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Address and Data in a Memory

0x000

1K x 8
Memory

address 
10 bits

dataaddress

data  
8 bits

0x001
0x002
0x003

0x3FC
0x3FD
0x3FE
0x3FF

210 = 1024

HEX
address

8 bits10 bits

dataByte Address
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Variables 

&a

data int a;

a can hold an integer  
a 

address

&a

a = 100;

a holds an integer 100
a    100

dataaddress
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Pointer Variables

&p   

int    * p; *p holds an integer  

pint    * p;

pointer to int

int

int * p;

p holds an address  

*p

p holds an address
of a int type data  

p
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Dereferencing

           p   

The content of a pointed location :
Dereferencing operator *

         *p   

        p   

The address of a variable :
Address of operator & 

           

&

p

&p 

*

           p   

          *p   

*

p
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Variables and their addresses 

&a

data 

int a; a 

address

int  * p; &p p
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Assignment of a value 

&a

data 

int a; a = 111 

address

int b; &b b = ____

b = a; 
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Assignment of an address

&a

data 

int a; a = 111 

address

int  * p; &p p = ____

p = &a; 
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Variables with initializations

&a

data 

int a; a 

address

int  * p = &a; &p p = &a
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Pointed addresses : p

p

data 

int a; a 

address

int  * p = &a; p &p

p ≡ &a
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Dereferenced Variable : *p

p

data 

int a; *p 

address

int  * p = &a; p &p

 p ≡ &a
*p ≡   a
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Another way to access a : *p

*p =100  ≡  a = 100

&a

data 

a 

address

&p p

1) Read/Write   a
2) Read/Write  *p
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1. Pass by Reference
2. Arrays
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Pass by Reference
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Variable Scopes

int main ()
{
    int x, int y;
    ...
    ...

    func1 ( 10, 20 );

    ...
    ...
}

int func1 (int a, int b)
{
    int i, int j;
    ...
    ...

    ...
    ...
}

    int x, int y;

int a, int b

    int i, int j;

i and j’s 
variable scope

x and y’s 
variable scope

Only top stack frame is active
and its variable can be accessed

Communications are performed 
only through the parameter variables

( 10,    20 )

cannot access 
each other

func1’s 
Stack 
Frame

main’s
Stack
Frame

x
y

a
b
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Pass by Reference

int main ()
{
    int x, int y;
    ...
    ...

    func1 ( &x, &y );

    ...
    ...
}

int func1 (int* a, int* b)
{
    int i, int j;
    ...
    ...

    ...
    ...
}

func1’s 
Stack 
Frame

main’s
Stack
Frame     int x, int y;

int* a, int* b

    int i, int j;

x and y’s 
variable scope ( &x,   &y )

x and y are made known to func1
func1 can read / write x and y
through their addresses 

x
y

a
b

*a
*b

 a=&x
 b=&y

*a 
*b
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Swapping integers

a = 111

b = 222

&a

&b

a = 222

b = 111

&a

&b

swap( &a, &b );

swap( int *, int * );

function call

function prototype

int a, b;
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Pass by integer reference 

void swap(int *p, int *q) {
int tmp;

    tmp = *p;
  *p = *q;

*q = tmp;
}

int a, b;
… 

swap( &a, &b );

int *     p
int      *q

int *     p
int      *q

  int     tmp
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Integer and Integer Pointer Types

int *     m
int *     n 

int       *m
int       *n 

m
n

*m
*n

treated as integer variables

integer pointer variables

int       *m
int       *n 

integer pointer declarations

a way of thinking

int *    

int
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Arrays
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Accessing array elements – using an address 

0

4

1
2
3

int x[5];

x holds the starting address
of 5 consecutive int variables 
 

5 int variables
address data

x

x + 1

x + 2

x + 3

x + 4

*x

*(x+2)

*(x+4)

*(x+1)

