
Young Won Lim
2/10/18

Pointers (1A)

Young Won Lim
2/10/18

 Copyright (c) 2010 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Series:
2. Pointers

3 Young Won Lim
2/10/18

Address and Data in a Memory

0x000

1K x 8
Memory

address
10 bits

dataaddress

data
8 bits

0x001
0x002
0x003

0x3FC
0x3FD
0x3FE
0x3FF

210 = 1024

HEX
address

8 bits10 bits

dataByte Address

Series:
2. Pointers

4 Young Won Lim
2/10/18

Variables

&a

data int a;

a can hold an integer
a

address

&a

a = 100;

a holds an integer 100
a 100

dataaddress

Series:
2. Pointers

5 Young Won Lim
2/10/18

Pointer Variables

&p

int * p; *p holds an integer

pint * p;

pointer to int

int

int * p;

p holds an address

*p

p holds an address
of a int type data

p

Series:
2. Pointers

6 Young Won Lim
2/10/18

Dereferencing

 p

The content of a pointed location :
Dereferencing operator *

 *p

 p

The address of a variable :
Address of operator &

&

p

&p

*

 p

 *p

*

p

Series:
2. Pointers

7 Young Won Lim
2/10/18

Variables and their addresses

&a

data

int a; a

address

int * p; &p p

Series:
2. Pointers

8 Young Won Lim
2/10/18

Assignment of a value

&a

data

int a; a = 111

address

int b; &b b = ____

b = a;

Series:
2. Pointers

9 Young Won Lim
2/10/18

Assignment of an address

&a

data

int a; a = 111

address

int * p; &p p = ____

p = &a;

Series:
2. Pointers

10 Young Won Lim
2/10/18

Variables with initializations

&a

data

int a; a

address

int * p = &a; &p p = &a

Series:
2. Pointers

11 Young Won Lim
2/10/18

Pointed addresses : p

p

data

int a; a

address

int * p = &a; p &p

p ≡ &a

Series:
2. Pointers

12 Young Won Lim
2/10/18

Dereferenced Variable : *p

p

data

int a; *p

address

int * p = &a; p &p

 p ≡ &a
*p ≡ a

Series:
2. Pointers

13 Young Won Lim
2/10/18

Another way to access a : *p

*p =100 ≡ a = 100

&a

data

a

address

&p p

1) Read/Write a
2) Read/Write *p

Series:
2. Pointers

14 Young Won Lim
2/10/18

1. Pass by Reference
2. Arrays

Series:
2. Pointers

15 Young Won Lim
2/10/18

Pass by Reference

Series:
2. Pointers

16 Young Won Lim
2/10/18

Variable Scopes

int main ()
{
 int x, int y;
 ...
 ...

 func1 (10, 20);

 ...
 ...
}

int func1 (int a, int b)
{
 int i, int j;
 ...
 ...

 ...
 ...
}

 int x, int y;

int a, int b

 int i, int j;

i and j’s
variable scope

x and y’s
variable scope

Only top stack frame is active
and its variable can be accessed

Communications are performed
only through the parameter variables

(10, 20)

cannot access
each other

func1’s
Stack
Frame

main’s
Stack
Frame

x
y

a
b

Series:
2. Pointers

17 Young Won Lim
2/10/18

Pass by Reference

int main ()
{
 int x, int y;
 ...
 ...

 func1 (&x, &y);

 ...
 ...
}

int func1 (int* a, int* b)
{
 int i, int j;
 ...
 ...

