Power Spectral Density - Continuous Time

Young W Lim

February 11, 2021

Copyright (c) 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.

Based on Probability, Random Variables and Random Signal Principles, P.Z. Peebles.Jr. and B. Shi

Outline

Energy and average power in time domain power spectral density for continuous time signals

Energy, Average Power – deterministic, time domain

a deterministic signal x(t)

$$x_T(t) = \begin{cases} x(t) & -T < t < T \\ 0 & otherwise \end{cases}$$

the energy

$$E(T) = \int_{-T}^{+T} x^2(t) dt = \int_{-\infty}^{+\infty} x_T^2(t) dt$$

the average power

$$P(T) = \frac{1}{2T} \int_{-T}^{+T} x^{2}(t) dt = \frac{1}{2T} \int_{-\infty}^{+\infty} x_{T}^{2}(t) dt$$

Fourier Transform Pair $x(t) \iff X(o)$

Fourier transform

$$X(\mathbf{\omega}) = \int_{-\infty}^{\infty} x(t) e^{-j\mathbf{\omega}t} dt$$

a deterministic signal x(t)

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} x(\omega) e^{j\omega t} d\omega$$

bounded duration, bounded variation

for a finite T, $x_T(t)$ is assumed to have bounded variation

$$\int_{-T}^{+T} |x(t)| dt < \infty$$

the Fourier transform of $x_T(t)$

$$X_T(\mathbf{\omega}) = \int_{-\infty}^{+\infty} x_T(t) e^{-j\mathbf{\omega}t} dt$$

$$= \int_{-T}^{+T} x(t) e^{-j\omega t} dt$$

Fourier transforms of $x_T(t)$ and $X_T(t)$

power spectral density for continuous time signals

deterministic $X_T(\mathbf{o})$ v.s. random $X_T(\mathbf{o})$

a deterministic sample signal $x_T(t)$

$$X_T(t) \Longleftrightarrow X_T(\omega)$$

a random process signal $X_T(t)$

$$X_T(t) \Longleftrightarrow X_T(\omega)$$

for a deterministic $x_T(t)$

a **deterministic** sample signal $x_T(t)$

$$\int_{-\infty}^{+\infty} x_T(\tau) x_T^*(\tau) d\tau = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X_T(\mathbf{\omega}) X_T^*(\mathbf{\omega}) d\omega$$

$$\int_{-\infty}^{+\infty} |x_T(\tau)|^2 d\tau = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X_T(\omega)|^2 d\omega$$

for a deterministic $x_T(t)$ v.s. a random $X_T(t)$

• a deterministic signal $x_T(t) \iff X_T(\omega)$

$$\int_{-\infty}^{+\infty} |x_T(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X_T(\omega)|^2 d\omega$$

• a random signal $X_T(t) \iff X_T(\omega)$

$$\int_{-\infty}^{+\infty} \mathbf{E} \left[|X_T(t)|^2 \right] dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \mathbf{E} \left[|X_T(\boldsymbol{\omega})|^2 \right] d\boldsymbol{\omega}$$

Energy and average power in frequency domain power spectral density for continuous time signals

Energy, Average Power - Parseval's theorem applied

a deterministic signal $x_T(t)$

$$x_T(t) = \begin{cases} x(t) & -T < t < T \\ 0 & \text{otherwise} \end{cases} x_T(t) \iff X_T(\omega)$$

the energy by Parseval's theorem

$$E(T) = \int_{-T}^{+T} x^2(t) dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X_T(\omega)|^2 d\omega$$

the average power by Parseval's theorem

$$P(T) = \frac{1}{2T} \int_{-T}^{+T} x^{2}(t) dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{|X_{T}(\omega)|^{2}}{2T} d\omega$$

