
Young Won Lim
8/22/17

IO Monad (3C)

Young Won Lim
8/22/17

 Copyright (c) 2016 - 2017 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

IO Monad (3C) 3 Young Won Lim
8/22/17

Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

IO Monad (3C) 4 Young Won Lim
8/22/17

https://www.schoolofhaskell.com/user/EFulmer/currying-and-partial-application

http://www.idryman.org/blog/2014/01/23/yet-another-monad-tutorial/

https://www.schoolofhaskell.com/user/EFulmer/currying-and-partial-application

IO Monad (3C) 5 Young Won Lim
8/22/17

Haskell does not have states

But its powerful type system enable to construct the stateful program flow

Defining a Monad type is like defining a class in an object oriented language

A Monad can do much more than a class:

A Monad is a type that can be used for

exception handling

constructing parallel program workflow

a parser generator

http://www.idryman.org/blog/2014/01/23/yet-another-monad-tutorial/

A Type Monad

IO Monad (3C) 6 Young Won Lim
8/22/17

 types are the rules associated with the data, not the actual data itself.

Object-Oriented Programming enable us

to use classes/interfaces

to define types,

the rules (methods) that interacts with the actual data.

to use templates(c++) or generics(java)

to define more abstracted rules that are more reusable

Monad is pretty much like generic class.

http://www.idryman.org/blog/2014/01/23/yet-another-monad-tutorial/

Types: rules and data

IO Monad (3C) 7 Young Won Lim
8/22/17

A type is just a set of rules, or methods in Object-Oriented terms

A Monad is just yet another type, and the definition of this type is defined by four rules:

1) bind (>>=)

2) then (>>)

3) return

4) fail

http://www.idryman.org/blog/2014/01/23/yet-another-monad-tutorial/

Monad Rules

IO Monad (3C) 8 Young Won Lim
8/22/17

1. Exception Handling

2. Accumulate States

3. IO Monad

http://www.idryman.org/blog/2014/01/23/yet-another-monad-tutorial/

Monad Applications

IO Monad (3C) 9 Young Won Lim
8/22/17

Monad Class Function >>= & >>

both >>= and >> are functions from the Monad class.

Monad Sequencing Operator with value passing

>>= passes the result of the expression on the left

as an argument to the expression on the right,

in a way that respects the context the argument and function use

Monad Sequencing Operator

>> is used to order the evaluation of expressions within some context;

it makes evaluation of the right depend on the evaluation of the left

https://www.quora.com/What-do-the-symbols-and-mean-in-haskell

IO Monad (3C) 10 Young Won Lim
8/22/17

Data Constructor

data Color = Red | Green | Blue

Color is a type

Red is a constructor that contains a value of type Color.

Green is a constructor that contains a value of type Color.

Blue is a constructor that contains a value of type Color.

data Color = RGB Int Int Int

Color is a type

RGB is not a value but a function taking three Ints and returning a value

RGB :: Int -> Int -> Int -> Colour

RGB is a data constructor that is a function

taking three Int values as its arguments,

and then uses them to construct a new value.

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor

IO Monad (3C) 11 Young Won Lim
8/22/17

Type Constructor (1)

Consider a binary tree to store Strings

data SBTree = Leaf String | Branch String SBTree SBTree

a type

SBTree is a type

Leaf is a data constructor (a function)

Branch is a data constructor (a function)

Leaf :: String -> SBTree

Branch :: String -> SBTree -> SBTree -> SBTree

Consider a binary tree to store Bool

data BBTree = Leaf Bool | Branch Bool BBTree BBTree

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor

IO Monad (3C) 12 Young Won Lim
8/22/17

Type Constructor (2)

Type constructors

Both SBTree and BBTree are type constructors

data SBTree = Leaf String | Branch String SBTree SBTree

data BBTree = Leaf Bool | Branch Bool BBTree BBTree

data BTree a = Leaf a | Branch a (BTree a) (BTree a)

Now we introduce a type variable a as a parameter to the type constructor.

BTree has become a function.

It takes a type as its argument and it returns a new tUype.

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor

IO Monad (3C) 13 Young Won Lim
8/22/17

Monad Definition

A monad is defined by

 a type constructor m;

 a function return;

 an operator (>>=) “bind"

The function and operator are methods of the Monad type class and have types

 return :: a -> m a

 (>>=) :: m a -> (a -> m b) -> m b

and are required to obey three laws

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

IO Monad (3C) 14 Young Won Lim
8/22/17

Monad Definition

class Monad m where

 return :: a -> m a

 (>>=) :: m a -> (a -> m b) -> m b

 (>>) :: m a -> m b -> m b

 x >> y = x >>= _ -> y

 fail :: String -> m a

 fail msg = error msg

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

IO Monad (3C) 15 Young Won Lim
8/22/17

Maybe Monad

the Maybe monad.

