
PLC

Contents

1 Programmable logic controller 1
1.1 History . 1
1.2 Development . 2

1.2.1 Programming . 2
1.3 Functionality . 2

1.3.1 Programmable logic relay (PLR) . 3
1.4 PLC topics . 3

1.4.1 Features . 3
1.4.2 Scan time . 3
1.4.3 System scale . 4
1.4.4 User interface . 4
1.4.5 Communications . 4
1.4.6 Programming . 4
1.4.7 Security . 4
1.4.8 Simulation . 4
1.4.9 Redundancy . 5

1.5 PLC compared with other control systems . 5
1.6 Discrete and analog signals . 6

1.6.1 Example . 6
1.7 See also . 7
1.8 References . 7
1.9 Further reading . 7
1.10 External links . 7

2 IEC 61131-3 8
2.1 Data types . 8
2.2 Variables . 9
2.3 Configuration . 9
2.4 Program organization units (POU) . 9
2.5 Configuration, resources, tasks . 9
2.6 External links . 9

3 Function block diagram 10

i

ii CONTENTS

3.1 See also . 10
3.2 References . 10

4 Ladder logic 11
4.1 Overview . 11
4.2 Example of a simple ladder logic program . 12

4.2.1 Logical AND . 12
4.2.2 Logical AND with NOT . 12
4.2.3 Logical OR . 12
4.2.4 Industrial STOP/START . 12
4.2.5 Complex logic . 13
4.2.6 Additional functionality . 13

4.3 Limitations and successor languages . 13
4.4 See also . 14
4.5 References . 14
4.6 External links . 14

5 Structured text 15
5.1 Sample program . 15

5.1.1 Additional ST programming examples . 15
5.2 References . 15

6 Instruction list 16
6.1 Example . 16
6.2 Variations from IEC61131 . 16
6.3 See also . 16

7 Sequential function chart 17
7.1 References . 17
7.2 Text and image sources, contributors, and licenses . 18

7.2.1 Text . 18
7.2.2 Images . 19
7.2.3 Content license . 19

Chapter 1

Programmable logic controller

Siemens Simatic S7-400 system at rack, left-to-right: power sup-
ply unit PS407 4A, CPU 416-3, interface module IM 460-0 and
communication processor CP 443-1.

A programmable logic controller, PLC or pro-
grammable controller is a digital computer used for
automation of typically industrial electromechanical pro-
cesses, such as control of machinery on factory assembly
lines, amusement rides, or light fixtures. PLCs are
used in many industries and machines. PLCs are de-
signed for multiple analogue and digital inputs and out-
put arrangements, extended temperature ranges, immu-
nity to electrical noise, and resistance to vibration and
impact. Programs to control machine operation are typi-
cally stored in battery-backed-up or non-volatilememory.
A PLC is an example of a “hard” real-time system since
output results must be produced in response to input con-

ditions within a limited time, otherwise unintended oper-
ation will result.

1.1 History

Before the PLC, control, sequencing, and safety interlock
logic for manufacturing automobiles was mainly com-
posed of relays, cam timers, drum sequencers, and ded-
icated closed-loop controllers. Since these could num-
ber in the hundreds or even thousands, the process for
updating such facilities for the yearly model change-over
was very time consuming and expensive, as electricians
needed to individually rewire the relays to change their
operational characteristics.
Digital computers, being general-purpose programmable
devices, were soon applied to control of industrial pro-
cesses. Early computers required specialist program-
mers, and stringent operating environmental control for
temperature, cleanliness, and power quality. Using a
general-purpose computer for process control required
protecting the computer from the plant floor conditions.
An industrial control computer would have several at-
tributes: it would tolerate the shop-floor environment, it
would support discrete (bit-form) input and output in an
easily extensible manner, it would not require years of
training to use, and it would permit its operation to be
monitored. The response time of any computer system
must be fast enough to be useful for control; the required
speed varying according to the nature of the process.[1]
Since many industrial processes have timescales easily
addressed by millisecond response times, modern (fast,
small, reliable) electronics greatly facilitate building reli-
able controllers, especially because performance can be
traded off for reliability.
In 1968GMHydra-Matic (the automatic transmission di-
vision of General Motors) issued a request for proposals
for an electronic replacement for hard-wired relay sys-
tems based on a white paper written by engineer Ed-
ward R. Clark. The winning proposal came from Bed-
ford Associates of Bedford, Massachusetts. The first
PLC, designated the 084 because it was Bedford Asso-
ciates’ eighty-fourth project, was the result.[2] Bedford

