# Propositional Logic– Logical Implication (4A)

Copyright (c) 2016 - 2017 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice

Contemporary Artificial Intelligence, R.E. Neapolitan & X. Jiang

Logic and Its Applications, Burkey & Foxley

## What a proposition denotes

A: It is raining.

B: Professor N is 5 feet tall.

Proposition A <u>denotes</u> it is raining *currently*.

Proposition A does not denote it is raining an hour ago, tomorrow, a year ago...

Proposition B <u>denotes</u> Professor N is 6 feet

Proposition B does not denote Professor N is 7 feet, 5 feet, ...

- A: It is raining.
- B: Professor N is 5 feet tall.

Suppose that

It is **not** raining (A is false)

Professor N is 6 feet actually (B is false)

 $A \rightarrow B$  is true according to the truth table



# Semantics of Implication Rule

Suppose A  $\rightarrow$  B is true If A is true then B must be true

Suppose A  $\rightarrow$  B is false If A is true then B must be false

Suppose A  $\rightarrow$  B is true If A is false then we **do not know** whether B is true or false

| А | В | A→B      |
|---|---|----------|
| Τ | Т | <b>T</b> |
| Τ | F | F        |
| F | Т | Т        |
| F | F | T        |

### A different truth table



Suppose A  $\rightarrow$  B is true If B is true then A must be true

B implies A This is <u>not</u> what we want

 $\mathsf{B} \to \mathsf{A} \quad (\mathsf{X})$ 

**Conventional Truth Table** 



# Another different truth table



Suppose  $A \rightarrow B$  is true If A is false then B must be false

false A implies false B This is not what we want

 $\neg A \rightarrow \neg B$  (X)

**Conventional Truth Table** 



# **Logical Implication & Equivalence**

A proposition is called a **tautology** If and only if it is true in all possible world (every interpretation) cf) in every model A proposition is called a **contradiction** If and only if it is false in all possible world (every interpretation) cf) in every model Given two propositions A and B, If  $A \Rightarrow B$  is a tautology It is said that A logically implies B  $(A \Rightarrow B)$ Given two propositions A and B, If  $A \Leftrightarrow B$  is a tautology, It is said that A and B are **logically equivalent** (A≡B)

# **Material Implication & Logical Implication**

Given two propositions A and B, If  $A \Rightarrow B$  is a tautology It is said that A logically implies B  $(A \Rightarrow B)$ 

Material Implication $A \Rightarrow B$ (not a tautology)Logical Implication $A \Rightarrow B$ (a tautology)

| А | В | A⇒B |
|---|---|-----|
| Т | Т | Т   |
| Т | F | F   |
| F | Т | Т   |
| F | F | Т   |



# **Interpretations and Models**

Interpretation **I1** Interpretation **I2** Interpretation **I3** Interpretation **I4** 



a **Model** of A⇒B

a **Model** of A⇒B

a **Model** of A⇒B

a **Model** of  $A \Rightarrow B$ 

|                          | Α | В | A∧B | $A \Lambda B \Rightarrow A$ |                       |
|--------------------------|---|---|-----|-----------------------------|-----------------------|
| Interpretation <b>I1</b> | Т | Т | Т   | <b>T</b>                    | a <b>Model</b> of AAB |
| Interpretation <b>I2</b> | Т | F | F   | Т                           | a Model of AAB        |
| Interpretation <b>I3</b> | F | Т | F   | Т                           | a Model of AAB        |
| Interpretation <b>I4</b> | F | F | F   | Т                           | a Model of AAB        |

Entailment  $A \land B \models A$ , or  $A \land B \Rightarrow A$ 

### Entailment

if  $A \rightarrow B$  holds in every model then  $A \models B$ , and conversely if  $A \models B$  then  $A \rightarrow B$  is true in every model

any model that makes **A** \begin{array}{c} A \begin{array}{c} B true \\ \hline B tru

also makes A true  $A \land B \models A$ 

No case : True  $\Rightarrow$  False

| А | В | A⇒B |
|---|---|-----|
| Т | Т | Т   |
| Т | F | F   |
| F | Т | Т   |
| F | F | Т   |

| Α | В | АЛВ | $A\Lambda B \Rightarrow A$ |
|---|---|-----|----------------------------|
| Т | Т | Т   | Т                          |
| Т | F | F   | Т                          |
| F | Т | F   | Т                          |
| F | F | F   | T                          |

Entailment  $A \land B \models A$ , or  $A \land B \Rightarrow A$ 

# Logical Equivalences

| Excluded Middle Law        | A V ¬A ≡ True                                                                                                   |
|----------------------------|-----------------------------------------------------------------------------------------------------------------|
| Contradiction Law          | A ∧ ¬A ≡ False                                                                                                  |
| Identity Law               | A V False $\equiv$ A, A $\wedge$ False $\equiv$ A                                                               |
| Dominion Law               | A $\land$ False = False, A $\lor$ True = True                                                                   |
| Idempotent Law             | $A \lor A \equiv A,  A \land A \equiv A$                                                                        |
| Commutativity Law          | $A \wedge B \equiv B \wedge A, A \vee B \equiv B \vee A$                                                        |
| Associativity Law          | $(A \land B) \land C \equiv A \land (B \land C),  (A \lor B) \lor C \equiv A \lor (B \lor C)$                   |
| Distributivity Law         | $A \land (B \lor C) \equiv (A \land B) \lor (A \land C), A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$ |
| De Morgan's Law            | $\neg(A \land B) \equiv \neg A \lor \neg B,  \neg(A \lor B) \equiv \neg A \land \neg B$                         |
| Implication Elimination    | $A \Rightarrow B \equiv \neg A \lor B$                                                                          |
| If and Only If Elimination | $A \Leftrightarrow B \equiv A \Rightarrow B \land B \Rightarrow A$                                              |
| Contraposition Law         | $A \Rightarrow B \equiv \neg B \Rightarrow \neg A$                                                              |
| Double Negation            | $\neg \neg A \equiv A$                                                                                          |

#### **Material implication**

a binary connective that creates a new sentence

 $A \rightarrow B$  is a compound sentence using the symbol  $\rightarrow$ .

