ Z < Q-1	Q' Z' + Q2 Z2 + Q3 Z3 +	right shifted range, inverted
1 2	1 1-a-12 Z < A	Ω° Z° + Ω¹ Z¹ + Ω² Z²+···	
starting with a common ratio term	- azi z >a	۵' ٤ ⁻¹ + ۵ ² ٤ ⁻² + ۵ ³ ٤ ⁻³ + ···	left shifted range, inverted
Z	Z > a	Ω° E° + α' Z ⁻¹ + α' Z ⁻² + ···	
starting with	- d'z z < a	Q ¹ Z' + Q ³ Z ² + Q ³ Z ³ + ···	right shifted range,
	starting with a common ratio term starting with a common ratio term	Starting with a common ratio term	starting with a common ratio term $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

[Complementary Range & Inverted Relation]

* inverted relation is ignored

[Shifted Range Relation]

* inverted relation is ignored



Q-n

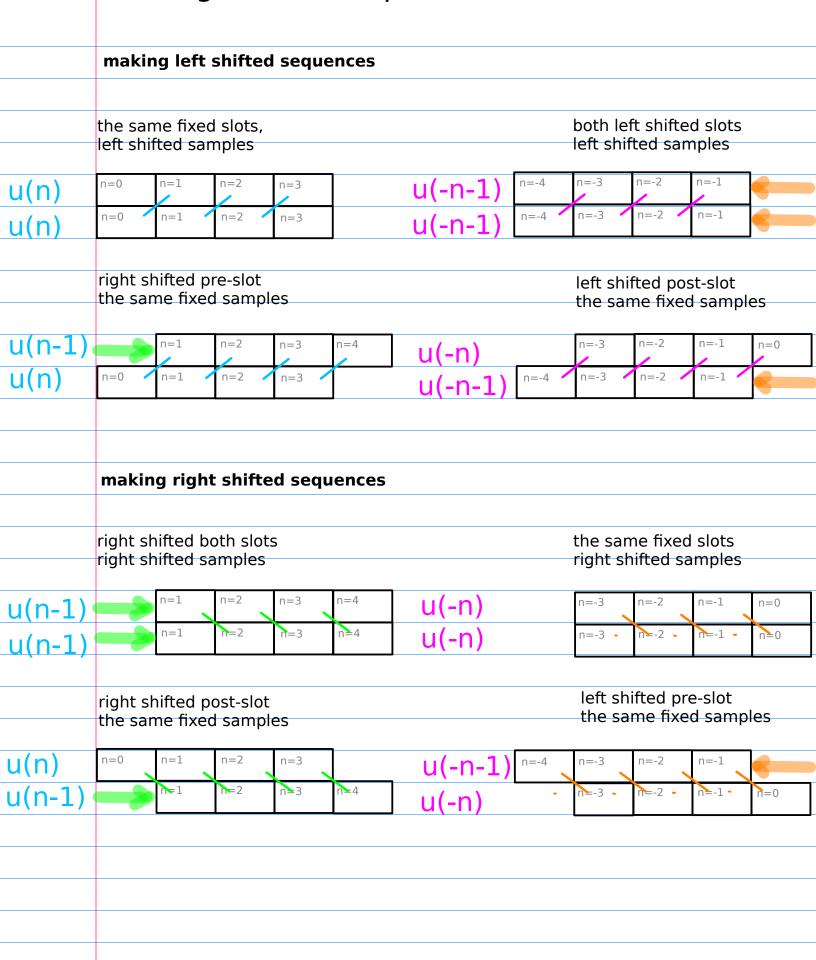
Complementary Relations of Ranges

	Comple	ementa	ary Rar	nge Rel	lation							
_								causal	1			
u(n)						n=0	n=1	n=2	n=3			
								•	-			
		_	anti-ca	ausal								
u(-n-1)	J	n=-4	n=-3	n=-2	n=-1							
-	•			-								
	Comple	ementa	arv Rai	nae Re	lation	+	+					
						+			causal			
u(n-1)							n=1	n=2	n=3	n=4		
u(11 ± /											1	
				anti-ca	 ausal	+						
u(-n)			n=-3	n=-2	n=-1	n=0	1					
u(-ii)						+	-					
		•										

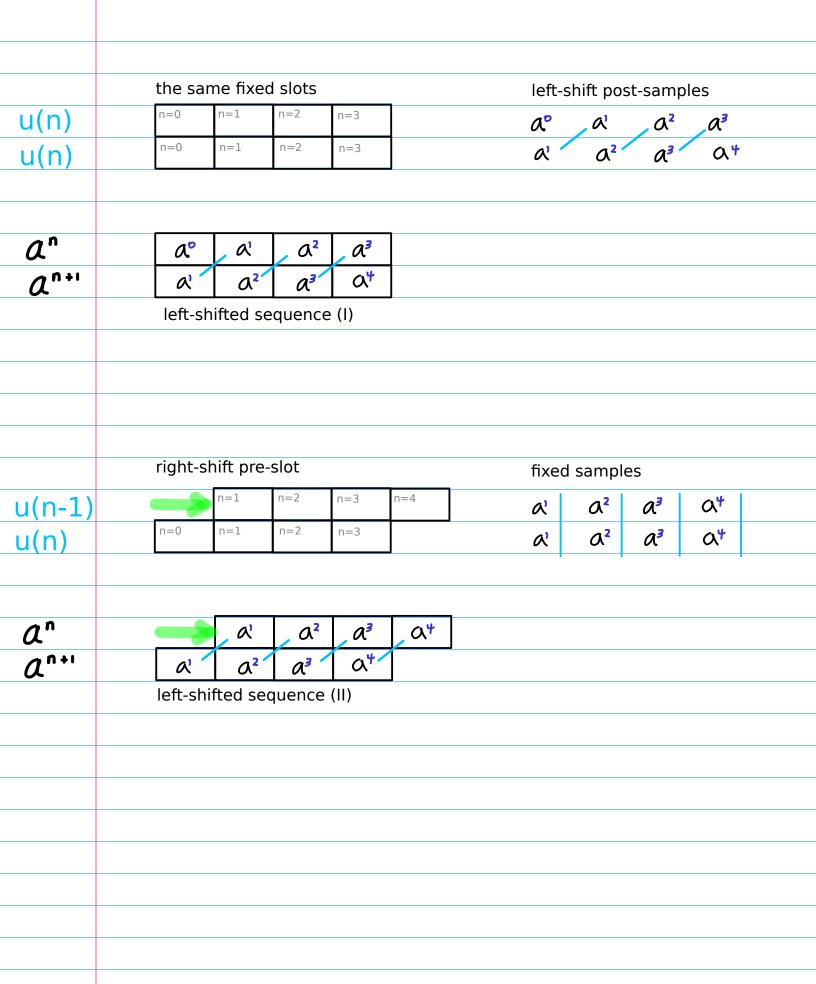
Shift Relations of Ranges

	Right S	hifted	Range	e Relati	ion							
							causal					
u(n)						n=0	n=1	n=2	n=3			
,												
									causal			
u(n-1)							n=1	n=2	n=3	n=4		
G(II I)											<u></u>	
	Left Sh	ifted I	Range	Relatio	n							
					· 							
				anti-ca	ausal							
u/ p)			n=-3	n=-2	n=-1	n=0						
u(-n)												
		•	anti-ca	ausal								
u(-n-1)		n=-4	n=-3	n=-2	n=-1							
G(11 1)												

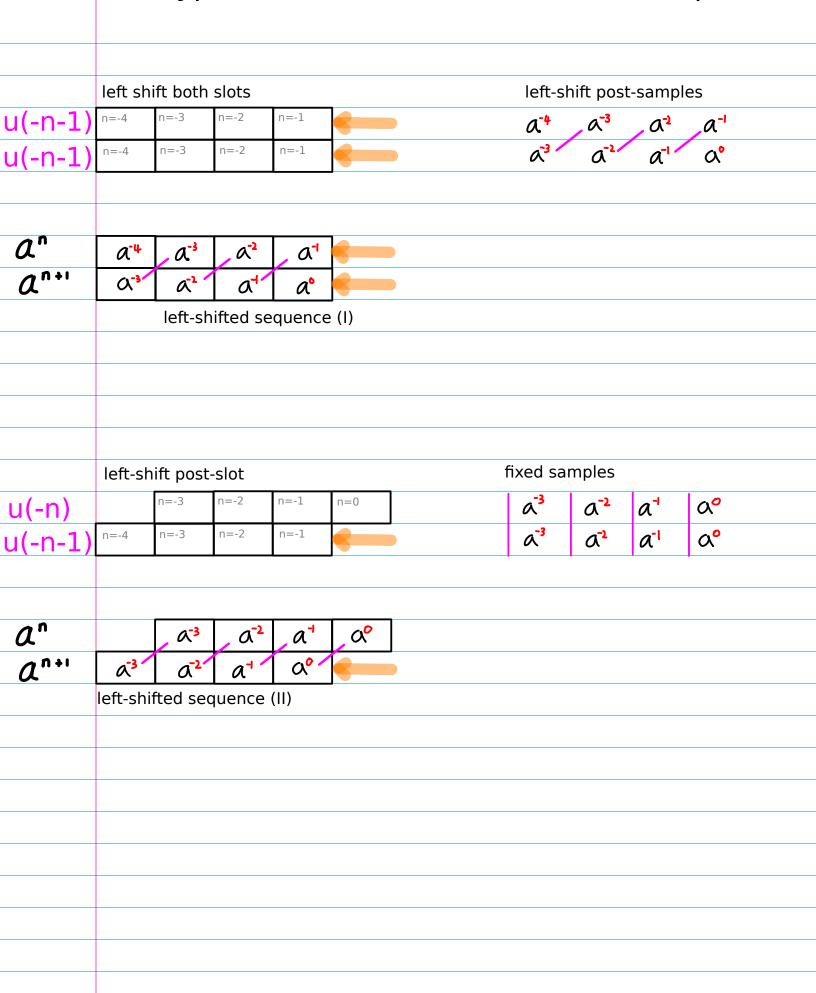
Making Shifted Sequences



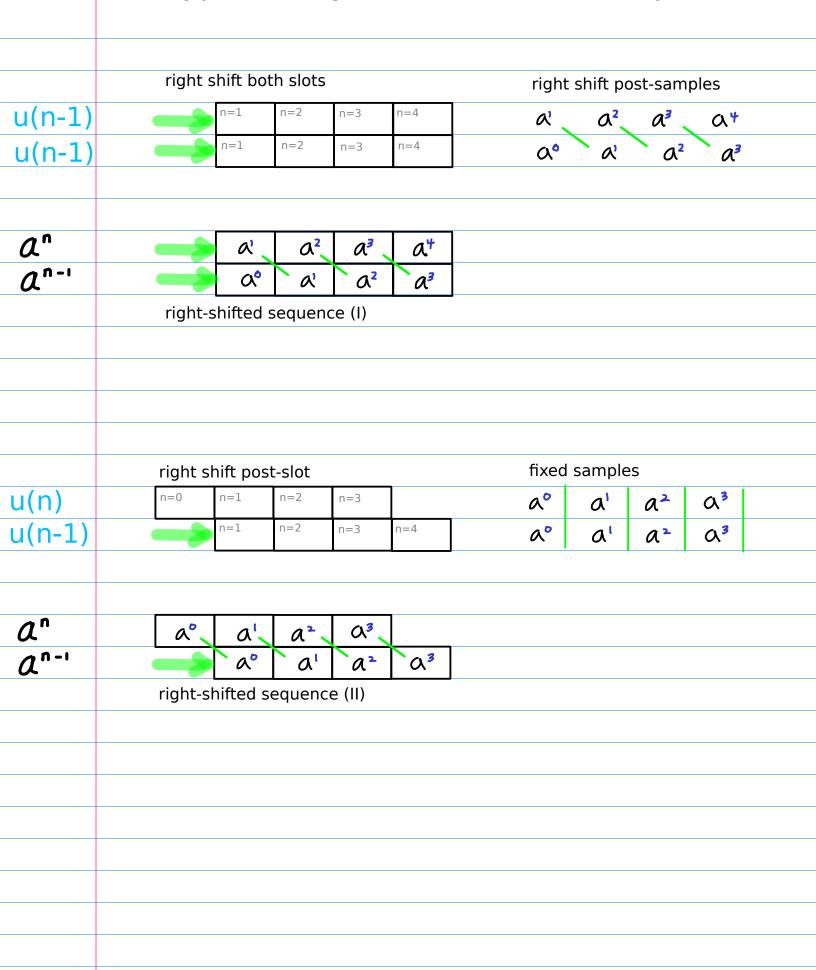
Two Types of Left-Shifted Causal Sequences



