
Day08 A

Young W. Lim

2017-10-14 Sat

Young W. Lim Day08 A 2017-10-14 Sat 1 / 24

Outline

1 Based on

2 C Functions (2) Storage Class and Scope
Storage Class Specifiers
A. Storage Duration
B. Scope
C. Linkage

Young W. Lim Day08 A 2017-10-14 Sat 2 / 24

Based on

"C How to Program",
Paul Deitel and Harvey Deitel

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim Day08 A 2017-10-14 Sat 3 / 24

Storage Class

the storage class specifier
auto
register
extern
static

an identifier’s storage class and scope rules determine
storage duration
scope
linkage

Young W. Lim Day08 A 2017-10-14 Sat 4 / 24

Identifier of interests

an identifier
a variable name
a function name

Young W. Lim Day08 A 2017-10-14 Sat 5 / 24

Identifier Attributes

storage duration (temporal)
the period during which an identifier exists in memory

scope (spatial)
where an identifier can be referenced in a program

linkage
determines whether an identifier is known
only in the current file or in any other file

Young W. Lim Day08 A 2017-10-14 Sat 6 / 24

Classification of Identifier Attributes

storage duration
automatic storage duration
static storage duration

linkage
external linkage
internal linkage

scope
function scope
file scope *
block scope *
function prototype scope

Young W. Lim Day08 A 2017-10-14 Sat 7 / 24

Storage duration

storage duration
the period during which an identifier exists in memory

some exists briefly and are repeatedly created and destroyed
(variables defined inside a function)
others exists for the program’s entire execution
(variables defined outside all functions)

automatic storage duration (auto + scope)
static storage duration (static + scope)

Young W. Lim Day08 A 2017-10-14 Sat 8 / 24

Automatic Storage Duration

automatic storage duration variables are created

when the program control is entered a block {...}
where the variable was defined

automatic storage duration variables exists

while the block is active
(while the control is in the block)

Young W. Lim Day08 A 2017-10-14 Sat 9 / 24

Static Storage Duration

extern and static in the declaration of variables and functions
static (storage) variables and static (storage) functions exist
from the program starts and until the program ends
static (storage) variables are allocated and initialized only once
before the program executes

extern / static global variables
extern / static functions
static local variables

Young W. Lim Day08 A 2017-10-14 Sat 10 / 24

Storage Class and Linkage

functions global variables local variables
extern static storage static storage static storage

external linkage external linkage *
static static storage static storage auto storage

internal linkage internal linkage NA

Young W. Lim Day08 A 2017-10-14 Sat 11 / 24

Local Variables

only variables, not a function can have automatic storage duration
all functions and global variables have static storage duration
functions’s local variable

func(int a) { int b, c; }
these variables have automatic storage duration by default
func(auto int a) { auto int b, c; }
refered as automatic variables

Young W. Lim Day08 A 2017-10-14 Sat 12 / 24

Global Variables

global variables
variables declared outside all function definitions
functions
are declared always outside any function definition

global variables and functions

extern storage class by default
any functions can reference global variables and functions
these functions must be defined / declared
after global variables and functions in the file

Young W. Lim Day08 A 2017-10-14 Sat 13 / 24

Static Local Variables

local variables with static keyword
known only in the function
where the local variables are defined
retain the values when the function exits
(the value is preserved across function calls)
can start with the retained value
when the function is called again
initialized with zero by default
when no explicit initialization exists

Young W. Lim Day08 A 2017-10-14 Sat 14 / 24

Scope

scope
where an identifier can be referenced in a program

some can be referenced throughout a program (global variable)
others from only portions of a program (local variable)

Young W. Lim Day08 A 2017-10-14 Sat 15 / 24

Scope Types

function scope func(...) { . . . }
file scope t1.c t2.c

block scope { . . . }
funciton prototype scope func(...);

Young W. Lim Day08 A 2017-10-14 Sat 16 / 24

Function Scope

labels are the only identifiers with function scope
start*:*
goto
switch

labels can be used anywhere in the function
labels cannot be referenced outside the function body

Young W. Lim Day08 A 2017-10-14 Sat 17 / 24

File Scope

identifiers declared outside any function
known (accessible) in all functions
from the point at which the identifier is declared
until the end of the file

gloabl variables
function definitions
function prototypes

Young W. Lim Day08 A 2017-10-14 Sat 18 / 24

Block Scope

identifiers defined inside a block
block scope ends at the terminating right brace (}) of the block
local variables defined at the beginning of a function
function parameter variables also have block scope
any block can have its own variable definitions
static local variable still have block scope
but static storage duration

Young W. Lim Day08 A 2017-10-14 Sat 19 / 24

Hiding Block Scope

blocks can be nested
identifiers of the outer block and inner block
can have the same name
then the outer identifier is hidden by
the inner identifier (higher priority)

Young W. Lim Day08 A 2017-10-14 Sat 20 / 24

Function Prototype Scope

the only identifer is the parameter list of a function prototype
function prototypes require

no variable names in the parameter list
only types in the parameter list

the compiler ignores the variable name
the identifers used in a functon prototype
can be reused elsewhere in the program

Young W. Lim Day08 A 2017-10-14 Sat 21 / 24

Linkage

linkage
determines for a multiple-source-file program
whether an identifier is known
only in the current source file or
in any source file with proper declarations

static prevents an identifier from being referenced in other files

static global variables
static funtions

extern indicates an identifer is defined
either later in the same file or in a different file

extern global variables
extern funtions

Young W. Lim Day08 A 2017-10-14 Sat 22 / 24

Internal Linkage

it is possible to restrict the scope of a variable or a function
to the file in which it is defined
can be prevented from being used by any function
that are defined in other files

static gloabal variables
static functions

Young W. Lim Day08 A 2017-10-14 Sat 23 / 24

External Linkage

non-static gloabal variables
non-static functions
they can be accesed in other files
if those files contain proper declaration and/or function prototypes

Young W. Lim Day08 A 2017-10-14 Sat 24 / 24

	Based on
	C Functions (2) Storage Class and Scope
	Storage Class Specifiers
	A. Storage Duration
	B. Scope
	C. Linkage