*(x+3)

x[0]

x[4]

x[1]
x[2]
x[3]

index data
cannot change 
address x 
(constant)
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Accessing an Array with a Pointer Variable 

int x [5] = { 1, 2, 3, 4, 5 };

int  *p = x;

x[0] 

x[4] 

x[1] 
x[2] 
x[3] 

60

90
40
70

*(x+0) 

*(x+4) 

*(x+1) 
*(x+2) 
*(x+3) 

p[0]  

p[4] 

p[1] 
p[2] 
p[3] 

*(p+0) 

*(p+4) 

*(p+1) 
*(p+2) 
*(p+3) 

x&x p&p
x is a constant symbol 
cannot be changed

p is a variable 
can point to other addresses

80
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Byte Address 
Little Endian
Big Endian 
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Byte Address

long  a; a 

Increasing address

&a ?
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Numbers in Positional Notation

long  a = 0x1020304050607080;

a7 a6 a5 a4 a3 a2 a1 a0

a7 = 0 x10
a6 = 0 x20
a5 = 0 x 30
a4 = 0 x 40
a3 = 0 x50
a2 = 0 x 60
a1 = 0 x70
a0 = 0 x 80

Most Significant Byte

Least Significant Byte

⋯ 167

⋯ 166

⋯ 165

⋯ 164

⋯ 163

⋯ 162

⋯ 161

⋯ 160

8 (bytes)

the highest weight

the lowest weight
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Little / Big Endian

long  a;

LSByteMSByte Little Endian

a 

Increasing address

MSByteLSByte Big Endian

a7 a6 a5 a4 a3 a2 a1 a0

a0 a1 a2 a3 a4 a5 a6 a7
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Little Endian Byte Address Example 

&a

long  a;
a7 a0

0
x
3

0
0

7

0
x
3

0
0

6

0
x
3

0
0

5

0
x
3

0
0

4

0
x
3

0
0

3

0
x
3

0
0

2

0
x
3

0
0

1

0
x
3

0
0

0

Increasing address

LSByteMSByte Little Endian

Increasing weight
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Big Endian Byte Address Example 

&a

long  a;

0
x
3

0
0

7

0
x
3

0
0

6

0
x
3

0
0

5

0
x
3

0
0

4

0
x
3

0
0

3

0
x
3

0
0

2

0
x
3

0
0

1

0
x
3

0
0

0

Increasing address

a0 a7

MSByteLSByte Big Endian

Increasing weight
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Representations of Endianness

0x3000

0x3001

0x3002

0x3003

0x3004

0x3005

0x3006

0x3007

a7

a0

0x3000

0x3001

0x3002

0x3003

0x3004

0x3005

0x3006

0x3007 a7

a0 0x3007

0x3006

0x3005

0x3004

0x3003

0x3002

0x3001

0x3000

a7

a0

0x3007

0x3006

0x3005

0x3004

0x3003

0x3002

0x3001

0x3000a7

a0

Little 
Endian

Big 
Endian

Little 
Endian

Big 
Endian

&a &a

&a &a

https://stackoverflow.com/questions/15620673/which-bit-is-the-address-of-an-integer

downward, increasing address upward, increasing address
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Little / Big Endian Processors

Processor Endianness

Motorola 68000 Big Endian

PowerPC (PPC) Big Endian

Sun Sparc Big Endian

IBM S/390 Big Endian

Intel x86 (32 bit) Little Endian

Intel x86_64 (64 bit) Little Endian

Dec VAX Little Endian

Alpha  (Big/Little) Endian

ARM (Big/Little) Endian

IA-64 (64 bit)   (Big/Little) Endian

MIPS  (Big/Little) Endian

http://www.yolinux.com/TUTORIALS/Endian-Byte-Order.html
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Pointer Types
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Integer Type Variables and Their Addresses

&a

long  a;

int   b;

short  c;
&b

&c
char  d;