 ...
 ...
}

func1’s
Stack
Frame

main’s
Stack
Frame int x, int y;

int* a, int* b

 int i, int j;

x and y’s
variable scope (&x, &y)

x and y are made known to func1
func1 can read / write x and y
through their addresses

x
y

a
b

*a
*b

 a=&x
 b=&y

*a
*b

Series:
2. Pointers

18 Young Won Lim
2/10/18

Swapping integers

a = 111

b = 222

&a

&b

a = 222

b = 111

&a

&b

swap(&a, &b);

swap(int *, int *);

function call

function prototype

int a, b;

Series:
2. Pointers

19 Young Won Lim
2/10/18

Pass by integer reference

void swap(int *p, int *q) {
int tmp;

 tmp = *p;
 *p = *q;

*q = tmp;
}

int a, b;
…

swap(&a, &b);

int * p
int *q

int * p
int *q

 int tmp

Series:
2. Pointers

20 Young Won Lim
2/10/18

Integer and Integer Pointer Types

int * m
int * n

int *m
int *n

m
n

*m
*n

treated as integer variables

integer pointer variables

int *m
int *n

integer pointer declarations

a way of thinking

int *

int

Series:
2. Pointers

21 Young Won Lim
2/10/18

Arrays

Series:
2. Pointers

22 Young Won Lim
2/10/18

Accessing array elements – using an address

0

4

1
2
3

int x[5];

x holds the starting address
of 5 consecutive int variables

5 int variables
address data

x

x + 1

x + 2

x + 3

x + 4

*x

*(x+2)

*(x+4)

*(x+1)

*(x+3)

x[0]

x[4]

x[1]
x[2]
x[3]

index data
cannot change
address x
(constant)

Series:
2. Pointers

23 Young Won Lim
2/10/18

Accessing an Array with a Pointer Variable

int x [5] = { 1, 2, 3, 4, 5 };

int *p = x;

x[0]

x[4]

x[1]
x[2]
x[3]

60

90
40
70

*(x+0)

*(x+4)

*(x+1)
*(x+2)
*(x+3)

p[0]

p[4]

p[1]
p[2]
p[3]

*(p+0)

*(p+4)

*(p+1)
*(p+2)
*(p+3)

x&x p&p
x is a constant symbol
cannot be changed

p is a variable
can point to other addresses

80

Series:
2. Pointers

24 Young Won Lim
2/10/18

Byte Address
Little Endian
Big Endian

Series:
2. Pointers

25 Young Won Lim
2/10/18

Byte Address

long a; a

Increasing address

&a ?

Series:
2. Pointers

26 Young Won Lim
2/10/18

Numbers in Positional Notation

long a = 0x1020304050607080;

a7 a6 a5 a4 a3 a2 a1 a0

a7 = 0 x10
a6 = 0 x20
a5 = 0 x 30
a4 = 0 x 40
a3 = 0 x50
a2 = 0 x 60
a1 = 0 x70
a0 = 0 x 80

Most Significant Byte

Least Significant Byte

⋯ 167

⋯ 166

⋯ 165

⋯ 164

⋯ 163

⋯ 162

⋯ 161

⋯ 160

8 (bytes)

the highest weight

the lowest weight

Series:
2. Pointers

27 Young Won Lim
2/10/18

Little / Big Endian

long a;

LSByteMSByte Little Endian

a

Increasing address

MSByteLSByte Big Endian

a7 a6 a5 a4 a3 a2 a1 a0

a0 a1 a2 a3 a4 a5 a6 a7

Series:
2. Pointers

28 Young Won Lim
2/10/18

Little Endian Byte Address Example

&a

long a;
a7 a0

0
x
3

0
0

7

0
x
3

0
0

6

0
x
3

0
0

5

0
x
3

0
0

4

0
x
3

0
0

3

0
x
3

0
0

2

0
x
3

0
0

1

0
x
3

0
0

0

Increasing address

LSByteMSByte Little Endian

Increasing weight

Series:
2. Pointers

29 Young Won Lim
2/10/18

Big Endian Byte Address Example

&a

long a;