E(T) and P(T) in frequency domain – deterministic case power spectral density for continuous time signals

deterministic $x_T(t) \iff X_T(\omega)$

the energy for the deterministic $X_T(\omega)$ in $x_T(t) \iff X_T(\omega)$

$$E(T) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X_T(\omega)|^2 d\omega$$

the average power for the deterministic $X_T(\omega)$

$$P(T) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{|X_T(\omega)|^2}{2T} d\omega$$

the power spectral density for the deterministic $X_T(\omega)$

$$\lim_{T\to\infty}\frac{|X_T(\omega)|^2}{2T}$$

E(T) and P(T) in frequency domain – random case power spectral density for continuous time signals

random $X_T(t) \iff X_T(\omega)$

the energy for the random $X_T(\omega)$ in $X_T(t) \iff X_T(\omega)$

$$E(T) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} E[|X_T(\omega)|^2] d\omega$$

the average power for the random $X_T(\omega)$

$$P(T) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{E\left[|X_T(\omega)|^2\right]}{2T} d\omega$$

the power spectral density for the random $X_T(\omega)$

$$\lim_{T\to\infty} \frac{E\left[|X_T(\omega)|^2\right]}{2T}$$

Average power P(T) – bounded duration (-T, +T) power spectral density for continuous time signals

$$P(T) = \frac{1}{2T} \int_{-T}^{+T} x^2(t) dt$$

- not the average power in a random process only the power in one sample function
 - to obtain the average power over all possible realizations, replace x(t) by X(t) take the expected value of $x^2(t)$, that is $TE[X^2(t)]$
 - then, the average power is a random variable with respect to the random process X(t)
- not the average power in an entire sample function
 - take $T \to \infty$ to include all power in the **ensemble** member

Average power P_{XX} – unbounded duraton $(-\infty, +\infty)$ power spectral density for continuous time signals

$$P(T) = \frac{1}{2T} \int_{-T}^{+T} x^2(t) dt$$

- replace x(t) by the random variable X(t)
- take the expected value of $x^2(t)$, that is $E[X^2(t)]$

$$P(T) = \frac{1}{2T} \int_{-T}^{+T} \mathbf{E} \left[X^2(t) \right] dt$$

• take $T \to \infty$ to include all power

$$\boxed{P_{XX} = \lim_{T \to \infty} P(T)} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{+T} \mathbf{E} \left[X^2(t) \right] dt$$

Average power P_{XX} – time average $A[\bullet]$ power spectral density for continuous time signals

The time average

$$A_{T}[\bullet] = \frac{1}{2T} \int_{-T}^{T} [\bullet] dt \qquad A[\bullet] = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} [\bullet] dt$$

time average and sample average operations

$$\begin{bmatrix}
P_{XX} = \lim_{T \to \infty} P(T) \\
 = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{+T} E[X^{2}(t)] dt$$

$$= \lim_{T \to \infty} A_{T} [E[X^{2}(t)]]$$

$$= A[E[X^{2}(t)]]$$

for deterministic and random signals

the average power P(T) for a deterministic signal x(t)

$$P(T) = \frac{1}{2T} \int_{-T}^{+T} x^2(t) dt$$

the average power P_{XX} for a random process X(t)

$$P_{XX} = \lim_{T \to \infty} P(T)$$

$$= \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{+T} E[X^{2}(t)] dt$$

$$= A[E[X^{2}(t)]]$$

power spectral density for continuous time signals

the average power via power density

the average power P_{XX} for the <u>random process</u> $X_T(\omega)$

$$P_{XX} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left[\lim_{T \to \infty} \frac{\mathbf{E} \left[|X_T(\omega)|^2 \right]}{2T} \right] d\omega$$
$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left[S_{XX}(\omega) \right] d\omega$$

the Power Spectral Density (PSD) $S_{XX}(\omega)$

$$\boxed{S_{XX}(\boldsymbol{\omega})} = \lim_{T \to \infty} \frac{E\left[|X_T(\boldsymbol{\omega})|^2\right]}{2T}$$

