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Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps
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https://www.schoolofhaskell.com/user/EFulmer/currying-and-partial-application

http://www.idryman.org/blog/2014/01/23/yet-another-monad-tutorial/

https://www.schoolofhaskell.com/user/EFulmer/currying-and-partial-application
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Haskell does not have states

But its powerful type system enable to construct the stateful program flow

Defining a Monad type is like defining a class in an object oriented language

A Monad can do much more than a class:

A Monad is a type that can be used for 

exception handling 

constructing parallel program workflow  

a parser generator

http://www.idryman.org/blog/2014/01/23/yet-another-monad-tutorial/

A Type Monad 
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 types are the rules associated with the data, not the actual data itself.

Object-Oriented Programming enable us 

to use classes/interfaces 

to define types, 

the rules (methods) that interacts with the actual data.

to use templates(c++) or generics(java) 

to define more abstracted rules that are more reusable

Monad is pretty much like  generic class.

http://www.idryman.org/blog/2014/01/23/yet-another-monad-tutorial/

Types: rules and data
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A type is just a set of rules, or methods in Object-Oriented terms

A Monad is just yet another type, and the definition of this type is defined by four rules:

1)    bind (>>=)

2)    then (>>)

3)    return

4)    fail

http://www.idryman.org/blog/2014/01/23/yet-another-monad-tutorial/

Monad Rules 
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1. Exception Handling

2. Accumulate States

3. IO Monad

http://www.idryman.org/blog/2014/01/23/yet-another-monad-tutorial/

Monad Applications 
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Monad Class Function >>= & >> 

both >>= and >> are functions from the Monad class.

Monad Sequencing Operator with value passing 

>>= passes the result of the expression on the left 

as an argument to the expression on the right, 

in a way that respects the context the argument and function use

Monad Sequencing Operator

>> is used to order the evaluation of expressions within some context; 

it makes evaluation of the right depend on the evaluation of the left

https://www.quora.com/What-do-the-symbols-and-mean-in-haskell
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Data Constructor

data Color = Red | Green | Blue

Color is a type

Red is a constructor that contains a value of type Color. 

Green is a constructor that contains a value of type Color. 

Blue  is a constructor that contains a value of type Color. 

data Color = RGB Int Int Int

Color is a type

RGB is not a value but a function taking three Ints and returning a value

RGB :: Int -> Int -> Int -> Colour

RGB is a data constructor that is a function 

taking three Int values as its arguments, 

and then uses them to construct a new value. 

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor
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Type Constructor (1)

Consider a binary tree to store Strings

data SBTree = Leaf String  |   Branch String SBTree SBTree

a type 

SBTree is a type 

Leaf is a data constructor (a function)

Branch  is a data constructor (a function)

Leaf :: String -> SBTree

Branch :: String -> SBTree -> SBTree -> SBTree

Consider a binary tree to store Bool

data BBTree = Leaf Bool  |  Branch Bool BBTree BBTree

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor
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Type Constructor (2)

Type constructors

Both SBTree and BBTree are type constructors 

data SBTree = Leaf String  |   Branch String SBTree SBTree

data BBTree = Leaf Bool   |  Branch Bool BBTree BBTree

data BTree a = Leaf a  |   Branch a (BTree a) (BTree a)

Now we introduce a type variable a as a parameter to the type constructor. 

BTree has become a function. 

It takes a type as its argument and it returns a new tUype.

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor
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Monad Definition

A monad is defined by 

    a type constructor m;

    a function return;

    an operator (>>=)  “bind"

The function and operator are methods of the Monad type class and have types

    return :: a -> m a

    (>>=)  :: m a -> (a -> m b) -> m b

and are required to obey three laws

https://en.wikibooks.org/wiki/Haskell/Understanding_monads
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Monad Definition

class Monad m where  

    return :: a -> m a  

  

    (>>=) :: m a -> (a -> m b) -> m b  

  

    (>>) :: m a -> m b -> m b  

    x >> y = x >>= \_ -> y  

  

    fail :: String -> m a  

    fail msg = error msg  

https://en.wikibooks.org/wiki/Haskell/Understanding_monads
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Maybe Monad 

the Maybe monad. 