&d

d

a 

b 

c 

Increasing address

Little Endian
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Points to the LSByte

d

a 

b 

c 

Increasing address

Little Endian

&q q

&r r

&s s

&p p long  *p;

int   *q;

short  *r;

char  *s;
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Sizes of Integer Types

sizeof(long) 8 (bytes)

sizeof(int)    4 (bytes)

sizeof(short)  2 (bytes)

sizeof(char) 1 (bytes) d

a 

b 

c 

Memory Alignment
in the Little Endian

long  a;

int   b;

short  c;

char  d;

Increasing address

&a

&b

&c

&d
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Pointer to integer values

0
x
3

0
0

7

0
x
3

0
0

6

0
x
3

0
0

5

0
x
3

0
0

4

0
x
3

0
0

3

0
x
3

0
0

2

0
x
3

0
0

1

0
x
3

0
0

0

int  *p;
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Pointer to short values

0
x
3

0
0

7

0
x
3

0
0

6

0
x
3

0
0

5

0
x
3

0
0

4

0
x
3

0
0

3

0
x
3

0
0

2

0
x
3

0
0

1

0
x
3

0
0

0

short   *q;
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Pointer to char values

0
x
3

0
0

7

0
x
3

0
0

6

0
x
3

0
0

5

0
x
3

0
0

4

0
x
3

0
0

3

0
x
3

0
0

2

0
x
3

0
0

1

0
x
3

0
0

0

char   *r;
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Pointed Addresses

int  *p;

short *q;

char *r;

p

q

r

Increasing address
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Incrementing / decrementing pointers

int  *p;

short *q;

char *r;

p

q

r

p+1

q+1

r+1

p-1

q-1

r-1

Increasing address
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Memory Alignment (1)  - allocation of variables 

0
x
3

0
0

7

0
x
3

0
0

6

0
x
3

0
0

5

0
x
3

0
0

4

0
x
3

0
0

3

0
x
3

0
0

2

0
x
3

0
0

1

0
x
3

0
0

0

int   a;

short  b;

char  c;

Memory Alignment: 
the data address is a 
multiple of the data size.

enforced by compilers

efficient memory access
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Memory Alignment (2) – integer multiple addresses

0
x
3

0
0

7

0
x
3

0
0

6

0
x
3

0
0

5

0
x
3

0
0

4

0
x
3

0
0

3

0
x
3

0
0

2

0
x
3

0
0

1

0
x
3

0
0

0

integer addresses =

short addresses =

character addresses =

k = 0,1,2,⋯

4⋅k

2⋅k

1⋅k
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Memory Alignment (3) – pointable addresses

0
x
3

0
0

7

0
x
3

0
0

6

0
x
3

0
0

5

0
x
3

0
0

4

0
x
3

0
0

3

0
x
3

0
0

2

0
x
3

0
0

1

0
x
3

0
0

0

int  *p;

short *q;

char *r;
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Memory Alignment (4) – non-pointed addresses

0
x
3

0
0

7

0
x
3

0
0

6

0
x
3

0
0

5

0
x
3

0
0

4

0
x
3

0
0

3

0
x
3

0
0

2

0
x
3

0
0

1

0
x
3

0
0

0

int  *p;

short *q;

char *r;

4⋅k + 1,2,3

2⋅k + 1



Series:
2. Pointers

45 Young Won Lim
2/10/18

Memory Alignment (5) – breaking alignment

10 20 30 40 50 60 70 80

0
x
3

0
0

7

0
x
3

0
0

6

0
x
3

0
0

5

0
x
3

0
0

4

0
x
3

0
0

3

0
x
3

0
0

2

0
x
3

0
0

1

0
x
3

0
0

0

int  *p;

short *q;

char *r;

Memory access is still possible
but it takes longer to access 

(Low Efficiency)

This can happen 
by using inadvertent 
pointer type casting 
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Pointer Type Cast
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Re-interpretation of memory data – case I

long  a;

int  *p;

short *q;

char *r; 80

0x7080

0x50607080

0x1020304050607080

&a

q = (short *) &a

r = (char *) &a

p = (int *) &a
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Pointer Type Cast 

long   a;

int  *p;

short *q;

p

char *r;