1

https://en.wikipedia.org/wiki/Digital_computer
https://en.wikipedia.org/wiki/Automation
https://en.wikipedia.org/wiki/Electromechanical
https://en.wikipedia.org/wiki/Assembly_line
https://en.wikipedia.org/wiki/Assembly_line
https://en.wikipedia.org/wiki/Amusement_rides
https://en.wikipedia.org/wiki/Light_fixture
https://en.wikipedia.org/wiki/Noise_(electronics)
https://en.wikipedia.org/wiki/Non-volatile_memory
https://en.wikipedia.org/wiki/Real-time_computing
https://en.wikipedia.org/wiki/Relay
https://en.wikipedia.org/wiki/Cam_timer
https://en.wikipedia.org/wiki/Drum_sequencer_(controller)
https://en.wikipedia.org/wiki/Changeover
https://en.wikipedia.org/wiki/Electrician
https://en.wikipedia.org/wiki/Hydra-Matic
https://en.wikipedia.org/wiki/Automatic_transmission
https://en.wikipedia.org/wiki/General_Motors
https://en.wikipedia.org/wiki/Bedford,_Massachusetts

2 CHAPTER 1. PROGRAMMABLE LOGIC CONTROLLER

Associates started a new company dedicated to devel-
oping, manufacturing, selling, and servicing this new
product: Modicon, which stood for MOdular DIgital
CONtroller. One of the people who worked on that
project was Dick Morley, who is considered to be the
“father” of the PLC.[3] The Modicon brand was sold in
1977 to Gould Electronics, and later acquired by German
Company AEG and then by French Schneider Electric,
the current owner.
One of the very first 084 models built is now on dis-
play at Modicon’s headquarters in North Andover, Mas-
sachusetts. It was presented to Modicon by GM, when
the unit was retired after nearly twenty years of uninter-
rupted service. Modicon used the 84 moniker at the end
of its product range until the 984 made its appearance.
The automotive industry is still one of the largest users of
PLCs.

1.2 Development

Early PLCs were designed to replace relay logic systems.
These PLCs were programmed in "ladder logic", which
strongly resembles a schematic diagram of relay logic.
This program notation was chosen to reduce training de-
mands for the existing technicians. Other early PLCs
used a form of instruction list programming, based on a
stack-based logic solver.
Modern PLCs can be programmed in a variety of ways,
from the relay-derived ladder logic to programming lan-
guages such as specially adapted dialects of BASIC and
C. Another method is State Logic, a very high-level pro-
gramming language designed to program PLCs based on
state transition diagrams.
Many early PLCs did not have accompanying program-
ming terminals that were capable of graphical representa-
tion of the logic, and so the logic was instead represented
as a series of logic expressions in some version of Boolean
format, similar to Boolean algebra. As programming ter-
minals evolved, it became more common for ladder logic
to be used, for the aforementioned reasons and because it
was a familiar format used for electromechanical control
panels. Newer formats such as State Logic and Function
Block (which is similar to the way logic is depicted when
using digital integrated logic circuits) exist, but they are
still not as popular as ladder logic. A primary reason for
this is that PLCs solve the logic in a predictable and re-
peating sequence, and ladder logic allows the program-
mer (the person writing the logic) to see any issues with
the timing of the logic sequence more easily than would
be possible in other formats.