Sometimes it refers to the truth function of this connective.

#### Logical implication

a relation between two sentences  ${\bf A}$  and  ${\bf B}$ 

**A** and **B** between compound propositions

any model that makes A true also makes B true

Entailment  $A \models B$ , or  $A \Rightarrow B$ 

Or sometimes, confusingly, as  $A \Rightarrow B$ ,

although some people use  $\Rightarrow$  for material implication.

http://math.stackexchange.com/questions/68932/whats-the-difference-between-material-implication-and-logical-implication

# Material & Logical Implications (2)

#### **Material implication**

- a symbol at the object level between atomic propositions
- a function of the truth value of two sentences in one fixed model

### logical implication

- a relation at the meta level between compound propositions
- **not** directly about the truth values of sentences in a particular model
- about the relation between the truth values of the sentences when all models are considered.

| - | А | В | A⇒B |
|---|---|---|-----|
|   | Т | Т | Т   |
|   | Т | F | F   |
|   | F | Т | Т   |
|   | F | F | Т   |

| _  | А | В | AΛB | A∧B⇒A |
|----|---|---|-----|-------|
|    | Τ | Т | Т   | Т     |
| \  | Т | F | F   | Т     |
| _/ | F | Т | F   | Т     |
|    | F | F | F   | T     |

http://math.stackexchange.com/questions/68932/whats-the-difference-between-material-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-logical-implication-and-

### Notations

| Material implication | φ → ψ                      | $\phi \Rightarrow \psi$     |
|----------------------|----------------------------|-----------------------------|
| Logical implication  | $\varphi \Rightarrow \psi$ | $\varphi \Rrightarrow \psi$ |

http://math.stackexchange.com/questions/68932/whats-the-difference-between-material-implication-and-logical-implication

#### a propositional formula is

a type of **syntactic formula** which is **well formed** and has **a truth value**.

If the values of *all variables* in a propositional **formula** are given, it determines a **unique truth value**.

A propositional formula may also be called a propositional expression, a sentence, or a sentential formula.

https://en.wikipedia.org/wiki/Propositional\_formula

# Propositional formula denotes a proposition

In mathematics, a propositional **formula** is often more briefly referred to as a "**proposition**",

but, more precisely, a propositional formula is not a proposition but a formal expression that denotes a proposition, a formal object under discussion,

just like an expression such as "x + y" is not a value, but denotes a value.

https://en.wikipedia.org/wiki/Propositional\_formula

A **formula** is **valid** if it is **true** for <u>all values</u> of its **terms**.

**Satisfiability** refers to the <u>existence</u> of **a** combination of values to make the expression **true**.

A proposition is **satisfiable** if there is <u>at least one **true**</u> result in its truth table

A proposition is **valid** if <u>all values</u> it returns in the truth table are **true**.

http://math.stackexchange.com/questions/258602/what-is-validity-and-satisfiability-in-a-propositional-statement

Satisfiability -the other way of interpretation

A propositional statement is **satisfiable** if and only if, its truth table is **not contradiction**.

Not contradiction means, it could be a tautology also.

```
Tautology \rightarrow Satisfiable (O)
Satisfiability \rightarrow Tautology. (X)
```

if a propositional statement is **Tautology**, then its always **valid**.

Tautology implies ( Satisfiability + Validity ).

http://math.stackexchange.com/questions/258602/what-is-validity-and-satisfiability-in-a-propositional-statement

# Valid and Satisfiable Propositional Statements





Valid proposition

http://math.stackexchange.com/questions/258602/what-is-validity-and-satisfiability-in-a-propositional-statement

In analogy to natural language, where a **noun** phrase refers to an **object** and a whole **sentence** refers to a **fact**,

in mathematical logic, a **term** denotes a mathematical **object** and a **formula** denotes a mathematical **fact**.

In particular, terms appear as **components** of a formula.

https://en.wikipedia.org/wiki/Term\_(logic)

## Expression

A first-order term is recursively constructed from

- constant symbols,
- variables and
- function symbols.

An **expression** formed by applying a **predicate** symbol to an appropriate number of **terms** is called an **atomic formula**, which evaluates to **true** or **false** in bivalent logics, given an **interpretation**.

https://en.wikipedia.org/wiki/Term\_(logic)

```
For example, (x + 1) * (x + 1) is a term built from
the constant 1,
the variable x, and
the binary function symbols + and *;
```

it is part of the **atomic formula**  $(x + 1) * (x + 1) \ge 0$ which evaluates to **true** for each real-numbered value of x.

https://en.wikipedia.org/wiki/Term\_(logic)

# Logical Equivalences

**¬**, Λ, V

 $\begin{array}{c} \wedge \vee \neg \neg \Rightarrow \\ \Leftrightarrow \equiv \end{array}$ 



#### References

- [1] en.wikipedia.org
- [2] en.wiktionary.org
- [3] U. Endriss, "Lecture Notes : Introduction to Prolog Programming"
- [4] http://www.learnprolognow.org/ Learn Prolog Now!
- [5] http://www.csupomona.edu/~jrfisher/www/prolog\_tutorial
- [6] www.cse.unsw.edu.au/~billw/cs9414/notes/prolog/intro.html
- [7] www.cse.unsw.edu.au/~billw/dictionaries/prolog/negation.html
- [8] http://ilppp.cs.lth.se/, P. Nugues,`An Intro to Lang Processing with Perl and Prolog