The type constructor is m = Maybe, 

    return :: a -> Maybe a

    return x  = Just x

    (>>=)  :: Maybe a -> (a -> Maybe b) -> Maybe b

    m >>= g = case m of
                 Nothing -> Nothing
                 Just x  -> g x

https://en.wikibooks.org/wiki/Haskell/Understanding_monads
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Monad Class Function >>= & >> 

Maybe is the monad

return brings a value into it 

by wrapping it with Just

(>>=) takes 

a value  m :: Maybe a 

a function g :: a -> Maybe b 

if m is Nothing, 

there is nothing to do and the result is Nothing. 

Otherwise, in the Just x case, 

the underlying value x is wrapped in Just

g is applied to x, to give a Maybe b result. 

Note that this result may or may not be Nothing, 

depending on what g does to x. 

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

    (>>=)  :: Maybe a -> (a -> Maybe b) -> Maybe b
    m >>= g = case m of
                 Nothing -> Nothing
                 Just x  -> g x
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Monad Class Function >>= & >> 

if there is an underlying value of type a in m, 

we apply g to it, which brings the underlying value back into the Maybe monad.

The key first step to understand how return and (>>=) work is tracking 

which values and arguments are monadic and 

which ones aren't. 

As in so many other cases, type signatures are our guide to the process.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

    (>>=)  :: Maybe a -> (a -> Maybe b) -> Maybe b
    m >>= g = case m of
                 Nothing -> Nothing
                 Just x  -> g x



IO Monad (3C) 18 Young Won Lim
8/22/17

Maybe Monad Examples

a family database that provides two functions:

    father :: Person -> Maybe Person

    mother :: Person -> Maybe Person

Input the name of someone's father or mother. 

If some relevant information is missing in the database

Maybe returns a Nothing value 

to indicate that the lookup failed, 

rather than crashing the program.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads
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Maybe Monad Examples

functions to query various grandparents.
the following function looks up the maternal grandfather (the father of one's mother):

maternalGrandfather :: Person -> Maybe Person
maternalGrandfather p =
    case mother p of
        Nothing -> Nothing
        Just mom -> father mom

 maternalGrandfather p = mother p >>= father

https://en.wikibooks.org/wiki/Haskell/Understanding_monads



IO Monad (3C) 20 Young Won Lim
8/22/17

Maybe Monad Examples

    bothGrandfathers :: Person -> Maybe (Person, Person)
    bothGrandfathers p =
        case father p of
            Nothing -> Nothing
            Just dad ->
                case father dad of
                    Nothing -> Nothing
                    Just gf1 ->                          -- found first grandfather
                        case mother p of
                            Nothing -> Nothing
                            Just mom ->
                                case father mom of
                                    Nothing -> Nothing
                                    Just gf2 ->          -- found second grandfather
                                        Just (gf1, gf2)

    bothGrandfathers p =
       father p >>=
           (\dad -> father dad >>=
               (\gf1 -> mother p >>=   -- gf1 is only used in the final return
                   (\mom -> father mom >>=
                       (\gf2 -> return (gf1,gf2) ))))

https://en.wikibooks.org/wiki/Haskell/Understanding_monads
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Maybe Monad Examples

data Maybe a = Just a
               | Nothing

a type definition: Maybe a 
a parameter of a type variable a, 

https://stackoverflow.com/questions/18808258/what-does-the-just-syntax-mean-in-haskell
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Maybe Monad Examples

data Maybe a = Just a

               | Nothing

two constructors:  Just a and Nothing

a value of  Maybe a type must be constructed via either Just or Nothing

there are no other (non-error) possibilities.

Nothing has no parameter type, 

names a constant value that is a member of type Maybe a for all types a. 

Just constructor has a type parameter, 

acts like a function from type a to Maybe a,

i.e. it has the type a -> Maybe a

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell
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Maybe Monad Examples

the (data) constructors of a type build a value of that type; 

when using that value, 

pattern matching can be applied 

● Unlike functions, constructors can be used in pattern binding expressions
● case analysis of values that belong to types with more than one constructor. 
● need to provide a pattern for each constructor

case maybeVal of

    Nothing   -> "There is nothing!"