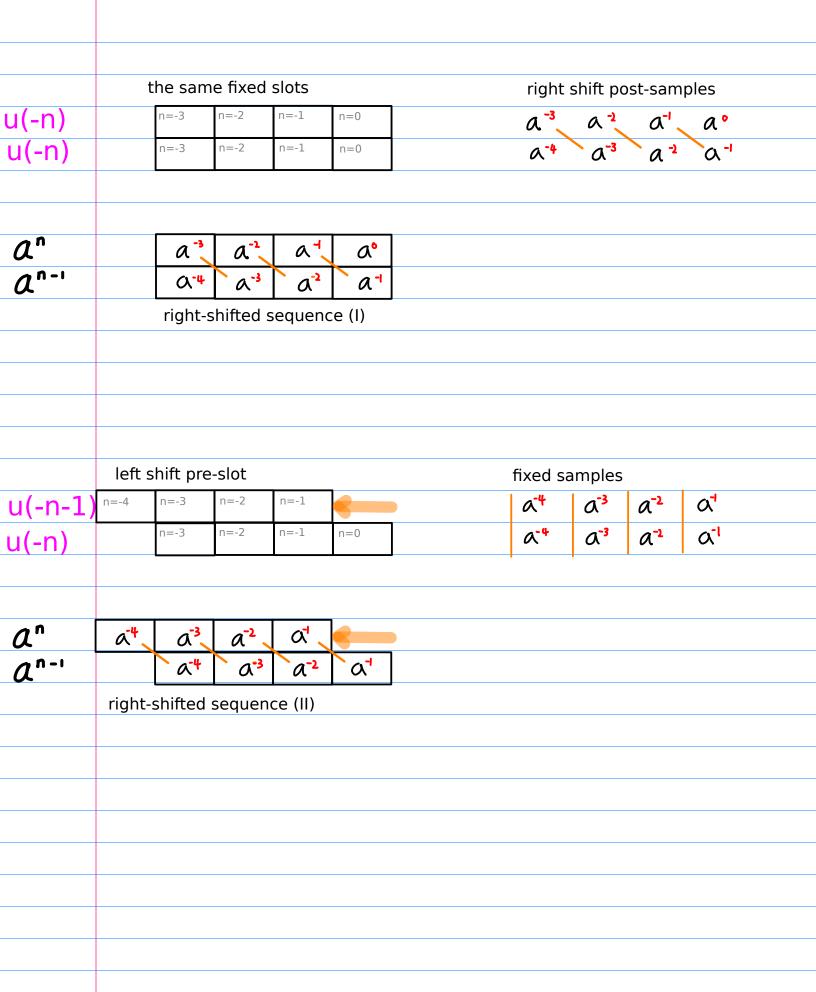
Two Types of Left-Shifted Anti-Causal Sequences



Two Types of Right-Shifted Causal Sequences



Two Types of Right-Shifted Anti-Causal Sequence



Shift Sequence Relations (1)

No Shift Ranges

u(n)

 a^n

$$n = 0, 1, 2, \cdots$$

u(n)

$$\mathcal{A}^{n+1}$$
 $n=0,1,2,\cdots$

Left Shifted Sequence

u(n-1)

$$a^n$$

$$n = 1, 2, 3, \cdots$$

u(n-1)

$$n = 1, 2, 3, \cdots$$

Right Shifted Sequence

u(-n)

$$a^n$$

$$n = 0, -1, -2, \cdots$$

u(-n)

$$a^{n-1}$$

$$n = 0, -1, -2, \cdots$$

Left Shifted Sequence

u(-n-1)

$$a^n$$

$$\bigcap = -1, -2, -3, \cdots$$

u(-n-1)

$$\bigcap = -1, -2, -3, \cdots$$

Right Shifted Sequence

With Shift Ranges

u(n-1)

 a^n

an

$$\cap = 0, 1, 2, \cdots$$

u(n)

Left Shifted Sequence

u(n-1)

$$\bigcap = \{1, 2, 3, \cdots \}$$

Right Shifted Sequence

u(-n)

$$a^{n-1}$$
 $\cap = 0, -1, -2, \cdots$

Left Shifted Sequence

u(-n-1)

$$2^{n+1}$$
 $n = -1, -2, -3, \cdots$

Right Shifted Sequence

u(-n)

$$a^n$$

$$\bigcap = 0, -1, -2, \cdots$$

 $n = 1, 2, 3, \cdots$

u(-n-1)

$$a^n$$

$$n = -1, -2, -3, \cdots$$

Shift Sequence Relations (2)

No Shift Ranges

u(n)

u(n)

$$n = 0, 1, 2, \cdots$$

Left Shifted Sequence

u(n-1)

u(n-1)

Right Shifted Sequence

$$n = 0, -1, -2, \cdots$$

$$\mathcal{A}^{-n+1}$$
 $\cap = 0, -1, -2, \cdots$

Left Shifted Sequence

u(-n-1)

$$a^{-n-1}$$
 $\cap = -1, -2, -3, \cdots$

Right Shifted Sequence

With Shift Ranges

 $n = 0, 1, 2, \cdots$

N= 1, 2, 3, ···

u(n)

 $\bigcap = 0, 1, 2, \cdots$

Left Shifted Sequence

u(n-1)

 $n = 1, 2, 3, \cdots$

Right Shifted Sequence

u(-n)

u(n-1)

a⁻ⁿ

 $n = 0, -1, -2, \cdots$

u(-n)

