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What a proposition denotes

A: It is raining.

B: Professor N is 5 feet tall.

Proposition A denotes it is raining currently.

Proposition A does not denote it is raining an hour ago, tomorrow, a year ago…

Proposition B denotes Professor N is 6 feet

Proposition B does not denote Professor N is 7 feet, 5 feet, …
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When both A and B are false

A: It is raining. 

B: Professor N is 5 feet tall. 

Suppose that

It is not raining (A is false)

Professor N is 6 feet actually (B is false)

A→ B is true according to the truth table
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What A → B denotes

A: It is raining. It is not raining (A is false)

B: Professor N is 5 feet tall. Professor N is 6 feet actually (B is false)

A→ B is true according to the truth table

A → B : does not mean that 

If it rains some day (false A), 

then Professor N will be 5 feet (false B).

first concerns 

the proposition that it is raining currently (false) 

Suppose A → B is true

After finding A is true, then B must be true

After finding A is false, then we do not know whether B is true or false 

¬A → ¬B
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Semantics of Implication Rule 

Suppose A → B is true
If A is true then B must be true

Suppose A → B is false
If A is true then B must be false

Suppose A → B is true
If A is false then we do not know whether B is true or false 

A B A→B 
T T    T
T F    F
F T    T
F F    T  
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A different truth table 

Suppose A → B is true
If B is true then A must be true

B implies A 
This is not what we want 

A B A→B 
T T    T
T F    F
F T    F
F F    F  

A B A→B 
T T    T
T F    F
F T    T
F F    T  

Conventional Truth Table

B → A (X)
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Another different truth table 

Suppose A → B is true
If A is false then B must be false 

false A implies false B 
This is not what we want 

A B A→B 
T T    T
T F    F
F T    F
F F    T  

A B A→B 
T T    T
T F    F
F T    T
F F    T  

Conventional Truth Table

¬A → ¬B (X)
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Logical Implication & Equivalence 

A proposition is called a tautology
If and only if it is true in all possible world (every interpretation)

A proposition is called a contradiction
If and only if it is false in all possible world (every interpretation)

Given two propositions A and B,
If A ⇒ B is a tautology
It is said that A logically implies B (A ⇛ B)

Given two propositions A and B, 
If A ⇔ B is a tautology,
It is said that A and B are logically equivalent  (A ≡ B)

cf) in every model

cf) in every model
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Material Implication & Logical Implication  

Given two propositions A and B,
If A ⇒ B is a tautology
It is said that A logically implies B (A ⇛ B)

Material Implication A ⇒ B (not a tautology)
Logical Implication A ⇛ B (a tautology)

A B A⇒B 
T T    T
T F    F
F T    T
F F    T 

A B A∧B A∧B ⇒ A

T T    T T
T F    F T
F T    F T
F F    F  T

A∧B ⇛ A

tautology
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Interpretations and Models

A B A⇒B 
T T    T
T F    F
F T    T
F F    T 

A B A∧B A∧B ⇒ A

T T    T T
T F    F T
F T    F T
F F    F  T

Entailment A∧B  A⊨ , or A∧B ⇛ A

 
Interpretation I1
Interpretation I2
Interpretation I3
Interpretation I4

 
a Model of A⇒B 
a Model of A⇒B 
a Model of A⇒B 
a Model of A⇒B 

 
Interpretation I1
Interpretation I2
Interpretation I3
Interpretation I4

 
a Model of A B ∧
a Model of A B ∧
a Model of A B ∧
a Model of A B ∧
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Entailment

A B A⇒B 
T T    T
T F    F
F T    T
F F    T 

A B A∧B A∧B ⇒ A

T T    T T
T F    F T
F T    F T
F F    F  T

any model that makes A∧B true 

also makes A true     A∧B  A⊨

No case : True ⇒ False 

Entailment A∧B  A⊨ , or A∧B ⇛ A

if A→B holds in every model then A  B⊨ , 
and conversely if A  B⊨  then A→B is true in every model
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Logical Equivalences 

Excluded Middle Law A ∨ ¬A ≡ True

Contradiction Law A ∧ ¬A ≡ False

Identity Law A ∨ False ≡ A, A ∧ False ≡ A 

Dominion Law A ∧ False ≡ False, A ∨ True ≡ True 

Idempotent Law A ∨ A ≡ A, A ∧ A ≡ A

Commutativity Law A ∧ B ≡ B ∧ A, A ∨ B ≡ B ∨ A

Associativity Law (A∧B)∧C ≡ A∧(B∧C), (A∨B)∨C ≡ A∨(B∨C)

Distributivity Law A∧(B∨C) ≡ (A∧B)∨(A∧C), A∨(B∧C) ≡ (A∨B)∧(A∨C)

De Morgan’s Law ¬(A∧B) ≡ ¬A∨¬B, ¬(A∨B) ≡ ¬A∧¬B 

Implication Elimination A ⇒ B ≡ ¬A∨B

If and Only If Elimination A ⇔ B ≡ A ⇒ B ∧ B ⇒ A

Contraposition Law A ⇒ B ≡ ¬B⇒¬A

Double Negation ¬¬A ≡ A
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Material & Logical Implications (1)

Material implication 

a binary connective that creates a new sentence

A→B is a compound sentence using the symbol →.