1.2.1 Programming

Early PLCs, up to the mid-1990s, were programmed us-
ing proprietary programming panels or special-purpose
programming terminals, which often had dedicated func-
tion keys representing the various logical elements of
PLC programs.[2] Some proprietary programming termi-
nals displayed the elements of PLC programs as graphic
symbols, but plain ASCII character representations of
contacts, coils, and wires were common. Programs were
stored on cassette tape cartridges. Facilities for printing
and documentation were minimal due to lack of mem-
ory capacity. The very oldest PLCs used non-volatile
magnetic core memory.
More recently, PLCs are programmed using applica-
tion software on personal computers, which now repre-
sent the logic in graphic form instead of character sym-
bols. The computer is connected to the PLC through
Ethernet, RS-232, RS-485 or RS-422 cabling. The pro-
gramming software allows entry and editing of the ladder-
style logic. Generally the software provides functions for
debugging and troubleshooting the PLC software, for ex-
ample, by highlighting portions of the logic to show cur-
rent status during operation or via simulation. The soft-
ware will upload and download the PLC program, for
backup and restoration purposes. In some models of pro-
grammable controller, the program is transferred from a
personal computer to the PLC through a programming
board which writes the program into a removable chip
such as an EEPROM or EPROM.

1.3 Functionality

The functionality of the PLC has evolved over the years to
include sequential relay control, motion control, process
control, distributed control systems and networking. The
data handling, storage, processing power and communi-
cation capabilities of some modern PLCs are approxi-
mately equivalent to desktop computers. PLC-like pro-
gramming combined with remote I/O hardware, allow a
general-purpose desktop computer to overlap some PLCs
in certain applications. Regarding the practicality of
these desktop computer based logic controllers, it is im-
portant to note that they have not been generally accepted
in heavy industry because the desktop computers run on
less stable operating systems than do PLCs, and because
the desktop computer hardware is typically not designed
to the same levels of tolerance to temperature, humidity,
vibration, and longevity as the processors used in PLCs.
In addition to the hardware limitations of desktop based
logic, operating systems such as Windows do not lend
themselves to deterministic logic execution, with the re-
sult that the logic may not always respond to changes in
logic state or input status with the extreme consistency in
timing as is expected from PLCs. Still, such desktop logic
applications find use in less critical situations, such as lab-

https://en.wikipedia.org/wiki/Dick_Morley
https://en.wikipedia.org/wiki/Gould_Electronics
https://en.wikipedia.org/wiki/AEG
https://en.wikipedia.org/wiki/Schneider_Electric
https://en.wikipedia.org/wiki/North_Andover,_Massachusetts
https://en.wikipedia.org/wiki/North_Andover,_Massachusetts
https://en.wikipedia.org/wiki/General_Motors
https://en.wikipedia.org/wiki/Ladder_logic
https://en.wikipedia.org/wiki/Instruction_list
https://en.wikipedia.org/wiki/BASIC
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/State_Logic
https://en.wikipedia.org/wiki/Very_high-level_programming_language
https://en.wikipedia.org/wiki/Very_high-level_programming_language
https://en.wikipedia.org/wiki/State_diagram
https://en.wikipedia.org/wiki/Boolean_logic
https://en.wikipedia.org/wiki/Boolean_logic
https://en.wikipedia.org/wiki/Boolean_algebra
https://en.wikipedia.org/wiki/Computer_terminal
https://en.wikipedia.org/wiki/ASCII_art
https://en.wikipedia.org/wiki/Cassette_tape_cartridge
https://en.wikipedia.org/wiki/Magnetic_core_memory
https://en.wikipedia.org/wiki/Ethernet
https://en.wikipedia.org/wiki/RS-232
https://en.wikipedia.org/wiki/RS-485
https://en.wikipedia.org/wiki/RS-422
https://en.wikipedia.org/wiki/Programming_board
https://en.wikipedia.org/wiki/Programming_board
https://en.wikipedia.org/wiki/EEPROM
https://en.wikipedia.org/wiki/EPROM
https://en.wikipedia.org/wiki/Process_control
https://en.wikipedia.org/wiki/Process_control
https://en.wikipedia.org/wiki/Distributed_control_system
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Desktop_computer

1.4. PLC TOPICS 3

oratory automation and use in small facilities where the
application is less demanding and critical, because they
are generally much less expensive than PLCs.