 \mathcal{A}^{-n+1} $\cap = 0, -1, -2, \cdots$

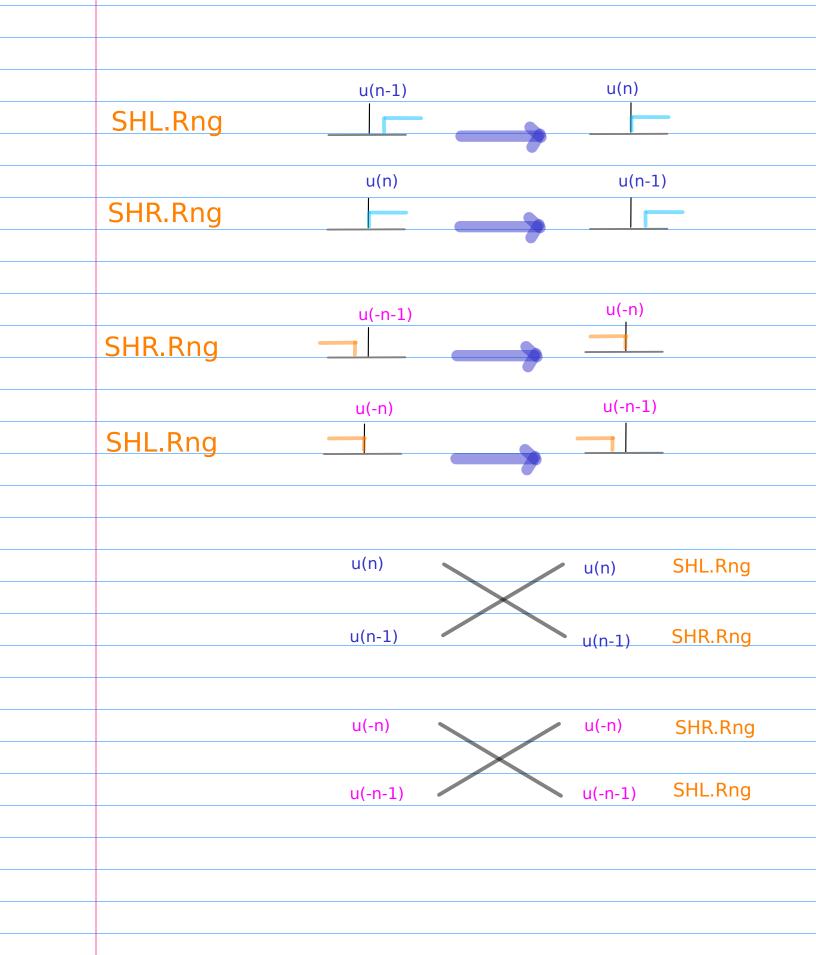
Left Shifted Sequence

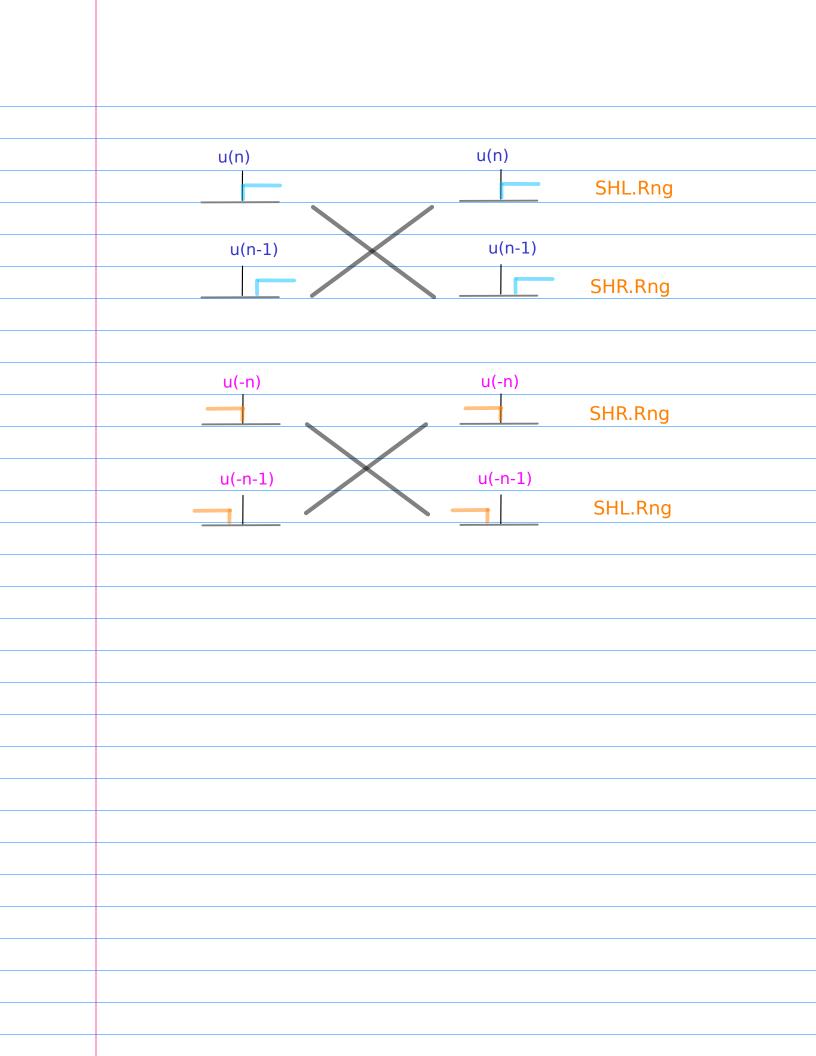
Right Shifted Sequence

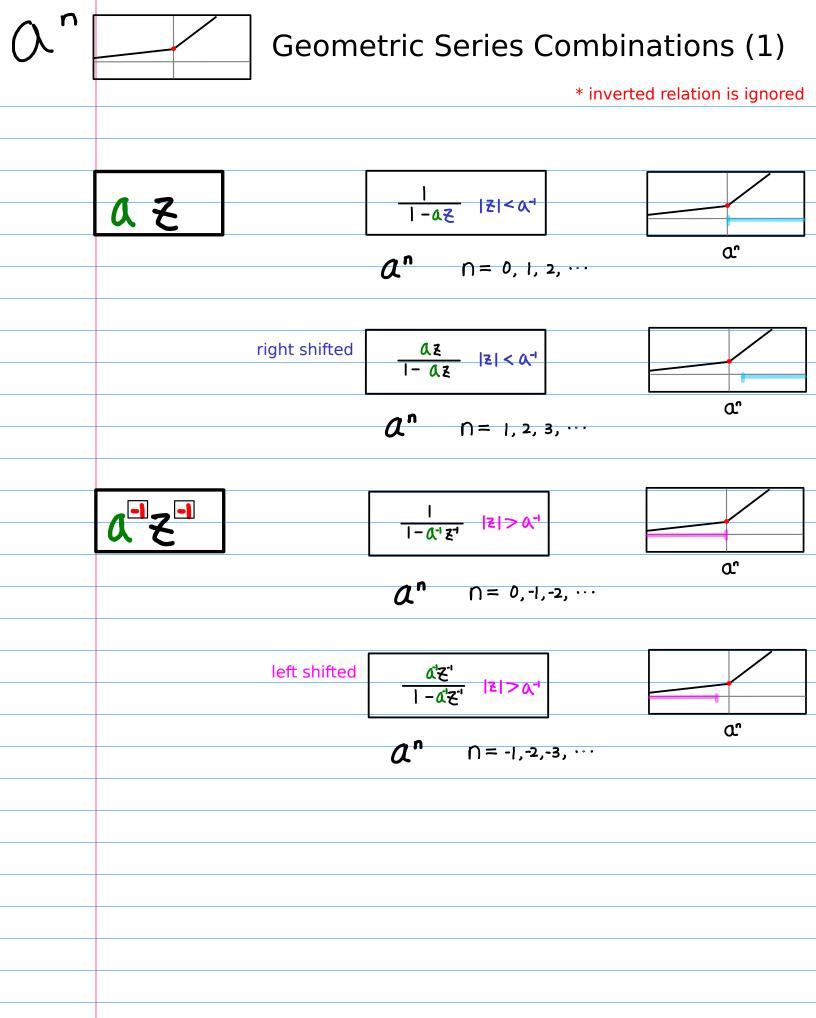
u(-n-1)

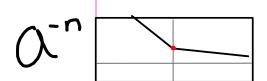
 $\cap = -1, -2, -3, \cdots$

Shifting of a Range







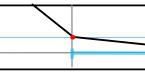


Geometric Series Combinations (2)

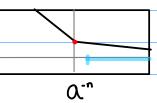
* inverted relation is ignored

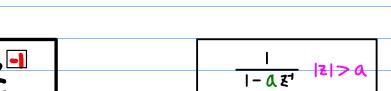
$$\frac{1}{1-\alpha^{-1}\xi} |\xi| < \alpha$$

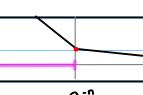
$$A^{-n} \cap = 0, 1, 2, \cdots$$



$$\gamma = 0, 1, 2, \cdots$$

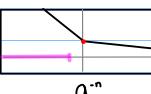


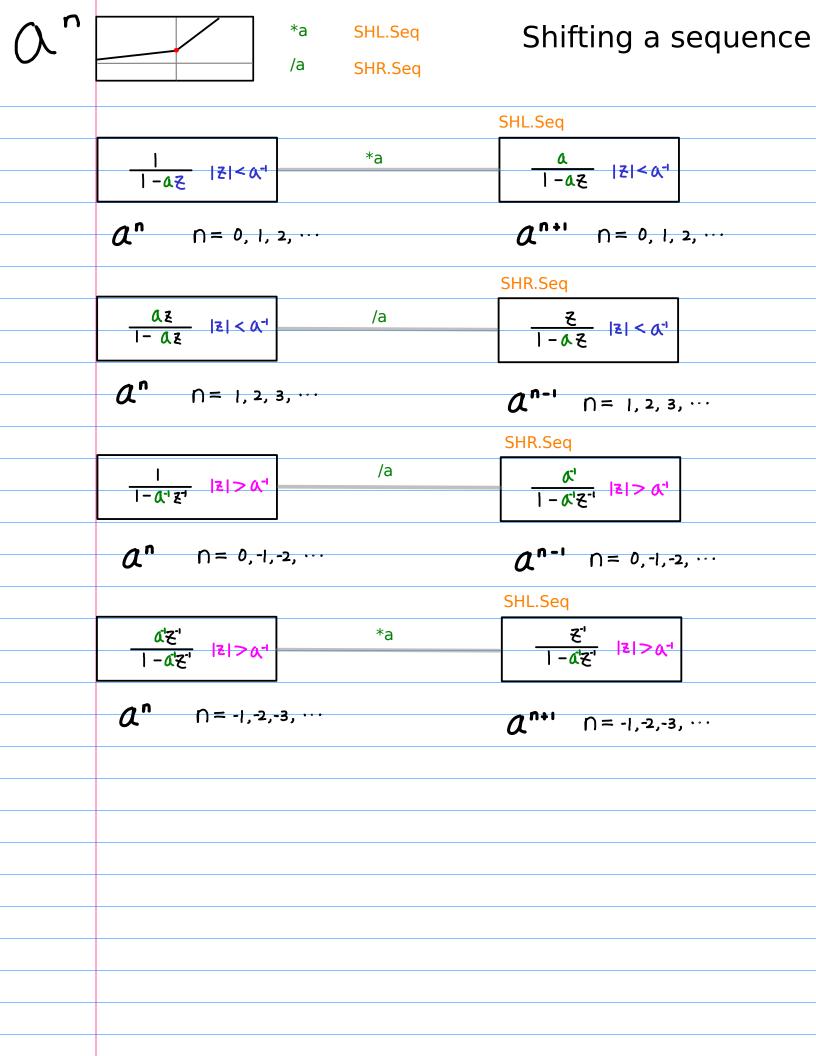




$$a^{-n}$$
 $\cap = 0, -1, -2, \cdots$

left shifted
$$\frac{\alpha \xi^{-1}}{1 - \alpha \xi^{-1}} = \frac{|\xi| > \alpha}{|\xi|}$$

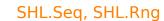


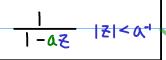


/z SHL.Seq, SHL.Rng

*z SHR.Seq, SHR.Rng

Shifting a sequence





a n = 0, 1, 2, ···

$$\mathcal{A}^{n+1} \cap = 0, 1, 2, \cdots$$

SHR.Seq, SHR.Rng

SHR.Seq, SHR.Rng

$$\frac{1}{1-\alpha^{-1}\xi^{-1}} \quad |z| > \alpha^{-1}.$$

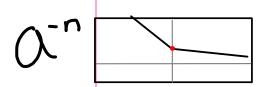
$$\mathcal{A}^{\mathbf{n}} \cap = 0, -1, -2, \cdots$$

$$\mathcal{A}^{n-1}$$
 $\cap = 0, -1, -2, \cdots$

SHL.Seq, SHL.Rng

$$Q^{n+1}$$
 $n = -1, -2, -3, \cdots$

* inverted relation is ignored



/a SHL.Seq

*a SHR.Seq

Shifting a sequence

/a \frac{a^{-1}}{1-a^{-1}\xi} \frac{|\xi| < \alpha}{\left.}

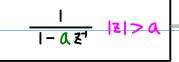
a −n ∩= 0, 1, 2, ···

$$Q^{-n-1} \cap = 0, 1, 2, \cdots$$

SHR.Seq

a-n ∩= 1, 2, 3, ···

SHR.Seq



1-02-1 |z|>0

$$\mathcal{A}^{-n+1}$$
 $\cap = 0, -1, -2, \cdots$

| AZ" | Z | > A

SHL.Seq

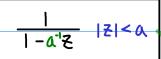
[a] \frac{\xi^1}{1 - \alpha\xi^1} \frac{|\xi| > \alpha}{\xi}