Sometimes it refers to the truth function of this connective.

Logical implication 

a relation between two sentences A and B

any model that makes A true also makes B true

Entailment A  B⊨ , or A ⇛ B

Or sometimes, confusingly, as A  B⇒ , 

although some people use ⇒ for material implication. 

http://math.stackexchange.com/questions/68932/whats-the-difference-between-material-implication-and-logical-implication

between compound propositions
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Material & Logical Implications (2)

Material implication 
● a symbol at the object level
● a function of the truth value of two sentences in one fixed model

logical implication 
● a relation at the meta level
● not directly about the truth values of sentences in a particular model
● about the relation between the truth values of the sentences when all models 

are considered.

http://math.stackexchange.com/questions/68932/whats-the-difference-between-material-implication-and-logical-implication

A B A⇒B 
T T    T
T F    F
F T    T
F F    T 

A B A∧B A∧B ⇛ A

T T    T T
T F    F T
F T    F T
F F    F  T

between atomic propositions

between compound propositions
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Notations

Material implication →ψ ϕ   ψ ϕ ⇒

Logical implication   ψϕ ⇒  ϕ ⇛ ψ  

http://math.stackexchange.com/questions/68932/whats-the-difference-between-material-implication-and-logical-implication
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Propositional formula 

a propositional formula is 
a type of syntactic formula 
which is well formed and 
has a truth value. 

If the values of all variables 
in a propositional formula are given, 
it determines a unique truth value. 

A propositional formula may also be called 
a propositional expression, 
a sentence, or 
a sentential formula.

https://en.wikipedia.org/wiki/Propositional_formula
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Propositional formula denotes a proposition

In mathematics, a propositional formula is often more briefly 
referred to as a "proposition", 

but, more precisely, a propositional formula is 
not a proposition 
but a formal expression that denotes a proposition, 
a formal object under discussion,

 
just like an expression such as "x + y" 

is not a value, 
but denotes a value. 

https://en.wikipedia.org/wiki/Propositional_formula
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Valid and Satisfiable Propositional Statements

A formula is valid 
if it is true for all values of its terms. 

Satisfiability refers to 
the existence of a combination of values 
to make the expression true. 

A proposition is satisfiable 
if there is at least one true result in its truth table

A proposition is valid 
if all values it returns in the truth table are true.

http://math.stackexchange.com/questions/258602/what-is-validity-and-satisfiability-in-a-propositional-statement
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Valid and Satisfiable Propositional Statements

Satisfiability -the other way of interpretation

A propositional statement is satisfiable 
if and only if, its truth table is not contradiction.

Not contradiction means, 
it could be a tautology also.

Tautology → Satisfiable (O)
Satisfiability →  Tautology. (X)

if a propositional statement is Tautology, then its always valid.

Tautology implies ( Satisfiability + Validity ).

http://math.stackexchange.com/questions/258602/what-is-validity-and-satisfiability-in-a-propositional-statement



Propositional Logic (3A)
Semantics

22 Young Won Lim
4/21/17

Valid and Satisfiable Propositional Statements

¬, , ∧
 ∨

http://math.stackexchange.com/questions/258602/what-is-validity-and-satisfiability-in-a-propositional-statement

T

T
T
T
T
T
T

F
F
F
F
F
F

contradiction Tautology

Valid proposition

Satisfiable proposition

Satisfiable

Tautology

contradiction
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Terms and Formulas

In analogy to natural language, 
where a noun phrase refers to an object and 
a whole sentence refers to a fact, 

in mathematical logic, 
a term denotes a mathematical object and 
a formula denotes a mathematical fact. 

In particular, terms appear as components of a formula.

https://en.wikipedia.org/wiki/Term_(logic)

https://en.wikipedia.org/wiki/Term_(logic
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Expression

A first-order term is recursively constructed from 
● constant symbols, 
● variables and 
● function symbols. 

An expression formed 
by applying a predicate symbol 
to an appropriate number of terms is called an atomic formula, 
which evaluates to true or false in bivalent logics, 
given an interpretation.

https://en.wikipedia.org/wiki/Term_(logic)

https://en.wikipedia.org/wiki/Term_(logic
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Terms and Formula Examples

For example, ( x + 1 )  ( x + 1 ) is a ∗ term built from 
the constant 1, 
the variable x, and 
the binary function symbols + and ; ∗

it is part of the atomic formula ( x + 1 )  ( x + 1 ) ≥ 0 ∗
which evaluates to true for each real-numbered value of x.

https://en.wikipedia.org/wiki/Term_(logic)

https://en.wikipedia.org/wiki/Term_(logic
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Logical Equivalences 

¬, , ∧
 ∨

⋀⋁⌐⌍⇒
⇔≡

⇒
⇔
≡
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