Properties of Power Spectral Density

power spectral density for continuous time signals

- $S_{XX}(\omega) \geq 0$
- $S_{XX}(-\omega) = S_{XX}(\omega)$

X(t) real

- $S_{XX}(\omega)$ real
- $\frac{1}{2\pi} \int_{-\infty}^{+\infty} S_{XX}(\omega) d\omega = A \left[E \left[X^2(t) \right] \right]$
- $S_{\dot{X}\dot{X}}(\omega) = \omega^2 S_{XX}(\omega)$
- $\frac{1}{2\pi} \int_{-\infty}^{+\infty} S_{XX}(\omega) e^{j\omega t} d\omega = A[R_{XX}(t,t+\tau)]$
- $S_{XX}(\omega) = \int_{-\infty}^{+\infty} A[R_{XX}(t,t+\tau)] e^{-j\omega\tau} d\tau$

the average power P_{xx} and the inverse Fourier transform of $S_{XX}(\omega)$

the average power related equation

$$\frac{1}{2\pi} \int_{-\infty}^{+\infty} S_{XX}(\boldsymbol{\omega}) d\boldsymbol{\omega} = A \left[\boldsymbol{E} \left[X^2(t) \right] \right]$$

the autocorrelation related equation

$$\frac{1}{2\pi} \int_{-\infty}^{+\infty} S_{XX}(\omega) e^{j\omega t} d\omega = A[R_{XX}(t, t+\tau)]$$

the average power P_{xx}

the average power related equation

$$\frac{1}{2\pi} \int_{-\infty}^{+\infty} S_{XX}(\omega) d\omega = A \left[E \left[X^2(t) \right] \right]$$

- a random process X(t) in time domain
- a random process $X(\omega)$ in frequency domain

$$X(t) = \lim_{T \to \infty} X_T(t)$$
 $X(\omega) = \lim_{T \to \infty} X_T(\omega)$

• Parseval's theorem over $X_T(t) \iff X_T(\omega)$

Average power P_{XX} in time / frequency domain power spectral density for continuous time signals

Average power P_{XX} using $X_T(t)$ and $X_T(0)$

• Using a random process $X_T(t)$ in time domain

$$P_{XX} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{+T} E\left[X^{2}(t)\right] dt$$

$$= \lim_{T \to \infty} \frac{1}{2T} \int_{-\infty}^{+\infty} E\left[X_{T}^{2}(t)\right] dt$$

$$= \lim_{T \to \infty} A_{T} \left[E\left[X^{2}(t)\right]\right] = A\left[E\left[X^{2}(t)\right]\right]$$

• Using a <u>random process</u> $X_T(\omega)$ in frequency domain

$$P_{XX} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left[\lim_{T \to \infty} \frac{E\left[|X_T(\omega)|^2 \right]}{2T} \right] d\omega$$
$$= \left[\frac{1}{2\pi} \int_{-\infty}^{+\infty} \left[S_{XX}(\omega) \right] d\omega \right]$$

the Inverse Fourier transform of $S_{XX}(\omega)$

the average power related equation

$$\frac{1}{2\pi} \int_{-\infty}^{+\infty} S_{XX}(\omega) e^{j\omega t} d\omega = A[R_{XX}(t, t+\tau)]$$

auto-correlation function

$$R_{XX}(t, t+\tau) = E[X(t)X(t+\tau)] \Rightarrow R_{XX}(\tau)$$

- a random process X(t) in time domain
- a random process $X(\omega)$ in frequency domain

Fourier transform pairs

•
$$A[R_{XX}(t,t+\tau)] \iff S_{XX}(\omega)$$

$$S_{XX}(\omega) = \int_{-\infty}^{+\infty} A[R_{XX}(t, t+\tau)] e^{-j\omega\tau} d\tau$$
$$A[R_{XX}(t, t+\tau)] = \frac{1}{2\pi} \int_{-\infty}^{+\infty} S_{XX}(\omega) e^{j\omega\tau} d\omega$$

• $R_{XX}(\tau) \iff S_{XX}(\omega)$

$$S_{XX}(\omega) = \int_{-\infty}^{+\infty} R_{XX}(\tau) e^{-j\omega\tau} d\tau$$

$$R_{XX}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} S_{XX}(\omega) e^{+j\omega\tau} d\omega$$

for a WSS
$$X(t)$$
, $A[R_{XX}(t, t + \tau)] = R_{XX}(\tau)$

$S_{XX}(\mathbf{\omega})$ and $R_{XX}(\mathbf{\tau})$

the power spectral density

$$S_{XX}(\mathbf{\omega}) = \int_{-\infty}^{+\infty} R_{XX}(\tau) e^{-j\mathbf{\omega}\tau} d\tau$$

the auto-correlation function

$$R_{XX}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} S_{XX}(\omega) e^{+j\omega\tau} d\omega$$