$$Q^{-n-1}$$
 $\cap = -1,-2,-3, \cdots$

/z SHL.Seq, SHL.Rng Shifting a sequence

*z SHR.Seq, SHR.Rng

SHL.Seq, SHL.Rng

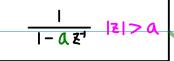


$$\mathcal{Q}^{-n-1} \cap = 0, 1, 2, \cdots$$

/z

SHR.Seq, SHR_Rng

SHR.Seq, SHR.Rng

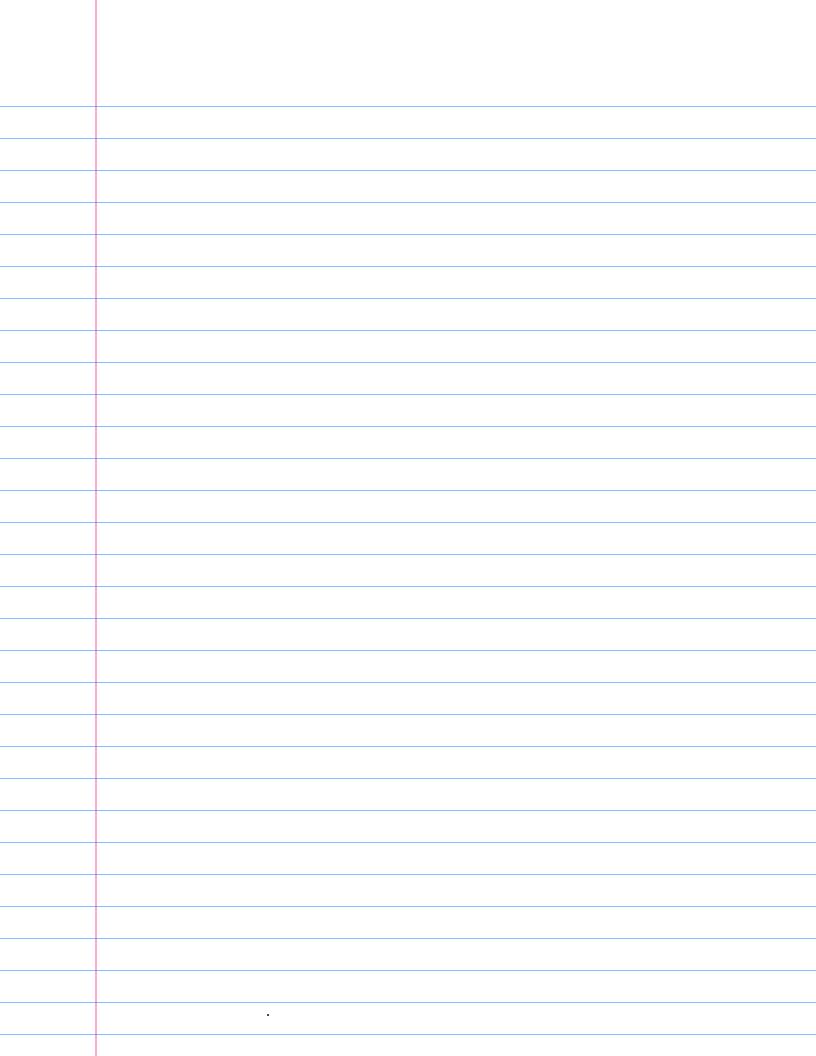


$$a^{-n}$$
 $n = 0, -1, -2, ...$

1-az" |z|>a

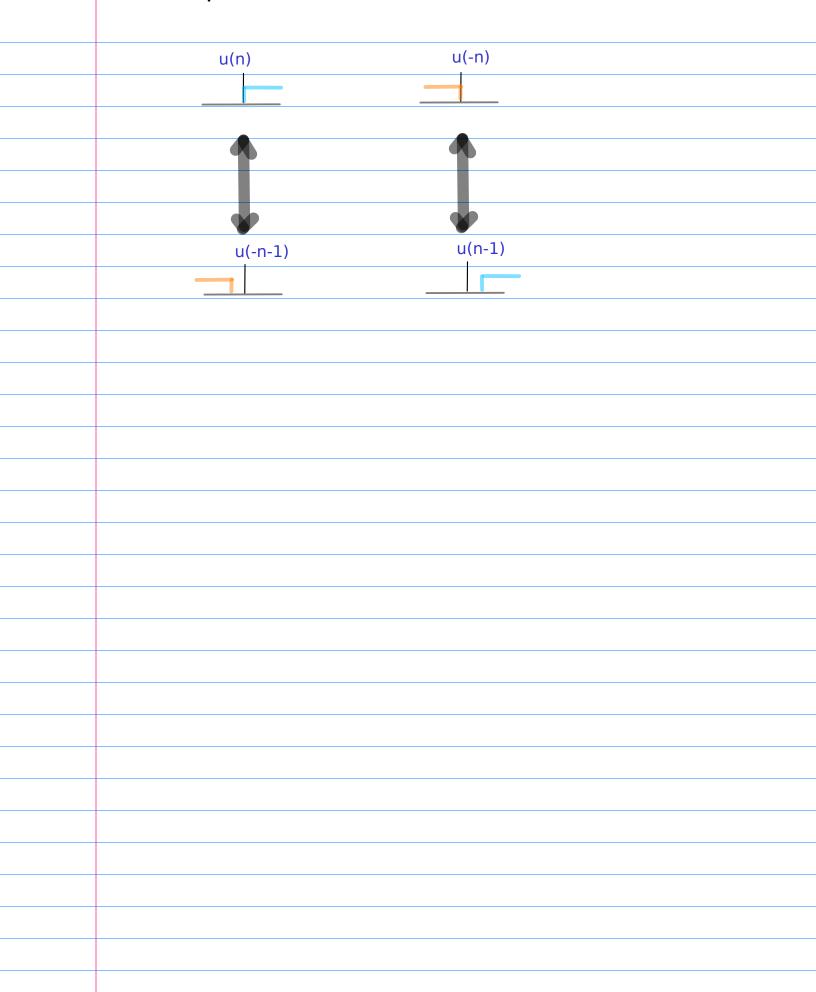
SHL.Seq, SHL.Rng
$$\frac{\xi^{1}}{1-\alpha\xi^{1}} |\xi| > \alpha$$

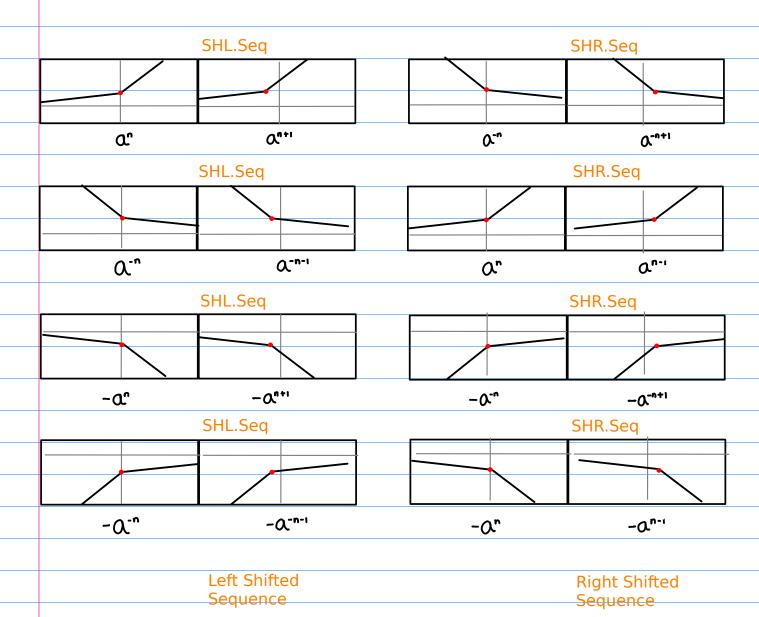
* inverted relation is ignored



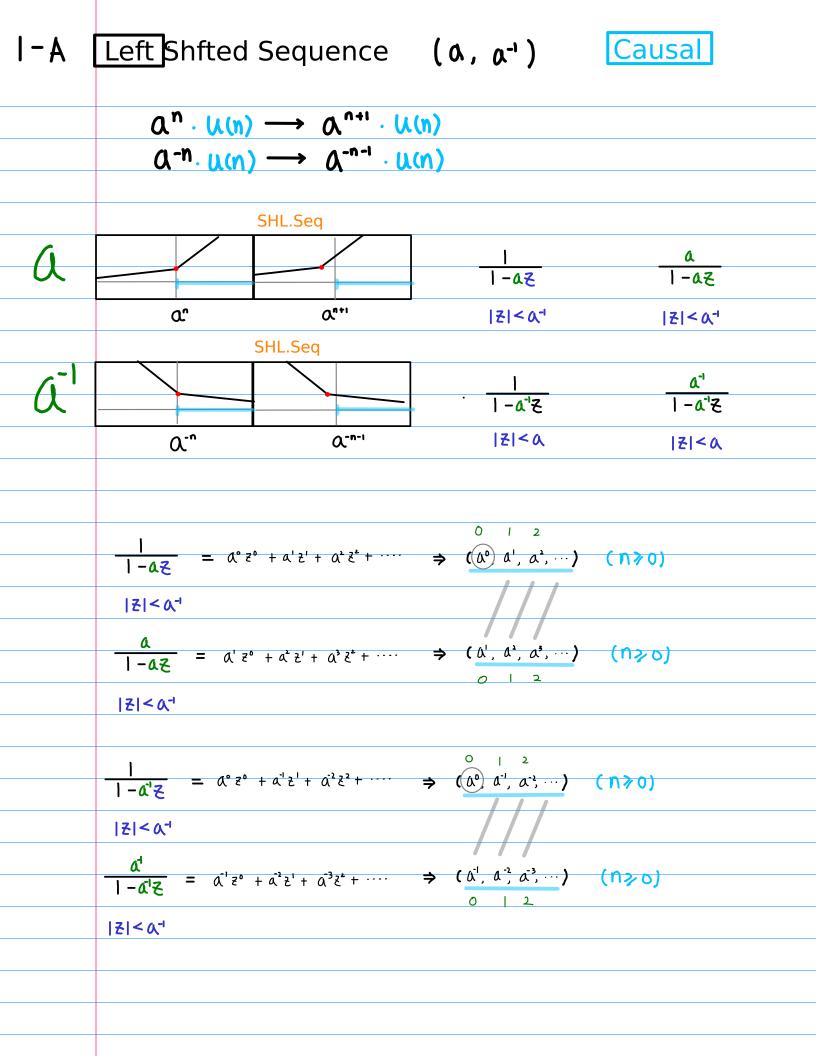
SHL.Seq Shift Right(Sequence Function)
SHR.Seq Shift Right(Sequence Function)
SHL.ROC Shift Right(Region of Convergence)
SHR.ROC Shift Right(Region of Convergence)

Complement





I-A	Left Shft Causal u(n)	(α, α-1)
1-B	Left Shft Causal u(n-1)	(፮ , ፮)
1-C	Left Shft Anti-Causal u(-n-1)	(a, a ⁻¹)
I-D	Left Shft Anti-Causal u(-n)	(٤-١, ٤-١)
2 -A	Right Shft Causal u(n-1)	(a¬, a)
2-B	Right Shft Causal u(n)	(7,2)
ე-c	Right Shft Anti-Causal u(-n)	(Q1, Q)
1- D	Right Shft Anti-Causal u(-n-1)	(₹,₹)

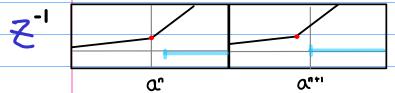


I-B Left Shfted Sequence (ਣ¹, ෑ¹) Causal

$$\alpha^{n} \cdot \mu(n-1) \longrightarrow \alpha^{n+1} \cdot \mu(n)$$

$$\alpha^{-n} \cdot \mu(n-1) \longrightarrow \alpha^{-n-1} \cdot \mu(n)$$

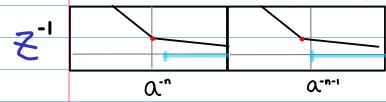
SHL.Seq, SHL.Rng



|Z| < Q-1

12 | < 0,1

SHL.Seq, SHL.Rng



121< a

|Z| < a

$$\frac{\alpha\xi}{1-\alpha\xi} = \alpha'\xi' + \alpha^{\xi}\xi' + \alpha^{\xi}\xi' + \cdots \Rightarrow (0, \alpha', \alpha', \cdots) \quad (N)$$

|Z|<0-1

$$\frac{\alpha}{|-\alpha\xi|} = \alpha' z^{\circ} + \alpha^{2} z' + \alpha^{3} z' + \cdots \Rightarrow (\underline{\alpha', \alpha^{2}, \alpha^{3}, \cdots}) \quad (n \geqslant 0)$$

171< Q-1

$$\frac{\alpha^{1}\xi}{|-\alpha^{1}\xi|} = \alpha^{1}\xi^{1} + \alpha^{2}\xi^{2} + \alpha^{3}\xi^{3} + \cdots \Rightarrow \frac{\alpha^{1}}{\alpha^{1}}, \frac{\alpha^{2}}{\alpha^{2}} \cdots$$

|Z|< Q-1

$$\frac{\alpha^{1}}{1-\alpha^{1}\xi} = \alpha^{-1}z^{0} + \alpha^{2}z^{1} + \alpha^{3}z^{2} + \cdots \Rightarrow (\underline{\alpha^{1}, \alpha^{2}, \alpha^{3}, \cdots}) \quad (n > 0)$$

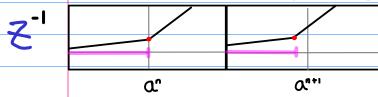
|Z|<01

I-C Left Shfted Sequence (Δ, Δ⁻¹) Anti-Causal $\alpha^n \cdot \mu(-n-1) \longrightarrow \alpha^{n+1} \cdot \mu(-n-1)$ $(A^{-n} \cdot (C-n-1)) \longrightarrow (A^{-n-1} \cdot (C-n-1))$ SHL.Seq <u> ぱさ'</u> | -ぱさ' <u>そ'</u> | -ぱさ' ほうみつ 121707 A** a.º SHL.Seq 121> Q 121> Q $\frac{\alpha^{1}\xi^{1}}{1-\alpha^{1}\xi^{1}} = \cdots + \alpha^{3}\xi^{-3} + \alpha^{2}\xi^{-2} + \alpha^{1}\xi^{-1} \Rightarrow (\underline{\cdots, \alpha^{-3}, \alpha^{-2}, \alpha^{-1}}) \quad (\eta < 0)$ ほうみつ $\frac{\xi^{-1}}{1-\alpha^{1}\xi^{-1}} = \cdots + \alpha^{2}\xi^{-3} + \alpha^{-1}\xi^{-1} + \alpha^{0}\xi^{-1} \Rightarrow (\cdots, \alpha^{-1}, \alpha^{-1}, \alpha^{0}) \quad (n < 0)$ ほうみっ $\frac{\alpha \mathcal{E}^{1}}{1-\alpha \mathcal{E}^{1}} = \cdots + \alpha^{3} \mathcal{E}^{3} + \alpha^{2} \mathcal{E}^{2} + \alpha^{1} \mathcal{E}^{-1} \Rightarrow (\cdots, \alpha^{3}, \alpha^{2}, \alpha^{1}) \qquad (n < 0)$ 121> Q $\frac{\xi^{-1}}{1-\alpha\xi^{-1}} = \cdots + \alpha^{2} \xi^{-3} + \alpha^{1} \xi^{-2} + \alpha^{0} \xi^{-1} \Rightarrow (\cdots, \alpha^{2}, \alpha^{1}, \alpha^{0}) \qquad (n < 0)$ 121> Q

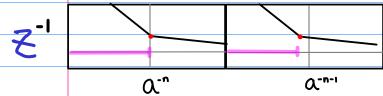
ו-ס Left Shfted Sequence (צָּלֹ, צָלֹ) Anti-Causal

$$\alpha^n \cdot \mu(-n) \longrightarrow \alpha^{-n-1} \cdot \mu(-n-1)$$
 $\alpha^{-n} \cdot \mu(-n-1)$