The type constructor is m = Maybe,

 return :: a -> Maybe a

 return x = Just x

 (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

 m >>= g = case m of
 Nothing -> Nothing
 Just x -> g x

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

IO Monad (3C) 16 Young Won Lim
8/22/17

Monad Class Function >>= & >>

Maybe is the monad

return brings a value into it

by wrapping it with Just

(>>=) takes

a value m :: Maybe a

a function g :: a -> Maybe b

if m is Nothing,

there is nothing to do and the result is Nothing.

Otherwise, in the Just x case,

the underlying value x is wrapped in Just

g is applied to x, to give a Maybe b result.

Note that this result may or may not be Nothing,

depending on what g does to x.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

 (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
 m >>= g = case m of
 Nothing -> Nothing
 Just x -> g x

IO Monad (3C) 17 Young Won Lim
8/22/17

Monad Class Function >>= & >>

if there is an underlying value of type a in m,

we apply g to it, which brings the underlying value back into the Maybe monad.

The key first step to understand how return and (>>=) work is tracking

which values and arguments are monadic and

which ones aren't.

As in so many other cases, type signatures are our guide to the process.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

 (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
 m >>= g = case m of
 Nothing -> Nothing
 Just x -> g x

IO Monad (3C) 18 Young Won Lim
8/22/17

Maybe Monad Examples

a family database that provides two functions:

 father :: Person -> Maybe Person

 mother :: Person -> Maybe Person

Input the name of someone's father or mother.

If some relevant information is missing in the database

Maybe returns a Nothing value

to indicate that the lookup failed,

rather than crashing the program.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

IO Monad (3C) 19 Young Won Lim
8/22/17

Maybe Monad Examples

functions to query various grandparents.
the following function looks up the maternal grandfather (the father of one's mother):

maternalGrandfather :: Person -> Maybe Person
maternalGrandfather p =
 case mother p of
 Nothing -> Nothing
 Just mom -> father mom

 maternalGrandfather p = mother p >>= father

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

IO Monad (3C) 20 Young Won Lim
8/22/17

Maybe Monad Examples

 bothGrandfathers :: Person -> Maybe (Person, Person)
 bothGrandfathers p =
 case father p of
 Nothing -> Nothing
 Just dad ->
 case father dad of
 Nothing -> Nothing
 Just gf1 -> -- found first grandfather
 case mother p of
 Nothing -> Nothing
 Just mom ->
 case father mom of
 Nothing -> Nothing
 Just gf2 -> -- found second grandfather
 Just (gf1, gf2)

 bothGrandfathers p =
 father p >>=
 (\dad -> father dad >>=
 (\gf1 -> mother p >>= -- gf1 is only used in the final return
 (\mom -> father mom >>=
 (\gf2 -> return (gf1,gf2)))))

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

IO Monad (3C) 21 Young Won Lim
8/22/17

Maybe Monad Examples

data Maybe a = Just a
 | Nothing

a type definition: Maybe a
a parameter of a type variable a,

https://stackoverflow.com/questions/18808258/what-does-the-just-syntax-mean-in-haskell

IO Monad (3C) 22 Young Won Lim
8/22/17

Maybe Monad Examples

data Maybe a = Just a

 | Nothing

two constructors: Just a and Nothing

a value of Maybe a type must be constructed via either Just or Nothing

there are no other (non-error) possibilities.

Nothing has no parameter type,

names a constant value that is a member of type Maybe a for all types a.

Just constructor has a type parameter,

acts like a function from type a to Maybe a,

i.e. it has the type a -> Maybe a

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell

IO Monad (3C) 23 Young Won Lim
8/22/17

Maybe Monad Examples

the (data) constructors of a type build a value of that type;

when using that value,

pattern matching can be applied

● Unlike functions, constructors can be used in pattern binding expressions
● case analysis of values that belong to types with more than one constructor.
● need to provide a pattern for each constructor

case maybeVal of

 Nothing -> "There is nothing!"