0
x
3

0
0

7

0
x
3

0
0

6

0
x
3

0
0

5

0
x
3

0
0

4

0
x
3

0
0

3

0
x
3

0
0

2

0
x
3

0
0

1

0
x
3

0
0

0

Increasing address

a0 a7

MSByteLSByte Big Endian

Increasing weight

Series:
2. Pointers

30 Young Won Lim
2/10/18

Representations of Endianness

0x3000

0x3001

0x3002

0x3003

0x3004

0x3005

0x3006

0x3007

a7

a0

0x3000

0x3001

0x3002

0x3003

0x3004

0x3005

0x3006

0x3007 a7

a0 0x3007

0x3006

0x3005

0x3004

0x3003

0x3002

0x3001

0x3000

a7

a0

0x3007

0x3006

0x3005

0x3004

0x3003

0x3002

0x3001

0x3000a7

a0

Little
Endian

Big
Endian

Little
Endian

Big
Endian

&a &a

&a &a

https://stackoverflow.com/questions/15620673/which-bit-is-the-address-of-an-integer

downward, increasing address upward, increasing address

Series:
2. Pointers

31 Young Won Lim
2/10/18

Little / Big Endian Processors

Processor Endianness

Motorola 68000 Big Endian

PowerPC (PPC) Big Endian

Sun Sparc Big Endian

IBM S/390 Big Endian

Intel x86 (32 bit) Little Endian

Intel x86_64 (64 bit) Little Endian

Dec VAX Little Endian

Alpha (Big/Little) Endian

ARM (Big/Little) Endian

IA-64 (64 bit) (Big/Little) Endian

MIPS (Big/Little) Endian

http://www.yolinux.com/TUTORIALS/Endian-Byte-Order.html

Series:
2. Pointers

32 Young Won Lim
2/10/18

Pointer Types

Series:
2. Pointers

33 Young Won Lim
2/10/18

Integer Type Variables and Their Addresses

&a

long a;

int b;

short c;
&b

&c
char d;

&d

d

a

b

c

Increasing address

Little Endian

Series:
2. Pointers

34 Young Won Lim
2/10/18

Points to the LSByte

d

a

b

c

Increasing address

Little Endian

&q q

&r r

&s s

&p p long *p;

int *q;

short *r;

char *s;

Series:
2. Pointers

35 Young Won Lim
2/10/18

Sizes of Integer Types

sizeof(long) 8 (bytes)

sizeof(int) 4 (bytes)

sizeof(short) 2 (bytes)

sizeof(char) 1 (bytes) d

a

b

c

Memory Alignment
in the Little Endian

long a;

int b;

short c;

char d;

Increasing address

&a

&b

&c

&d

Series:
2. Pointers

36 Young Won Lim
2/10/18

Pointer to integer values

0
x
3

0
0

7

0
x
3

0
0

6

0
x
3

0
0

5

0
x
3

0
0

4

0
x
3

0
0

3

0
x
3

0
0

2

0
x
3

0
0

1

0
x
3

0
0

0

int *p;

Series:
2. Pointers

37 Young Won Lim
2/10/18

Pointer to short values

0
x
3

0
0

7

0
x
3

0
0

6

0
x
3

0
0

5

0
x
3

0
0

4

0
x
3

0
0

3

0
x
3

0
0

2

0
x
3

0
0

1

0
x
3

0
0

0

short *q;

Series:
2. Pointers

38 Young Won Lim
2/10/18

Pointer to char values

0
x
3

0
0

7

0
x
3

0
0

6

0
x
3

0
0

5

0
x
3

0
0

4

0
x
3

0
0

3

0
x
3

0
0

2

0
x
3

0
0

1

0
x
3

0
0

0

char *r;

Series:
2. Pointers

39 Young Won Lim
2/10/18

Pointed Addresses

int *p;

short *q;

char *r;

p

q

r

Increasing address

Series:
2. Pointers

40 Young Won Lim
2/10/18

Incrementing / decrementing pointers

int *p;

short *q;

char *r;

p

q

r

p+1

q+1

r+1

p-1

q-1

r-1

Increasing address

Series:
2. Pointers

41 Young Won Lim
2/10/18

Memory Alignment (1) - allocation of variables

0
x
3

0
0

7

0
x
3

0
0

6

0
x
3

0
0

5

0
x
3

0
0

4

0
x
3

0
0

3

0
x
3

0
0

2

0
x
3

0
0

1

0
x
3

0
0

0

int a;

short b;

char c;