SHL.Seq, SHL.Rng



SHL.Seq, SHL.Rng



$$\frac{1}{|\mathbf{z}| > \mathbf{A}^{-1}} = \cdots + \mathbf{A}^{2} \mathbf{z}^{2} + \mathbf{A}^{1} \mathbf{z}^{-1} + \mathbf{A}^{0} \mathbf{z}^{0} \Rightarrow (\underline{\dots}, \underline{\mathbf{A}}^{-1}, \underline{\mathbf{A}}^{0}) \quad (\mathbf{A} < \mathbf{1})$$

$$\mathbf{z}^{-1}$$

$$\frac{\xi^{-1}}{1-\alpha^{1}\xi^{-1}} = \cdots + \alpha^{2}\xi^{-1} + \alpha^{1}\xi^{-2} + \alpha^{0}\xi^{-1} \Rightarrow (\cdots, \alpha^{-1}, \alpha^{0}, 0) (n < 0)$$

$$|\xi| > \alpha^{-1}$$

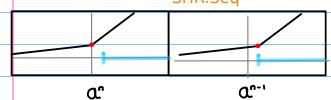
$$\frac{1}{|-\alpha \xi^{-1}|} = \cdots + \alpha^{2} \xi^{-2} + \alpha^{1} \xi^{-1} + \alpha^{0} \xi^{0} \Rightarrow (\dots, \alpha^{1}, \alpha^{0}, \alpha^{1}, \alpha^{0}) \qquad (n < 1)$$

$$\frac{\xi^{-1}}{|-\alpha \xi^{-1}|} = \cdots + \alpha^{1} \xi^{0} + \alpha^{1} \xi^{0} + \alpha^{0} \xi^{-1} \Rightarrow (\dots, \alpha^{1}, \alpha^{0}, \alpha^{0}) \qquad (n < 0)$$

$$\frac{|\xi| > \alpha^{-1}}{|\xi| > \alpha^{-1}}$$

2-A Right Shfted Sequence (Δ⁻¹, Δ) Causal

SHR.Seq

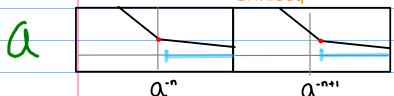


<u>そ</u> |-&そ

|z| < 0°1

|z| < 0.1

SHR.Seq



<u>₹</u> |-4₹

12/< 0

12/< 0

$$\frac{\Delta \xi}{|-\Delta \xi|} = \alpha' \xi' + \alpha' \xi' + \alpha' \xi' + \cdots \Rightarrow (\alpha', \alpha', \alpha', \cdots) \quad (n > 1)$$

|Z|<0-

$$\frac{\xi}{1-a\xi} = \alpha^{\circ} z' + \alpha' z' + \alpha' z' + \cdots \Rightarrow (\alpha'), \alpha', \alpha', \cdots) \qquad (n > 1)$$

171< NT

$$\frac{\alpha^{2}\xi}{1-\alpha^{2}\xi} = \alpha^{2}\xi^{1} + \alpha^{2}\xi^{2} + \alpha^{3}\xi^{3} + \cdots \Rightarrow (\underline{\alpha^{2}, \alpha^{2}, \alpha^{2}, \cdots}) \quad (\mathbb{N}^{3})$$

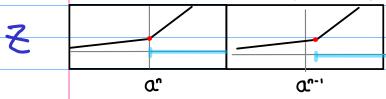
|Z|<0"

$$\frac{\xi}{1-\alpha^{1}\xi} = \alpha^{0} \xi^{1} + \alpha^{1} \xi^{2} + \alpha^{2} \xi^{3} + \cdots \Rightarrow (\alpha^{0} \alpha^{-1}, \alpha^{-2}, \cdots)$$

121< W1

2-B Right Shfted Sequence (२,२) Causal

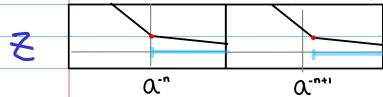
SHR.Seq, SHR.Rng



|Z|< Q1

|Z| < Q+

SHR.Seq, SHR.Rng



|Z|< a

|Z|< a

$$\frac{1}{1-\alpha\xi} = \alpha^{\circ}\xi^{\circ} + \alpha^{1}\xi^{1} + \alpha^{2}\xi^{2} + \cdots \Rightarrow (\alpha^{\circ}, \alpha^{1}, \alpha^{2}, \cdots) \quad (n \geqslant 0)$$

|Z|<0-1

$$\frac{\xi}{1-\alpha\xi} = \alpha^{\circ}\xi' + \alpha'\xi' + \alpha'\xi' + \cdots \Rightarrow (0, \underline{\alpha^{\circ}, \alpha^{\circ}, \cdots}) \quad (n>1)$$

121< Q-1

$$\frac{1}{1-\alpha^{1}\xi} = \alpha^{0}\xi^{0} + \alpha^{-1}\xi^{1} + \alpha^{-2}\xi^{2} + \cdots \Rightarrow (\underline{\alpha^{0}, \alpha^{-1}, \alpha^{-2}, \cdots}) \quad (n \geqslant 0)$$

|Z|<0"

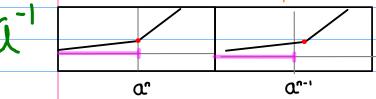
$$\frac{\mathcal{E}}{1-\alpha^{1}\mathcal{E}} = \alpha^{0} z^{1} + \alpha^{1} z^{2} + \alpha^{2} z^{3} + \cdots \Rightarrow (0, \alpha^{0}, \alpha^{1}, \cdots)$$

171< Q1

2-c Right Shfted Sequence (Δ¹, Δ) Anti-Causal

$$\alpha_n \cdot \alpha_{(-n)} \longrightarrow \alpha_{u-1} \cdot \alpha_{(-n)}$$

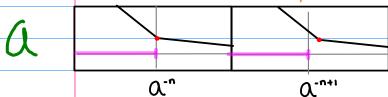
SHR.Seq



121>07

121>07

SHR.Seq



1-az1

12170

12170

$$\frac{1}{1-\alpha^{-1}z^{-1}} = \cdots + \bar{\alpha}^{2}\bar{z}^{-2} + \bar{\alpha}^{-1}\bar{z}^{-1} + \alpha^{0}\bar{z}^{0} \Rightarrow (\cdots, \alpha^{-1}, \alpha^{-1}, \alpha^{0}) \quad (n < 1)$$

|Z| > Q⁻¹

$$\frac{\alpha^{-1}}{1-\alpha^{-1}z^{-1}} = \cdots + \alpha^{-1}z^{-1} + \alpha^{-1}z^{-1} + \alpha^{-1}z^{-1} \Rightarrow (\cdots, \alpha^{-1}, \alpha^{-2}, \alpha^{-1}) \qquad (n < 1)$$

121>07

$$\frac{1}{1-\sqrt{3^{-1}}} = \cdots + \alpha^2 \xi^{-2} + \alpha^1 \xi^{-1} + \alpha^0 \xi^0 \Rightarrow (\cdots, \alpha^2, \alpha^1, \alpha^0) \qquad (n < 1)$$

121>0

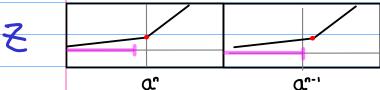
$$\frac{\alpha}{1-\alpha \xi^{-1}} = \cdots + \alpha^{3} \xi^{-2} + \alpha^{2} \xi^{-1} + \alpha^{1} \xi^{\circ} \Rightarrow (\cdots, \alpha^{3}, \alpha^{2}, \alpha^{1}) \qquad (n < 1)$$

12170

1-) Right Shfted Sequence (7,2) Anti-Causal

$$\alpha_n \cdot \mu(-n-1) \longrightarrow \alpha_{-n+1} \cdot \mu(-n)$$

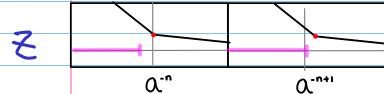
SHR.Seq, SHR.Rng



ほうみつ

ほうみつ

SHR.Seq, SHR.Rng



1-02⁻¹

121> Q

|そ|> 仏

$$\frac{\alpha'\xi'}{|-\alpha'\xi'|} = \cdots + \alpha'\xi'' + \alpha'\xi'' + \alpha''\xi'' \Rightarrow (\cdots, \alpha'', \alpha'', 0) \quad (n < 0)$$

121>0-1

$$\frac{\alpha^{-1}}{1-\alpha^{-1}z^{-1}} = \cdots + \alpha^{-2}z^{-2} + \alpha^{-2}z^{-1} + \alpha^{-1}z^{-2} \Rightarrow (\cdots, \alpha^{-3}, \alpha^{-2}, \alpha^{-1})$$

ほうみつ

$$\frac{\Delta \xi^{-1}}{1-\Delta \xi^{-1}} = \cdots + \alpha^{2} \xi^{-2} + \alpha^{2} \xi^{-2} + \alpha^{1} \xi^{-1} \Rightarrow (\cdots, \alpha^{2}, \alpha^{1}, \alpha) \qquad (n < 0)$$

|そ|>仏

$$\frac{\alpha}{1-\alpha\xi^{-1}} = \cdots + \alpha^2 \xi^{-3} + \alpha^4 \xi^{-2} + \alpha^1 \xi^{-1} \Rightarrow (\cdots, \alpha^3, \alpha^2, \alpha^1) \qquad (n < 1)$$

|Z|> Q

Original	Shifted	Original	Shifted
Sequence	Sequence	Sequence	Sequence
•	0.41	- N (1 (h d)	. 041
$a^n \cdot u(n) \longrightarrow$		$\alpha_{\mathbf{n}} \cdot ((-\mathbf{n} - \mathbf{i}) \longrightarrow$	
$\alpha^{-n} \cdot u(n) \longrightarrow$	$\Delta^{-n-1} \cdot u(n)$	$(V-\mu \cdot (V-\mu-1)) \longrightarrow$	$Q_{-n-1} \cdot ((-n-1)$
0 n 11 m 1)	a n+1 (1/m)	$\alpha^n \cdot ((-h)) \longrightarrow$	0 0+1 (1(-h-1)
$\alpha^n \cdot (\lambda(n-1)) \longrightarrow$		α α	
$\alpha^{-n} \cdot u(n-1) \longrightarrow$	\(\alpha^{\text{in}}\)	$\alpha \cdots \alpha = 1$	Δ · · ((-n-)
$Q_{u} \cdot (Y(u-1)) \longrightarrow$	$Q_{u-1} \cdot Q(u-1)$	$\alpha^n \cdot \mu(-n) \longrightarrow$	Λ ⁿ⁻¹ · (L(-n)
α -n: $u(n-1) \longrightarrow$	0-n+1 · u(n-1)	$\alpha_{-n} \cdot \alpha_{(-n)} \longrightarrow$	A-n+1 · (L(-n)
$a^n \cdot u(n) \longrightarrow$	$\nabla_{u-1} \cdot (u-1)$	$\alpha^n \cdot \mu(-n-1) \longrightarrow$	Δ ⁿ⁻¹ · (L(-n)
α -n. $u(n) \longrightarrow$	Q-n+1 · U(n-1)	α -n. (u(-n-1) \longrightarrow	λ-n+1· (L(-n)
1			

Comp	lementary	Ranges

 U(n)
 (L(-n-1)