 Just val -> "There is a value, and it is " ++ (show val)

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell

a pattern for each
constructor

IO Monad (3C) 24 Young Won Lim
8/22/17

Maybe

Maybe : Algebraic Data Type (ADT)

Widely used because it effectively extends a type
 Integer into a new context in which it has an extra value (Nothing)

that represents a lack of value

Check for that extra value before accessing the possible Integer

Good for debugging

Many other languages have this sort of "no-value" value via NULL references.

The Haskel Maybe type handle this no-value more effectively.

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell

IO Monad (3C) 25 Young Won Lim
8/22/17

Maybe as a functor

Functor type class:
● transforming one type to another
● transforming operations of one type to those of another

Maybe a has a useful instance of a functor type class

Functor provides fmap method

maps functions of the base type (such as Integer)

to functions of the lifted type (such as Maybe Integer).

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell

IO Monad (3C) 26 Young Won Lim
8/22/17

Maybe as a functor

A function f transformed with fmap
cab work on a Maybe value

case maybeVal of
 Nothing -> Nothing -- there is nothing, so just return Nothing
 Just val -> Just (f val) -- there is a value, so apply the function to it

 father :: Person -> Maybe Person
 mother :: Person -> Maybe Person

 f :: Int -> Int
fmap f :: Maybe Integer -> Maybe Integer

a Maybe Integer value: m_x

fmap f m_x

In fact, you could apply a whole chain of
lifted Integer -> Integer functions to Maybe Integer values
and only have to worry about explicitly checking for Nothing once when you're finished.https://stackoverflow.com/questions/18808258/what-does-the-

just-syntax-mean-in-haskell

IO Monad (3C) 27 Young Won Lim
8/22/17

Maybe as a functor

In fact, you could apply a whole chain of
lifted Integer -> Integer functions to Maybe Integer values
and only have to worry about explicitly checking for Nothing once when you're finished.

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell

IO Monad (3C) 28 Young Won Lim
8/22/17

Maybe as a monad

the type signature IO a looks remarkably similar to Maybe a.
● IO doesn't expose its constructors
● only be "run" by the Haskell runtime system
● a Functor
● a Monad

a Monad is just a special kind of Functor with some extra features

Monads like IO map types to new types
that represent "computations that result in values"

Can lift functions into Monad types
via a very fmap-like function called liftM
that turns a regular function into a
"computation that results in the value obtained by evaluating the function."

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell

IO Monad (3C) 29 Young Won Lim
8/22/17

Maybe as a monad

Maybe is also a Monad
represents "computations that could fail to return a value"

Just like with the fmap example,
this lets you do a whole bunch of computations
without having to explicitly check for errors after each step.

And in fact, the way the Monad instance is constructed,
a computation on Maybe values stops as soon as a Nothing is encountered,

an immediate abort or
a valueless return
in the middle of a computation.

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell

IO Monad (3C) 30 Young Won Lim
8/22/17

Monad – List Comprehension Examples

[x*2 | x<-[1..10], odd x]

do
 x <- [1..10]
 if odd x
 then [x*2]
 else []

[1..10] >>= (\x -> if odd x then [x*2] else [])

https://stackoverflow.com/questions/44965/what-is-a-monad

IO Monad (3C) 31 Young Won Lim
8/22/17

Monad – I/O Examples

do
 putStrLn "What is your name?"
 name <- getLine
 putStrLn ("Welcome, " ++ name ++ "!")

https://stackoverflow.com/questions/44965/what-is-a-monad

IO Monad (3C) 32 Young Won Lim
8/22/17

Monad – A Parser Example

parseExpr = parseString <|> parseNumber

parseString = do
 char '"'
 x <- many (noneOf "\"")
 char '"'
 return (StringValue x)

parseNumber = do
 num <- many1 digit
 return (NumberValue (read num))

https://stackoverflow.com/questions/44965/what-is-a-monad

IO Monad (3C) 33 Young Won Lim
8/22/17

Monad – Asynchronous Examples

let AsyncHttp(url:string) =
 async { let req = WebRequest.Create(url)
 let! rsp = req.GetResponseAsync()
 use stream = rsp.GetResponseStream()
 use reader = new System.IO.StreamReader(stream)
 return reader.ReadToEnd() }

https://stackoverflow.com/questions/44965/what-is-a-monad

IO Monad (3C) 34 Young Won Lim
8/22/17

Monad – Asynchronous Examples

class Monad m where
 (>>=) :: m a -> (a -> m b) -> m b

http://www.idryman.org/blog/2014/01/23/yet-another-monad-tutorial/

funca m b

>>=m a m b

Young Won Lim
8/22/17

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