    Just val    -> "There is a value, and it is " ++ (show val)

  

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell

a pattern for each 
constructor
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Maybe 

Maybe :  Algebraic Data Type (ADT)

Widely used because it effectively extends a type
 Integer into a new context in which it has an extra value (Nothing) 

that represents a lack of value

Check for that extra value before accessing the possible Integer

Good for debugging 

Many other languages have this sort of "no-value" value via NULL references. 

The Haskel Maybe type handle this no-value more effectively.

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell
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Maybe as a functor

Functor type class:
● transforming one type to another
● transforming operations of one type to those of another

Maybe a has a useful instance of a functor type class

Functor provides fmap method  

maps functions of the base type (such as Integer) 

to functions of the lifted type (such as Maybe Integer). 

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell
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Maybe as a functor

A function f transformed with fmap 
cab work on a Maybe value

case maybeVal of
  Nothing  -> Nothing         -- there is nothing, so just return Nothing
  Just val -> Just (f val)       -- there is a value, so apply the function to it

    father :: Person -> Maybe Person
    mother :: Person -> Maybe Person

 f :: Int    -> Int 
fmap  f :: Maybe Integer -> Maybe Integer 

a Maybe Integer value:  m_x 

fmap  f    m_x 

In fact, you could apply a whole chain of 
lifted Integer -> Integer functions to Maybe Integer values 
and only have to worry about explicitly checking for Nothing once when you're finished.https://stackoverflow.com/questions/18808258/what-does-the-

just-syntax-mean-in-haskell
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Maybe as a functor

In fact, you could apply a whole chain of 
lifted Integer -> Integer functions to Maybe Integer values 
and only have to worry about explicitly checking for Nothing once when you're finished.

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell
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Maybe as a monad

the type signature IO a looks remarkably similar to Maybe a. 
● IO doesn't expose its constructors 
● only be "run" by the Haskell runtime system
● a Functor 
● a Monad

a Monad is just a special kind of Functor with some extra features

Monads like IO map types to new types 
that represent "computations that result in values" 

Can lift functions into Monad types 
via a very fmap-like function called liftM 
that turns a regular function into a 
"computation that results in the value obtained by evaluating the function."

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell
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Maybe as a monad

Maybe is also a Monad
represents "computations that could fail to return a value"

Just like with the fmap example, 
this lets you do a whole bunch of computations 
without having to explicitly check for errors after each step. 

And in fact, the way the Monad instance is constructed, 
a computation on Maybe values stops as soon as a Nothing is encountered, 

an immediate abort or 
a valueless return 
in the middle of a computation.

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell
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Monad – List Comprehension Examples

[x*2 | x<-[1..10], odd x]

do
   x <- [1..10]
   if odd x 
       then [x*2] 
       else []

[1..10] >>= (\x -> if odd x then [x*2] else [])

https://stackoverflow.com/questions/44965/what-is-a-monad
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Monad – I/O Examples

do
   putStrLn "What is your name?"
   name <- getLine
   putStrLn ("Welcome, " ++ name ++ "!")

https://stackoverflow.com/questions/44965/what-is-a-monad
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Monad – A Parser Example

parseExpr = parseString <|> parseNumber

parseString = do
        char '"'
        x <- many (noneOf "\"")
        char '"'
        return (StringValue x)

parseNumber = do
    num <- many1 digit
    return (NumberValue (read num))

https://stackoverflow.com/questions/44965/what-is-a-monad
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Monad – Asynchronous Examples

let AsyncHttp(url:string) =
    async {  let req = WebRequest.Create(url)
             let! rsp = req.GetResponseAsync()
             use stream = rsp.GetResponseStream()
             use reader = new System.IO.StreamReader(stream)
             return reader.ReadToEnd() }

https://stackoverflow.com/questions/44965/what-is-a-monad
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Monad – Asynchronous Examples

class  Monad m  where
    (>>=) :: m a -> (a -> m b) -> m b

http://www.idryman.org/blog/2014/01/23/yet-another-monad-tutorial/

funca m b

>>=m a m b
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