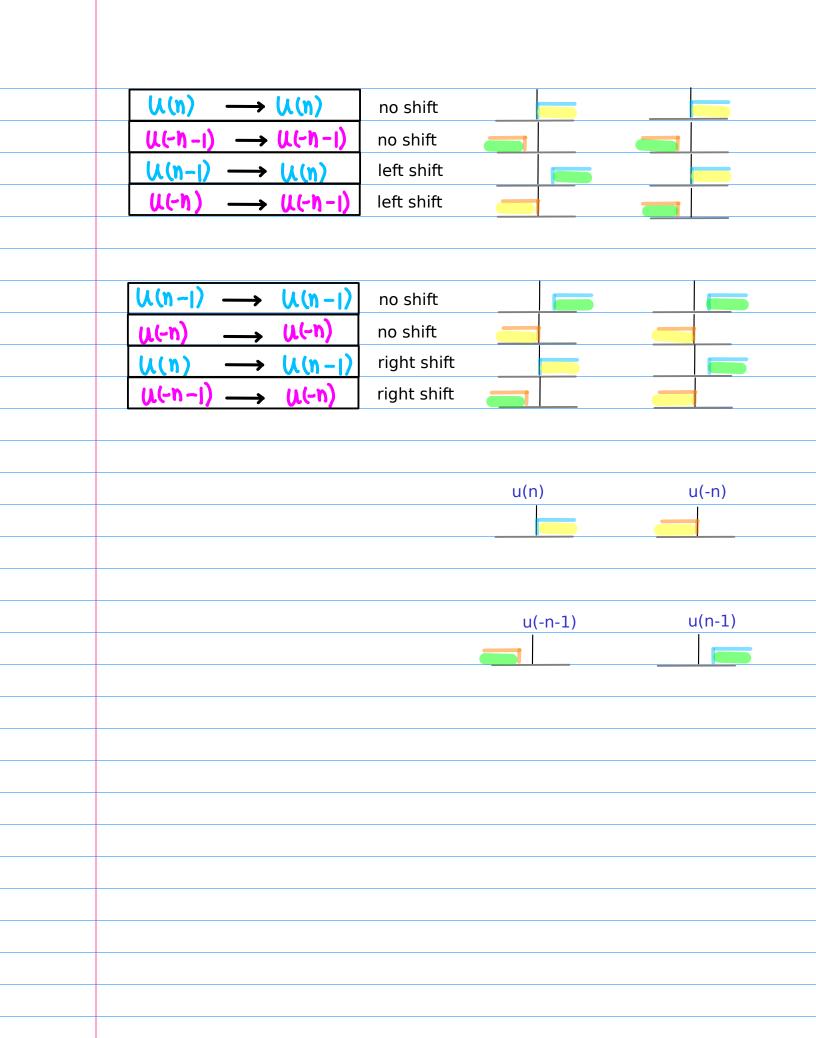
 U(n-1)
 (L(-n)

Original	Shifted	Original	Shifted
Sequence	Sequence	Sequence	Sequence
an · u(n) —	> ⟨V _{u+1} · ⟨Y(µ)	$\alpha_n \cdot ((-\mu - 1)) \longrightarrow$	∀ ⁿ⁺¹ · ((-η-1)
a-n. u(n) —	→ A ⁻ⁿ⁻¹ · U(n)	$(Y_{-M} \cdot (Y_{-M-1})) \longrightarrow$	A -n-1 ·((-n-1)
«((Q0), d1, a2,)	(ω', ω², ω³,···)	(···, a ⁻³ , a ⁻² , a ⁻¹)	$(\cdots, \alpha^{-1}, \alpha^{-1}, \alpha^{0})$
\ll ((Δ^0) , Δ^{-1} , Δ^{-2} , \cdots)	(\$\overline{\alpha}^1\$, \$\overline{\alpha}^2\$, \$\overline{\alpha}^3\$, \$\cdots\$	$(\cdots, \alpha^3, \alpha^2, \alpha^1)$	(···, d², a¹, 6°)≪
shift out			shift in
$a^n \cdot (k(n-1))$	> 0\n+1 · 1\(n)	$\alpha_{n} \cdot \alpha_{(-n)} \longrightarrow$	(Xn+1 · (L(-Ŋ-1)
a-n. u(n-1) -	→ Λ ^{-n-l} · U(n)	$\mathcal{C}_{-\mu}$ ·((- μ) \longrightarrow	∆^{-n-l} ·((-n-l)
«((o), \(\alpha^1\), \(\alpha^2\), \(\cdot\)	(α', α², α³,···)	(, 12 ⁻² , 12 ⁻¹ , 12°)	$(\ldots, \alpha^{-1}, \alpha^{0}, \bigcirc)$ «
«(0), $\vec{\Delta}'$, $\vec{\Delta}^{-2}$ ···)	(a ⁻¹ , a ⁻² , a ⁻³ , ···)	(··, a², a¹, a°)	(, a¹, a°, 0)≪
shift out			shift in
an . ((n-1)			ν (γ(-n)
a-n. u(n-1)	> 0-n+1 · U(n-1)	α_{-n} . $\alpha_{(-n)} \longrightarrow$	Λ-n+1 · (L(-n)
(a', a², a³, ···)	» (a°, a¹, a², ···)	(, a ⁻¹ , a ⁻¹ , a ⁰)>>>	(, d ⁻³ , a ⁻² , d ⁻¹)
(a ⁻¹ , a ⁻² ,)	» ((a), a ⁻¹ , a ⁻² , ···).	(···, Δ², Δ¹, (Δ°))»	(···, Δ³, Δ², Δ¹).
	shift in	shift out	
$a^n \cdot u(n) \longrightarrow$	$\nabla_{u-1} \cdot (v(u-1))$	$\alpha_n \cdot ((-\mu-1))$	$V_{u-1} \cdot U(-u)$
a-n.u(n) -	λ-n+1 · U(n-1)	α-n. (L(-n-1)	> Q ⁻ⁿ⁺¹ · (μ(-n)
	» (δ), α°, α', ···)	(, a ⁻² , a ⁻¹ , b) »	(, 1 ⁻³ , 12 ⁻² , 12 ⁻¹)
	»(0), d⁰, a⁻¹, ···).	(, d², a¹, 0) »	(···, Δ³, Δ², Δ¹).
	shift in	shift out	, ., ., ., .,

Complementary and Symmetric Relations

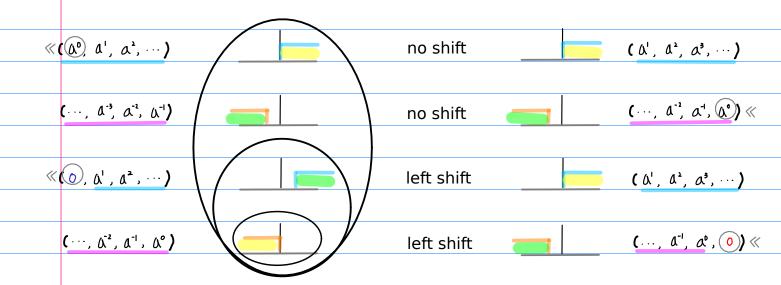
$\alpha_{\nu} \longrightarrow \alpha_{\nu}$	$U(n) \longrightarrow U(n)$
$\alpha_{-n} \longrightarrow \alpha_{-n-1}$	$(L(-n-1) \longrightarrow (L(-n-1))$
	$U(n-1) \longrightarrow U(n)$
	$(L(-n)) \longrightarrow (L(-n-1))$

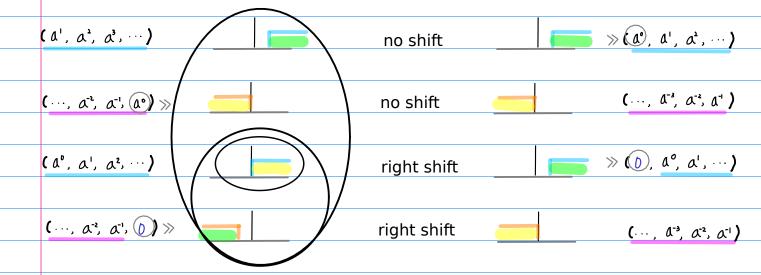
```
((n)) complementary ((n-1)) symmetric ((n-1)) complementary ((n-1)) symmetric (((n-1)))
```



Original Sequence

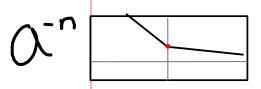
Shifted Sequence





Original Sequence Sequence * no shift \ll ((Δ^0) , Δ^1 , Δ^2 , ...) (a', a2, a3, ...) * non-zero shift in * a new value (···, △¹, △¹, ﴿) « (···, d⁻³, d⁻¹) introduced \ll (0), α^1 , α^2 , \cdots) * left shift (a1, a2, a3, ···) * zero shift in * the same $(\ldots, \alpha^{-1}, \alpha^{0}, 0)$ « (···, Δ⁻², Δ⁻¹, Δ°) set of values * no shift (a', a2, a3, ...) $\gg (a^{\circ}, a^{\circ}, \alpha^{\circ}, \cdots)$ * non-zero shift in * a new value $(\cdots, \alpha^{-1}, \alpha^{-1}, \alpha^{\circ})$ (..., 0⁻³, 0⁻², 0⁻¹) introduced * right shift » (b), a°, a1, ···) (a, a, a, ...) * zero shift in * the same (..., a⁻², a⁻¹, b) »= $(\dots, \alpha^{-3}, \alpha^2, \alpha^{-1})$ set of values

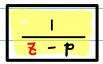
Shifted

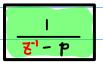


	scale(1/a)		SHL.Seq
- 1 1-a-12 121 <a< th=""><th>- 1-a-12 2 <a< th=""><th>- (\frac{1}{\alpha})^n (n></th><th>$_{D}) \qquad -\left(\frac{V}{I}\right)_{U+I} \qquad \left(U \gg D\right)$</th></a<></th></a<>	- 1-a-12 2 <a< th=""><th>- (\frac{1}{\alpha})^n (n></th><th>$_{D}) \qquad -\left(\frac{V}{I}\right)_{U+I} \qquad \left(U \gg D\right)$</th></a<>	- (\frac{1}{\alpha})^n (n>	$_{D}) \qquad -\left(\frac{V}{I}\right)_{U+I} \qquad \left(U \gg D\right)$
1 - azi z > a	 	(<u>√</u> ∆) ⁿ (n <	
	scale(1/z)		SHL.Seq, SHL.Rng
		(<u>i</u>)" (n<	1
- \(\frac{\alpha^{1} \tilde{z}}{1 - \alpha^{1} \tilde{z}} \tilde{z} < \alpha	- <u>a'</u> z < a	- (¼) n (n ≥ - (¼, ¼, ¼,	$-\left(\frac{\nabla}{\Gamma}\right)_{\mathbf{u}+\mathbf{l}} (\mathbf{v} \gg \mathbf{p})$
	scale(a)		SHR.Seq
- 1-02-1 z > a	- d z > a	-(<u>1</u>)" (n<	
1-072 z < 0	<u>ξ</u> -4'ξ z < α	$\left(\frac{1}{\alpha}\right)^n$ $\left(\bigcap \geqslant 1\right)$) $\left(\frac{1}{\alpha}\right)^{n-1}$ $(n \ge 1)$
	scale(z)		SHR.Seq, SHR.Rng
	1-a-12 2 < a	$\left(\frac{1}{\alpha}\right)^{n}$ $(n \ge 1)$	$\cdot \) \qquad \left(\frac{1}{0}, \frac{1}{0}, \frac{1}{0}, \frac{1}{0}, \cdots \right)$
1-az-1 z >a	1-az- Z >a	$-\left(\frac{1}{\Delta}\right)^{n} (n < 0.00)$ $(, \alpha^{3}, \alpha^{2}, 0.00)$	•
Original	Scaled	Original	
Series	Series	Sequen	ce Sequence