0x10203040 0x50607080

p = (int *) &a

starting 
address

&a
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Integer Pointer Types

long   a;

int  *p;

short *q; q

char *r;

0x10200x30400x50600x7080

q = (short *) &a

&a
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Integer Pointer Types

long  a;

int  *p;

short *q;

char *r; r

10 20 30 40 50 60 70 80

r = (char *) &a

&a
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Re-interpretation of memory data – case II 

10 20 30 40 50 60 70 80

&a

q = (short *) &a

o = (long *) &a

p = (int *) &aint  *p;

short *q;

char *r;

long *o;

char  a;

r =               &a

Memory 
alignment 
constraint 
is not met

In this case, the memory alignment constraint can be broken
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const pointers
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const type, const pointer type (1)

const int  * p;

int * const q  ;

const int  * const r  ;

read only integer value

read only integer pointer

read only integer value
read only integer pointer
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const type, const pointer type (2)

qqp

integerinteger

read only 

integerwr

read only 

wr

const int  * p; int * const q  ;

address address
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const type, const pointer type (3)

address

rr

read only 

integerinteger

read only 

const int  * const r  ;

wr

wr
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Pointer Types and Associated Data 

data

pc

char *pc;

data

ps

short *ps;

data

pi

int *pi;

short val
char val

int val

address address address

8 bits

in
cr

e
a
si

n
g
 a

d
d
re

ss
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Pointer Types 

data

pc

char *pc;

data

ps

short *ps;

data

pi

int *pi;

address address address

8 bits

in
cr

e
a
si

n
g
 a

d
d
re

ss
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Little Endian Example

data

a

b

c int a;
short b;
char c;

&a

&b

&c

in
cr

e
a
si

n
g
 a

d
d
re

ss

8 bits

data

a

b

c

&a

&b

&c

8 bits

in
cr

e
a
si

n
g
 a

d
d
re

ss

the order of definition



Series:
2. Pointers

59 Young Won Lim
2/10/18

int *, short *, char * type variables

int * pi;
short * ps;
char * pc;

pc

ps

pi

address

Not a sized representation
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Pointer Variable Assignment

data

char * pc;   
short * ps;
int * pi;

int a;
short b;
char c;

pc

ps

pi

pi = &a;
ps = &b;
pc = &c;

address

8 bits

a

b

c

&a

&b

&c
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a

&a

a

&a

Pointer Type Casting

data

pc

char *pc;
pc = (char *) &a

data

ps

data

pi

address address address

short *ps;
ps = (short *) &a

int *pi;
pi = (int *) &a

a

&a
*ps

*pc

*pi

8 bits
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Accessing bytes of a variable

data

pc

char *pc;
pc = (char *) &a

address

a

&a

pc+3

pc+2

pc+1

pc 

*(pc+3)

data

*(pc+2)

*(pc+1)

*(pc+0)

pc

char *pc;
pc = (char *) &a

address

&a

pc+3

pc+2

pc+1

pc

8 bits
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32-bit and 64-bit Address

32-bit machine : address : 4 bytes

64-bit machine : address : 8 bytes

pc

ps

pi

32-bit 
machine  
address : 

4 bytes
64-bit 

machine  
address : 

8 bytes

8 bits 8 bits
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64-bit machine : 8-byte address

pi ps pc

char *pc; short *ps; int *pi;
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64-bit machine : 8-byte address & data buses

char *pc; pc

8 bits

short *ps; ps

8 bits

int *pi; pi

8 bits
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32-bit machine : 4-byte address

pi ps pc

char *pc; short *ps; int *pi;
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64-bit machine : 8-byte address and data buses

char *pc;pc

8 bits

short *ps;ps

8 bits

int *pi;pi

8 bits
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