1.3.1 Programmable logic relay (PLR)

In more recent years, small products called PLRs (pro-
grammable logic relays), and also by similar names, have
become more common and accepted. These are very
much like PLCs, and are used in light industry where only
a few points of I/O (i.e. a few signals coming in from
the real world and a few going out) are involved, and low
cost is desired. These small devices are typically made
in a common physical size and shape by several manu-
facturers, and branded by the makers of larger PLCs to
fill out their low end product range. Popular names in-
clude PICO Controller, NANO PLC, and other names
implying very small controllers. Most of these have be-
tween 8 and 12 discrete inputs, 4 and 8 discrete outputs,
and up to 2 analog inputs. Size is usually about 4” wide,
3” high, and 3” deep. Most such devices include a tiny
postage stamp sized LCD screen for viewing simplified
ladder logic (only a very small portion of the program
being visible at a given time) and status of I/O points,
and typically these screens are accompanied by a 4-way
rocker push-button plus four more separate push-buttons,
similar to the key buttons on a VCR remote control, and
used to navigate and edit the logic. Most have a small
plug for connecting via RS-232 or RS-485 to a personal
computer so that programmers can use simple Windows
applications for programming instead of being forced to
use the tiny LCD and push-button set for this purpose.
Unlike regular PLCs that are usually modular and greatly
expandable, the PLRs are usually not modular or expand-
able, but their price can be two orders of magnitude less
than a PLC and they still offer robust design and deter-
ministic execution of the logic.

1.4 PLC topics

1.4.1 Features

The main difference from other computers is that PLCs
are armored for severe conditions (such as dust, moisture,
heat, cold) and have the facility for extensive input/output
(I/O) arrangements. These connect the PLC to sensors
and actuators. PLCs read limit switches, analog pro-
cess variables (such as temperature and pressure), and
the positions of complex positioning systems. Some
use machine vision.[4] On the actuator side, PLCs op-
erate electric motors, pneumatic or hydraulic cylinders,
magnetic relays, solenoids, or analog outputs. The in-
put/output arrangements may be built into a simple PLC,
or the PLC may have external I/O modules attached to a
computer network that plugs into the PLC.

Control panel with PLC (grey elements in the center). The unit
consists of separate elements, from left to right; power supply,
controller, relay units for in- and output

1.4.2 Scan time

A PLC program is generally executed repeatedly as long
as the controlled system is running. The status of physical
input points is copied to an area of memory accessible to
the processor, sometimes called the “I/O Image Table”.
The program is then run from its first instruction rung
down to the last rung. It takes some time for the processor
of the PLC to evaluate all the rungs and update the I/O
image table with the status of outputs.[5] This scan time
may be a fewmilliseconds for a small program or on a fast
processor, but older PLCs running very large programs
could take much longer (say, up to 100 ms) to execute
the program. If the scan time were too long, the response
of the PLC to process conditions would be too slow to be
useful.
As PLCs became more advanced, methods were devel-
oped to change the sequence of ladder execution, and sub-
routines were implemented.[6] This simplified program-
ming could be used to save scan time for high-speed pro-
cesses; for example, parts of the program used only for
setting up the machine could be segregated from those
parts required to operate at higher speed.
Special-purpose I/O modules, such as timer modules or

https://en.wikipedia.org/wiki/I/O
https://en.wikipedia.org/wiki/Orders_of_magnitude
https://en.wikipedia.org/wiki/Input/output
https://en.wikipedia.org/wiki/Sensor
https://en.wikipedia.org/wiki/Actuator
https://en.wikipedia.org/wiki/Limit_switch
https://en.wikipedia.org/wiki/Machine_vision
https://en.wikipedia.org/wiki/Electric_motor
https://en.wikipedia.org/wiki/Pneumatic
https://en.wikipedia.org/wiki/Hydraulic
https://en.wikipedia.org/wiki/Relay
https://en.wikipedia.org/wiki/Solenoid
https://en.wikipedia.org/wiki/Analog_signal
https://en.wikipedia.org/wiki/Power_supply
https://en.wikipedia.org/wiki/Relay

4 CHAPTER 1. PROGRAMMABLE LOGIC CONTROLLER

counter modules such as encoders, can be used where the
scan time of the processor is too long to reliably pick up,
for example, counting pulses and interpreting quadrature
from a shaft encoder. The relatively slow PLC can still
interpret the counted values to control a machine, but the
accumulation of pulses is done by a dedicatedmodule that
is unaffected by the speed of the program execution...