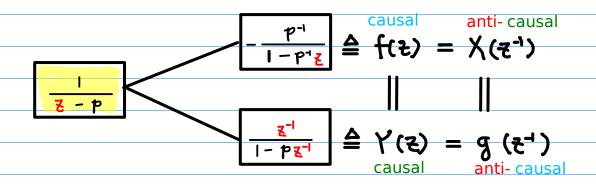
2 formulas

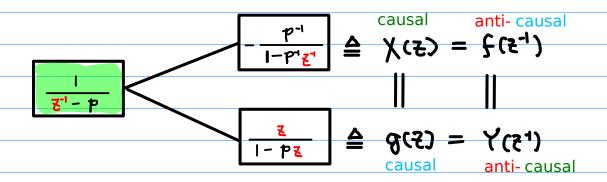
Simple Pole Form





2 representations each Geometric Series Form

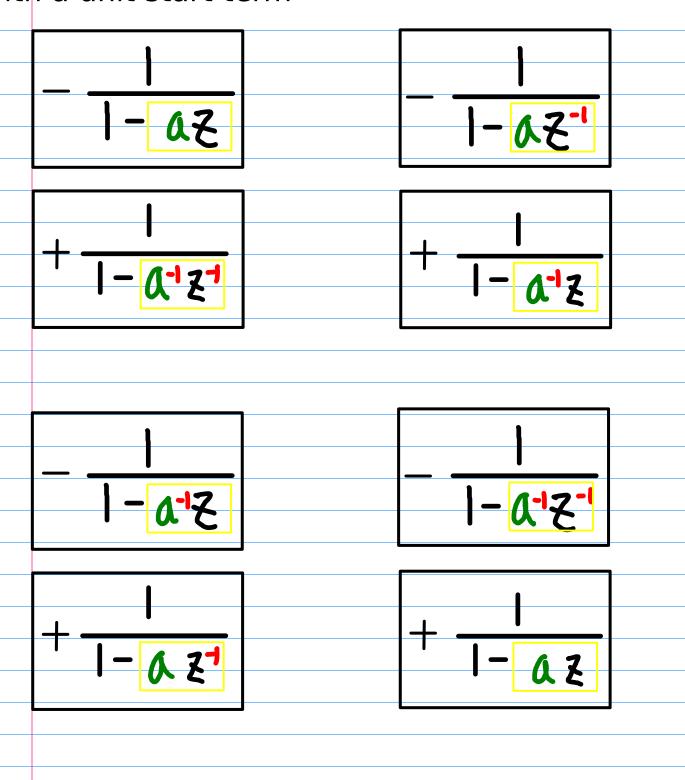




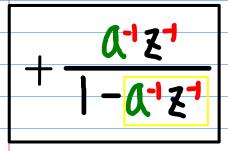
Simple Pole Form

Geometric Series Form

Geometric Series Form Combinations with a unit start term

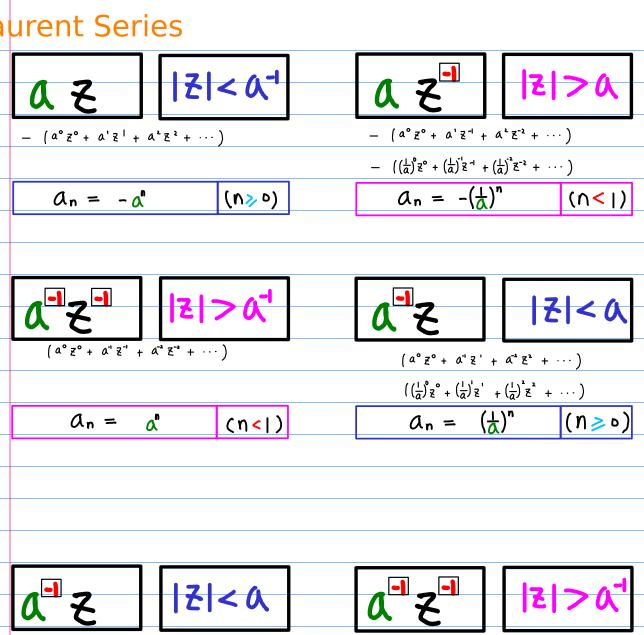


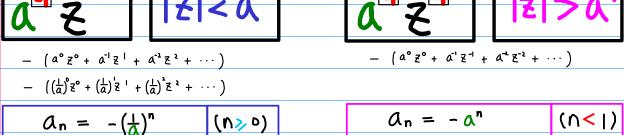
Geometric Series Form Combinations with non-unit start term

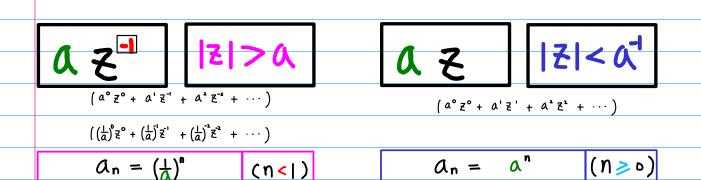


Geometric Series with a unit start term

Laurent Series







Geometric Series with a unit start term

z-Transform

$$- \left(\left(\frac{1}{a} \right)^{3} \xi^{\circ} + \left(\frac{1}{a} \right)^{\frac{1}{2}} \xi^{-1} + \left(\frac{1}{a} \right)^{\frac{1}{2}} \xi^{\frac{1}{2}} + \cdots \right)$$

$$a_n = -\bar{a}^n \qquad (-n > 0)$$

$$a_n = -\left(\frac{1}{\Delta}\right)^n \quad (n < 1)$$

$$- \left(\left(\frac{1}{a} \right)^{5} \xi^{\circ} + \left(\frac{1}{a} \right)^{-1} \xi^{-1} + \left(\frac{1}{a} \right)^{-2} \xi^{-2} + \cdots \right)$$

$$\alpha_n = -\left(\frac{1}{\alpha}\right)^n \qquad (n < 1)$$

$$\alpha_n = -\alpha^n \qquad (n > 0)$$

$$a_n = -a^n$$
 $(n > 0)$

$$\left(\left(\frac{1}{4}\right)^{3}\xi^{6} + \left(\frac{1}{4}\right)^{3}\xi^{-1} + \left(\frac{1}{4}\right)^{3}\xi^{-2} + \cdots\right)$$

$$a_n = a^n$$
 (-n<1)

$$a_n = \left(\frac{1}{a}\right)^n \quad (n \ge 0)$$

$$\left(\left(\frac{1}{\alpha}\right)^{0}\xi^{0} + \left(\frac{1}{\alpha}\right)^{1}\xi^{1} + \left(\frac{1}{\alpha}\right)^{2}\xi^{2} + \cdots\right)$$

$$a_n = \left(\frac{1}{\alpha}\right)^{-n} \quad (n \ge 0)$$

$$a_n = a^n \quad (n<1)$$

$$- \left(\left(\frac{a}{1} \right)_{\delta} \xi_{o} + \left(\frac{a}{1} \right)_{\delta} \xi_{1} + \left(\frac{a}{1} \right)_{\delta} \xi_{5} + \cdots \right)$$

$$\alpha_n = -\left(\frac{1}{\alpha}\right)^{-n} \qquad (-n > 0)$$

$$a_n = -a^n \qquad (n < 1)$$

$$- \left(\left(\frac{a}{1} \right)_{0} \xi_{0} + \left(\frac{a}{1} \right)_{1} \xi_{-1} + \left(\frac{a}{1} \right)_{2} \xi_{-5} + \cdots \right)$$

$$a_n = -a^n$$
 (n<1)

$$\alpha_n = -\left(\frac{1}{\alpha}\right)^n \qquad (n \gg 0)$$

$$\left(\left(\frac{1}{a}\right)^{3}\xi^{\circ} + \left(\frac{1}{a}\right)^{1}\xi^{1} + \left(\frac{1}{a}\right)^{2}\xi^{2} + \cdots\right)$$

$$a_n = \left(\frac{1}{\alpha}\right)^{-1} \qquad (-n < 1)$$

$$a_n = a^n \qquad (n \ge 0)$$

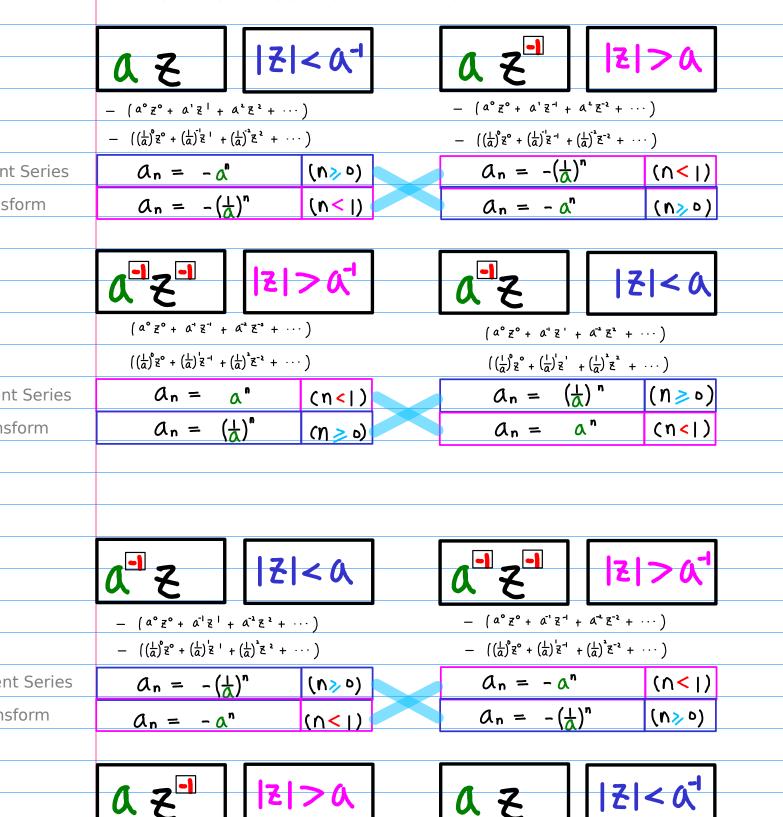
$$\left(\left(\frac{1}{a}\right)^{3}\xi^{\circ} + \left(\frac{1}{a}\right)^{3}\xi^{\circ} + \left(\frac{1}{a}\right)^{2}\xi^{2} + \cdots\right)$$

$$a_n = a^n \quad (-n \ge 0)$$

$$a_n = \left(\frac{1}{\alpha}\right)^n \qquad (\eta < |)$$

Geometric Series with a unit start term

Laurent Series vs. z-Transform



 $((\frac{1}{a})^{3}\xi^{\circ} + (\frac{1}{a})^{3}\xi^{\prime} + (\frac{1}{a})^{3}\xi^{2} + \cdots)$ $((\frac{1}{a})^{3}\xi^{\circ} + (\frac{1}{a})^{3}\xi^{\prime} + (\frac{1}{a})^{3}\xi^{2} + \cdots)$ ent Series $a_{n} = (\frac{1}{a})^{n} \qquad (n < 1)$ $a_{n} = a^{n} \qquad (n > 0)$ asform $a_{n} = (\frac{1}{a})^{n} \qquad (n < 1)$

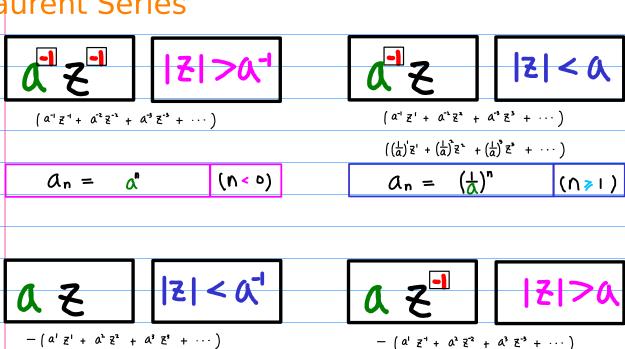
(a° Z° + a' Z' + a' Z' + ···)

(a° z° + a' z' + a' z' + ···)

Geometric Series with a non-unit start term

Laurent Series

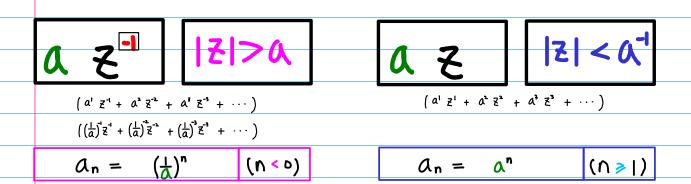
 $\alpha_n = -\alpha^n$

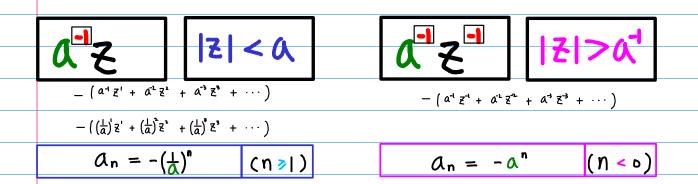


(n≥|)