Memory Alignment:
the data address is a
multiple of the data size.

enforced by compilers

efficient memory access

Series:
2. Pointers

42 Young Won Lim
2/10/18

Memory Alignment (2) – integer multiple addresses

0
x
3

0
0

7

0
x
3

0
0

6

0
x
3

0
0

5

0
x
3

0
0

4

0
x
3

0
0

3

0
x
3

0
0

2

0
x
3

0
0

1

0
x
3

0
0

0

integer addresses =

short addresses =

character addresses =

k = 0,1,2,⋯

4⋅k

2⋅k

1⋅k

Series:
2. Pointers

43 Young Won Lim
2/10/18

Memory Alignment (3) – pointable addresses

0
x
3

0
0

7

0
x
3

0
0

6

0
x
3

0
0

5

0
x
3

0
0

4

0
x
3

0
0

3

0
x
3

0
0

2

0
x
3

0
0

1

0
x
3

0
0

0

int *p;

short *q;

char *r;

Series:
2. Pointers

44 Young Won Lim
2/10/18

Memory Alignment (4) – non-pointed addresses

0
x
3

0
0

7

0
x
3

0
0

6

0
x
3

0
0

5

0
x
3

0
0

4

0
x
3

0
0

3

0
x
3

0
0

2

0
x
3

0
0

1

0
x
3

0
0

0

int *p;

short *q;

char *r;

4⋅k + 1,2,3

2⋅k + 1

Series:
2. Pointers

45 Young Won Lim
2/10/18

Memory Alignment (5) – breaking alignment

10 20 30 40 50 60 70 80

0
x
3

0
0

7

0
x
3

0
0

6

0
x
3

0
0

5

0
x
3

0
0

4

0
x
3

0
0

3

0
x
3

0
0

2

0
x
3

0
0

1

0
x
3

0
0

0

int *p;

short *q;

char *r;

Memory access is still possible
but it takes longer to access

(Low Efficiency)

This can happen
by using inadvertent
pointer type casting

Series:
2. Pointers

46 Young Won Lim
2/10/18

Pointer Type Cast

Series:
2. Pointers

47 Young Won Lim
2/10/18

Re-interpretation of memory data – case I

long a;

int *p;

short *q;

char *r; 80

0x7080

0x50607080

0x1020304050607080

&a

q = (short *) &a

r = (char *) &a

p = (int *) &a

Series:
2. Pointers

48 Young Won Lim
2/10/18

Pointer Type Cast

long a;

int *p;

short *q;

p

char *r;

0x10203040 0x50607080

p = (int *) &a

starting
address

&a

Series:
2. Pointers

49 Young Won Lim
2/10/18

Integer Pointer Types

long a;

int *p;

short *q; q

char *r;

0x10200x30400x50600x7080

q = (short *) &a

&a

Series:
2. Pointers

50 Young Won Lim
2/10/18

Integer Pointer Types

long a;

int *p;

short *q;

char *r; r

10 20 30 40 50 60 70 80

r = (char *) &a

&a

Series:
2. Pointers

51 Young Won Lim
2/10/18

Re-interpretation of memory data – case II

10 20 30 40 50 60 70 80

&a

q = (short *) &a

o = (long *) &a

p = (int *) &aint *p;

short *q;

char *r;

long *o;

char a;

r = &a

Memory
alignment
constraint
is not met

In this case, the memory alignment constraint can be broken

Series:
2. Pointers

52 Young Won Lim
2/10/18

const pointers

Series:
2. Pointers

53 Young Won Lim
2/10/18

const type, const pointer type (1)

const int * p;

int * const q ;

const int * const r ;