Fourier transform of a derivative function

power spectral density for continuous time signals

Fourier transform of $\frac{d^n}{dt^n}x(t)$

$$x(t) \Longleftrightarrow X(\omega)$$

$$\frac{d^n}{dt^n} x(t) \Longleftrightarrow (j\omega)^n X(\omega)$$

$$X_{T}(t) \Longleftrightarrow X_{T}(\omega)$$

$$Y(t) = \frac{d}{dt}X_{T}(t) \Longleftrightarrow (j\omega)X_{T}(\omega) = Y(\omega)$$

PSD and Auto-Correlation of a Derivative Function (1) power spectral density for continuous time signals

$$S_{XX}(\omega) = \lim_{T \to \infty} \frac{E[|X_T(\omega)|^2]}{2T} \qquad X_T(t) \iff X_T(\omega)$$

$$S_{YY}(\omega) = \lim_{T \to \infty} \frac{E[|Y_T(\omega)|^2]}{2T} \qquad Y_T(t) \iff Y_T(\omega)$$

$$= \lim_{T \to \infty} \frac{\omega^2 E[|X_T(\omega)|^2]}{2T} \qquad Y_T(t) = \dot{X}_T(t)$$

$$= \omega^2 S_{XX}(\omega) \qquad Y_T(\omega) = \omega^2 X_T(\omega)$$

PSD and Auto-Correlation of a Derivative Function (2)

power spectral density for continuous time signals

$$E[X_T(\omega)]$$
 and $E[\dot{X}_T(\omega)]$

$$Y(t) = \dot{X}_{T}(t) = \frac{d}{dt}X_{T}(t)$$
$$|Y(\omega)|^{2} = Y_{T}(\omega)Y_{T}^{*}(\omega)$$
$$= (j\omega)X_{T}(\omega)(-j\omega)X_{T}(\omega)$$
$$= \omega^{2}|X(\omega)|^{2}$$

$$S_{YY}(\omega) = \lim_{T \to \infty} \frac{E[|Y(\omega)|^2]}{2T}$$

$$S_{\dot{X}\dot{X}}(\omega) = \lim_{T \to \infty} \frac{\omega^2 E[|X(\omega)|^2]}{2T}$$

$$= \omega^2 S_{XX}(\omega)$$

Fourier transforms of autocorrelation functions power spectral density for continuous time signals

Fourier transform of an autocorrelation functions

$$S_{XX}(\omega) = \int_{-\infty}^{+\infty} R_{XX}(\tau) e^{-j\omega\tau} d\tau$$

$$S_{\dot{X}\dot{X}}(\omega) = \int_{-\infty}^{+\infty} R_{\dot{X}\dot{X}}(\tau) e^{-j\omega\tau} d\tau$$

$$\omega^{2} S_{XX}(\omega) = \int_{-\infty}^{+\infty} \omega^{2} R_{XX}(\tau) e^{-j\omega\tau} d\tau$$

Definition

the standard deviation is

a measure of the spread in a density function.

the analogous quantity for the normalized power spectral density is a measure of its spread that we call the rms bandwidth (root-mean-square)

$$W_{rms}^{2} = \frac{\int_{-\infty}^{+\infty} \omega^{2} S_{XX}(\omega) d\omega}{\int_{-\infty}^{+\infty} S_{XX}(\omega) d\omega}$$

RMS Bandwidth and Mean Frequency

power spectral density for continuous time signals

Definition

the mean frequence $\bar{\omega}_0$

$$\bar{\omega}_0 = \frac{\int_{-\infty}^{+\infty} \omega S_{XX}(\omega) d\omega}{\int_{-\infty}^{+\infty} S_{XX}(\omega) d\omega}$$

the rms bandwidth

$$W_{rms}^{2} = \frac{4 \int_{-\infty}^{+\infty} (\boldsymbol{\omega} - \bar{\boldsymbol{\omega}}_{0})^{2} S_{XX}(\boldsymbol{\omega}) d\boldsymbol{\omega}}{\int_{-\infty}^{+\infty} S_{XX}(\boldsymbol{\omega}) d\boldsymbol{\omega}}$$