RC Circuit

Copyright (c) 2011 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Charge

$$
i_{c}=C \cdot \frac{d v_{c}}{d t}
$$

unyielding voltage
current jump

$$
i \quad=\quad i_{R} \quad=\quad i_{C} j u m p
$$

$$
i_{c}\left(0^{-}\right) \neq i_{c}\left(0^{+}\right)
$$

Discharge

$$
i_{c}=C \cdot \frac{d v_{c}}{d t}
$$

unyielding voltage
current jump

$i=i_{R}=\quad i_{C}$ jump

$$
i_{c}\left(0^{-}\right) \neq i_{c}\left(0^{+}\right)
$$

Differential Equation (1)

$$
\begin{aligned}
& R C \cdot \frac{d v_{c}}{d t}+v_{c}=V_{s} \quad t \geq 0^{+} \quad v_{c}\left(0^{+}\right)=v_{c}\left(0^{-}\right)=V_{0} \\
& \frac{d v_{c}}{d t}+\frac{1}{R C} v_{c}=\frac{1}{R C} V_{s}
\end{aligned}
$$

$$
\frac{d v_{c}}{d t}+\frac{1}{R C} v_{c}=0 \quad \frac{d v_{c}}{d t}=-\frac{1}{R C} v_{c} \quad \frac{d v_{c}}{v_{c}}=-\frac{1}{R C} d t
$$

$$
\ln v_{c}=-\int \frac{1}{R C} d t+C \quad v_{c}=A e^{-\int \frac{1}{R C} d t} \quad v_{c}=A e^{-\frac{t}{R C}}
$$

$$
\begin{array}{ll}
\frac{d v_{c}}{d t} e^{\frac{t}{R C}}+\frac{1}{R C} v_{c} e^{\frac{t}{R C}}=\frac{V_{s}}{R C} e^{\frac{t}{R C}} & \frac{d}{d t}\left(v_{c} e^{\frac{t}{R C}}\right)=\frac{V_{s}}{R C} e^{\frac{t}{R C}} \\
\left(v_{c} e^{\frac{t}{R C}}\right)=c+\int \frac{V_{s}}{R C} e^{\frac{t}{R C}} d t=c+V_{s} e^{\frac{t}{R C}} & v_{c}(t)=c e^{-\frac{t}{R C}}+V_{s} \\
v_{c}(0)=c+V_{s}=V_{0} & v_{c}(t)=\left(V_{0}-V_{s}\right) e^{-\frac{t}{R C}}+V_{s}
\end{array}
$$

Differential Equation (2)

$$
\begin{aligned}
& R C \cdot \frac{d v_{c}}{d t}+v_{c}=V_{s} \quad t \geq 0^{+} \quad v_{c}\left(0^{+}\right)=v_{c}\left(0^{-}\right)=V_{0} \\
& \frac{d v_{c}}{d t}+\frac{1}{R C} v_{c}=\frac{1}{R C} V_{s}
\end{aligned}
$$

$$
\begin{array}{ll}
\frac{d v_{c}}{d t}+\frac{1}{R C} v_{c}=0 & \text { assume } v_{c}=A e^{s t} \quad \frac{d}{d t}\left(A e^{s t}\right)+\frac{1}{R C} A e^{s t}=0 \\
\left(s+\frac{1}{R C}\right) A e^{s t}=0 & s=-\frac{1}{R C} \quad v_{c}=A e^{-\frac{t}{R C}} \quad \text { homogeneous solution }
\end{array}
$$

$$
\frac{d v_{c}}{d t}+\frac{1}{R C} v_{c}=\frac{V_{s}}{R C} \quad \text { assume } v_{c}=c \quad \frac{d}{d t}(c)+\frac{1}{R C} c=\frac{V_{s}}{R C} \quad v_{c}=V_{s}
$$

particular solution

$$
v_{c}(t)=V_{s}+A e^{-\frac{t}{R C}} \quad v_{c}(0)=A+V_{s}=V_{0} \quad v_{c}(t)=\left(V_{0}-V_{s}\right) e^{-\frac{t}{R C}}+V_{s}
$$

Differential Equation (3)

$$
\begin{aligned}
& R i+\frac{1}{C} \int_{-\infty}^{t} i d \tau=V_{s} \quad t \geq 0^{+} \quad v_{c}\left(0^{+}\right)=v_{c}\left(0^{-}\right)=V_{0} \\
& i=C \frac{d v_{c}}{d t} \quad R C \cdot \frac{d v_{c}}{d t}+v_{c}=V_{s}
\end{aligned}
$$

$$
\begin{array}{ccc}
(R C D+1) v_{c}=V_{s} & (R C \lambda+1)=0 & \lambda=-\frac{1}{R C}
\end{array} v_{c 0}=A e^{-\frac{t}{R C}}
$$

$$
R C \cdot \dot{h}(t)+h(t)=\delta(t)
$$

$$
\text { assume } v_{c}=c \quad \frac{d}{d t}(c)+\frac{1}{R C} c=\frac{V_{s}}{R C}
$$

$$
v_{c}=V_{s}
$$

$$
\frac{\text { padickular sblution }}{d t}+\frac{V_{s}}{R C}
$$

$$
v_{c}(t)=V_{s}+A e^{-\frac{t}{R C}} \quad v_{c}(t)=\left(V_{0}-V_{s}\right) e^{-\frac{1 t}{R C}}+V_{s}
$$

Pulse
v_{c}

$$
i_{C}=C \frac{d v_{C}}{d t}
$$

i_{c}

$\omega \uparrow \quad i_{c} \uparrow \quad x_{c} \downarrow$
v_{c}

i_{c}

Phase Lags and Leads

References

[1] http://en.wikipedia.org/
[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003