read only integer value

read only integer pointer

read only integer value
read only integer pointer

Series:
2. Pointers

54 Young Won Lim
2/10/18

const type, const pointer type (2)

qqp

integerinteger

read only

integerwr

read only

wr

const int * p; int * const q ;

address address

Series:
2. Pointers

55 Young Won Lim
2/10/18

const type, const pointer type (3)

address

rr

read only

integerinteger

read only

const int * const r ;

wr

wr

Series:
2. Pointers

56 Young Won Lim
2/10/18

Pointer Types and Associated Data

data

pc

char *pc;

data

ps

short *ps;

data

pi

int *pi;

short val
char val

int val

address address address

8 bits

in
cr

e
a
si

n
g
 a

d
d
re

ss

Series:
2. Pointers

57 Young Won Lim
2/10/18

Pointer Types

data

pc

char *pc;

data

ps

short *ps;

data

pi

int *pi;

address address address

8 bits

in
cr

e
a
si

n
g
 a

d
d
re

ss

Series:
2. Pointers

58 Young Won Lim
2/10/18

Little Endian Example

data

a

b

c int a;
short b;
char c;

&a

&b

&c

in
cr

e
a
si

n
g
 a

d
d
re

ss

8 bits

data

a

b

c

&a

&b

&c

8 bits

in
cr

e
a
si

n
g
 a

d
d
re

ss

the order of definition

Series:
2. Pointers

59 Young Won Lim
2/10/18

int *, short *, char * type variables

int * pi;
short * ps;
char * pc;

pc

ps

pi

address

Not a sized representation

Series:
2. Pointers

60 Young Won Lim
2/10/18

Pointer Variable Assignment

data

char * pc;
short * ps;
int * pi;

int a;
short b;
char c;

pc

ps

pi

pi = &a;
ps = &b;
pc = &c;

address

8 bits

a

b

c

&a

&b

&c

Series:
2. Pointers

61 Young Won Lim
2/10/18

a

&a

a

&a

Pointer Type Casting

data

pc

char *pc;
pc = (char *) &a

data

ps

data

pi

address address address

short *ps;
ps = (short *) &a

int *pi;
pi = (int *) &a

a

&a
*ps

*pc

*pi

8 bits

Series:
2. Pointers

62 Young Won Lim
2/10/18

Accessing bytes of a variable

data

pc

char *pc;
pc = (char *) &a

address

a

&a

pc+3

pc+2

pc+1

pc

*(pc+3)

data

*(pc+2)

*(pc+1)

*(pc+0)

pc

char *pc;
pc = (char *) &a

address

&a

pc+3

pc+2

pc+1

pc

8 bits

Series:
2. Pointers

63 Young Won Lim
2/10/18

32-bit and 64-bit Address

32-bit machine : address : 4 bytes

64-bit machine : address : 8 bytes

pc

ps

pi

32-bit
machine
address :

4 bytes
64-bit

machine
address :

8 bytes

8 bits 8 bits

Series:
2. Pointers

64 Young Won Lim
2/10/18

64-bit machine : 8-byte address

pi ps pc

char *pc; short *ps; int *pi;

Series:
2. Pointers

65 Young Won Lim
2/10/18

64-bit machine : 8-byte address & data buses

char *pc; pc

8 bits

short *ps; ps

8 bits

int *pi; pi

8 bits

Series:
2. Pointers

66 Young Won Lim
2/10/18

32-bit machine : 4-byte address

pi ps pc

char *pc; short *ps; int *pi;

Series:
2. Pointers

67 Young Won Lim
2/10/18

64-bit machine : 8-byte address and data buses

char *pc;pc

8 bits

short *ps;ps

8 bits

int *pi;pi

8 bits

Series:
2. Pointers

68 Young Won Lim
2/10/18

References

[1] Essential C, Nick Parlante
[2] Efficient C Programming, Mark A. Weiss
[3] C A Reference Manual, Samuel P. Harbison & Guy L. Steele Jr.
[4] C Language Express, I. K. Chun

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