 $- \left(\left(\frac{1}{a} \right)^{\frac{1}{2}} \xi^{-\frac{1}{4}} + \left(\frac{1}{a} \right)^{\frac{2}{3}} \xi^{-\frac{2}{3}} + \left(\frac{1}{a} \right)^{\frac{2}{3}} \xi^{-\frac{2}{3}} + \cdots \right)$

 $a_n = -\left(\frac{1}{a}\right)^n \qquad (n < 0)$





Geometric Series with a non-unit start term

z-Transform

$$\left(\left(\frac{1}{a} \right)^{1} \xi^{-1} + \left(\frac{1}{a} \right)^{2} \xi^{-2} + \left(\frac{1}{a} \right)^{3} \xi^{-3} + \cdots \right)$$

$$\left(\left(\frac{1}{a}\right)^{1}\xi^{1} + \left(\frac{1}{a}\right)^{2}\xi^{2} + \left(\frac{1}{a}\right)^{9}\xi^{9} + \cdots\right)$$

(a 2 + a 2 + a 2 + ...)

$$a_n = a^n$$

$$\alpha_n = \left(\frac{1}{\alpha}\right)^{-n}$$

$$a_n = \left(\frac{1}{\alpha}\right)^n$$

$$a_n = a^n$$

$$-(a' \xi' + a' \xi' + a'' \xi'' + \cdots)$$

$$- \left(\left(\frac{\alpha}{1} \right)_{1}^{2} + \left(\frac{\alpha}{1} \right)_{3}^{2} + \left(\frac{\alpha}{1} \right)_{3}^{2} + \cdots \right)$$

$$- \left(\alpha^{1} \ \xi^{-1} + \ \alpha^{2} \ \xi^{-2} \ + \ \alpha^{3} \ \xi^{-3} \ + \ \cdots \ \right)$$

 $- \left(\left(\frac{1}{\alpha} \right)^{\frac{1}{2}} \xi^{-\frac{1}{2}} + \left(\frac{1}{\alpha} \right)^{\frac{1}{2}} \xi^{-\frac{1}{2}} + \left(\frac{1}{\alpha} \right)^{\frac{1}{2}} \xi^{-\frac{1}{2}} + \cdots \right)$

$$a_n = -a^n$$
 (-n)

$$a_n = -\left(\frac{1}{\alpha}\right)^{-n} \qquad (-n < 0)$$

$$\alpha_n = -\left(\frac{1}{\alpha}\right)^n$$

$$a_n = -a^n$$

$$\left(\left(\frac{1}{a} \right)^{3} \xi^{3} + \left(\frac{1}{a} \right)^{3} \xi^{3} + \left(\frac{1}{a} \right)^{3} \xi^{3} + \cdots \right)$$

$$(a_1 \xi_1 + a_2 \xi_3 + a_3 \xi_3 + \cdots)$$

$$\left(\left(\frac{1}{\alpha} \right)_{3} \xi_{1} + \left(\frac{1}{\alpha} \right)_{3} \xi_{2} + \left(\frac{1}{\alpha} \right)_{3} \xi_{3} + \cdots \right)$$

$$a_n = \left(\frac{1}{\Delta}\right)^{-n}$$

$$a_n = a^n$$

$$a_n = a^n$$

$$a_n = \left(\frac{1}{\alpha}\right)^n$$

$$-\left(\left(\frac{1}{a}\right)^{3}\xi^{1}+\left(\frac{1}{a}\right)^{3}\xi^{3}+\left(\frac{1}{a}\right)^{3}\xi^{3}+\cdots\right)$$

$$-\left(\left(\frac{a}{a}\right)\xi' + \left(\frac{a}{a}\right)\xi' + \left(\frac{a}{a}\right)\xi'' + \cdots\right)$$

$$-\left(\left(\frac{1}{a}\right)^{1}\xi^{-1}+\left(\frac{1}{a}\right)^{2}\xi^{-2}+\left(\frac{1}{a}\right)^{3}\xi^{-3}+\cdots\right)$$

$$a_n = -\left(\frac{1}{\alpha}\right)^{-n} \qquad (-n > 1)$$

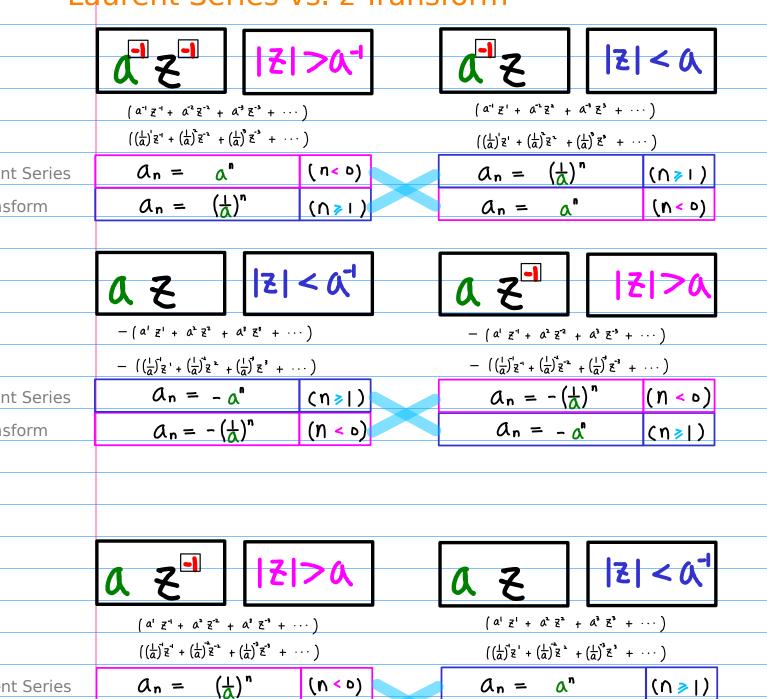
$$a_n = -a^n \qquad (-n < 0)$$

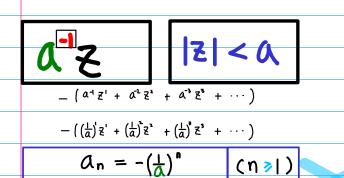
$$a_n = -a^n$$

$$a_n = -\left(\frac{1}{\alpha}\right)^n$$
 $(n > 1)$

Geometric Series with a non-unit start term

Laurent Series vs. z-Transform





 $a_n = -a^n$

an

(n ≥ 1)

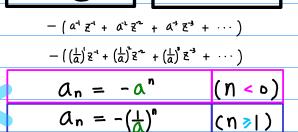
(n < 0)

 $a_n =$

sform

nt Series

sform

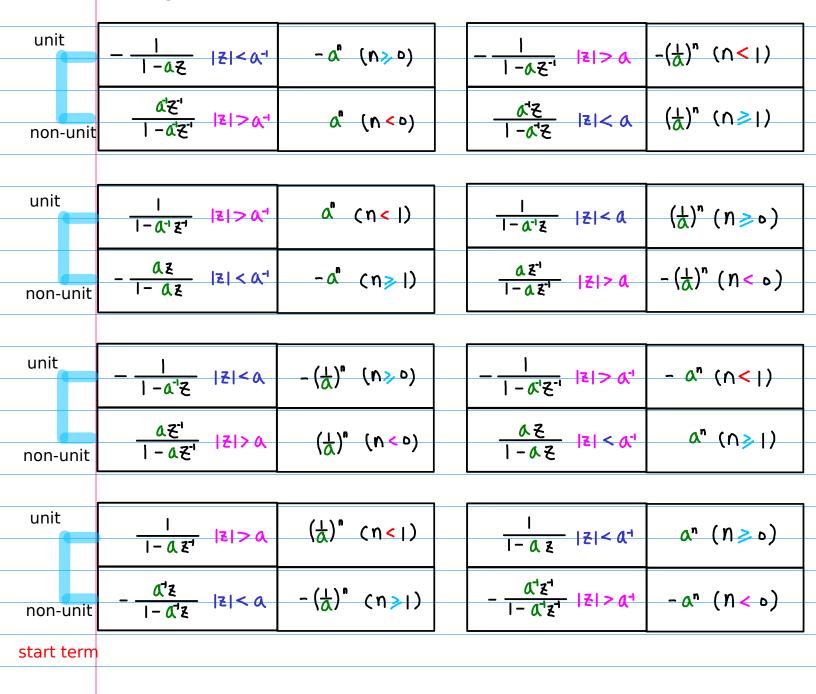


131>0

(n >1)

 $\alpha_n = \left(\frac{1}{\alpha}\right)^n$

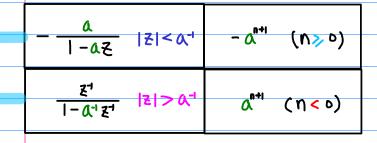
Complemnt ROC Pairs -Original Geometric Series Form Combinations



Complemnt ROC Pairs -Shifted Geometric Series Form Combinations

- a z < a - a - a - a - a - a - a - a - a - a	$-\frac{\alpha}{1-\alpha\xi^{-1}} z > \alpha -\left(\frac{1}{\alpha}\right)^{n-1} (n < 1)$
- ξ' 	$\frac{\xi}{1-\alpha^{4}\xi} z < \alpha \qquad \left(\frac{1}{\alpha}\right)^{n-1} (n > 1)$
•	
$\frac{\xi^{-1}}{1-\alpha^{-1}\xi^{-1}} \frac{ \xi > \alpha^{-1}}{\alpha^{n+1}} (\eta < 0)$	$\frac{z}{1-a^{-1}z} z < a \qquad \left(\frac{1}{\Delta}\right)^{n-1} (n > 1)$
- a	$\frac{a}{1-az^{-1}} z > a \qquad -\left(\frac{1}{\alpha}\right)^{n-1} (n < 1)$
$-\frac{\alpha^{-1}}{1-\alpha^{-1}\xi} \xi < \alpha -\left(\frac{1}{\alpha}\right)^{n+1} (n > 0)$	$-\frac{\alpha^{-1}}{1-\alpha^{-1}\xi^{-1}} \mid \xi \mid > \alpha^{-1} -\alpha^{n-1} (\cap < \mid)$
$\frac{\mathcal{E}^{1}}{ -\alpha\mathcal{E}^{1} } \frac{ \mathcal{E} >\alpha}{ \alpha } \left(\frac{1}{\alpha}\right)^{n+1} \qquad (n < 0)$	$\frac{\xi}{ -\alpha\xi } \frac{ \xi < \alpha^{-1}}{ \alpha^{n-1} } \alpha^{n-1} (n \ge 1)$
1-85	1-02
1-45	1-08
$\frac{ z_1 }{ z > \alpha} \frac{ z > \alpha}{\left(\frac{1}{\alpha}\right)^{n+1}} (n < 0)$	$\frac{z}{1-\alpha z} \frac{ z < \alpha^{-1}}{ z } \alpha^{n-1} (n \ge 1)$

Complemnt ROC Pairs - Reduced Shifted Geometric Series Form Combinations



$$-\frac{\alpha^{-1}}{1-\alpha^{-1}Z} |Z| < \alpha - \left(\frac{1}{\alpha}\right)^{n+1} \quad (n > 0)$$

$$\frac{Z^{-1}}{1-\alpha Z^{-1}} |Z| > \alpha \quad \left(\frac{1}{\alpha}\right)^{n+1} \quad (n < 0)$$

$$\frac{\alpha^{-1}}{1-\alpha^{-1}\xi} |\xi| < \alpha - \left(\frac{1}{\alpha}\right)^{n+1} \quad (n > 0) \qquad \frac{\zeta^{1}}{1-\alpha^{1}\xi^{-1}} |\xi| > \alpha^{1} - \alpha^{n-1} \quad (n < 1)$$

$$\frac{\xi^{1}}{1-\alpha^{1}\xi^{1}} |\xi| > \alpha \quad \left(\frac{1}{\alpha}\right)^{n+1} \quad (n < 0) \qquad \frac{\xi}{1-\alpha^{1}\xi^{-1}} |\xi| < \alpha^{1} \quad \alpha^{n-1} \quad (n > 1)$$