1.4.3 System scale

A small PLC will have a fixed number of connections
built in for inputs and outputs. Typically, expansions are
available if the base model has insufficient I/O.
Modular PLCs have a chassis (also called a rack) into
which are placed modules with different functions. The
processor and selection of I/O modules are customized
for the particular application. Several racks can be ad-
ministered by a single processor, and may have thousands
of inputs and outputs. A special high speed serial I/O link
is used so that racks can be distributed away from the pro-
cessor, reducing the wiring costs for large plants.

1.4.4 User interface

See also: User interface and List of human-computer
interaction topics

PLCs may need to interact with people for the purpose
of configuration, alarm reporting or everyday control.
A human-machine interface (HMI) is employed for this
purpose. HMIs are also referred to as man-machine in-
terfaces (MMIs) and graphical user interfaces (GUIs). A
simple system may use buttons and lights to interact with
the user. Text displays are available as well as graphical
touch screens. More complex systems use programming
andmonitoring software installed on a computer, with the
PLC connected via a communication interface.

1.4.5 Communications

PLCs have built in communications ports, usually 9-pin
RS-232, but optionally EIA-485 or Ethernet. Modbus,
BACnet or DF1 is usually included as one of the
communications protocols. Other options include various
fieldbuses such as DeviceNet or Profibus. Other commu-
nications protocols that may be used are listed in the List
of automation protocols.
Most modern PLCs can communicate over a network to
some other system, such as a computer running a SCADA
(Supervisory Control And Data Acquisition) system or
web browser.
PLCs used in larger I/O systems may have peer-to-peer
(P2P) communication between processors. This allows
separate parts of a complex process to have individual

control while allowing the subsystems to co-ordinate over
the communication link. These communication links are
also often used for HMI devices such as keypads or PC-
type workstations.

1.4.6 Programming

PLC programs are typically written in a special applica-
tion on a personal computer, then downloaded by a direct-
connection cable or over a network to the PLC. The pro-
gram is stored in the PLC either in battery-backed-up
RAM or some other non-volatile flash memory. Often,
a single PLC can be programmed to replace thousands of
relays.[7]

Under the IEC 61131-3 standard, PLCs can be
programmed using standards-based programming lan-
guages. A graphical programming notation called
Sequential Function Charts is available on certain pro-
grammable controllers. Initially most PLCs utilized Lad-
der Logic Diagram Programming, a model which emu-
lated electromechanical control panel devices (such as the
contact and coils of relays) which PLCs replaced. This
model remains common today.
IEC 61131-3 currently defines five programming lan-
guages for programmable control systems: function
block diagram (FBD), ladder diagram (LD), structured
text (ST; similar to the Pascal programming language),
instruction list (IL; similar to assembly language) and
sequential function chart (SFC).[8] These techniques em-
phasize logical organization of operations.[7]

While the fundamental concepts of PLC programming
are common to all manufacturers, differences in I/O ad-
dressing, memory organization and instruction sets mean
that PLC programs are never perfectly interchangeable
between different makers. Even within the same product
line of a single manufacturer, different models may not
be directly compatible.

1.4.7 Security

Prior to the discovery of the Stuxnet computer virus in
June 2010, security of PLCs received little attention.
PLCs generally contain a real-time operating system such
as OS-9 or VxWorks and exploits for these systems ex-
ist much as they do for desktop computer operating sys-
tems such as Microsoft Windows. PLCs can also be at-
tacked by gaining control of a computer they communi-
cate with.[9]

1.4.8 Simulation

In order to properly understand the operation of a PLC,
it is necessary to spend considerable time programming,
testing, and debugging PLC programs. PLC systems are
inherently expensive, and down-time is often very costly.

https://en.wikipedia.org/wiki/Rotary_encoder
https://en.wikipedia.org/wiki/User_interface
https://en.wikipedia.org/wiki/List_of_human-computer_interaction_topics
https://en.wikipedia.org/wiki/List_of_human-computer_interaction_topics
https://en.wikipedia.org/wiki/SCADA#Human.E2.80.93machine_interface
https://en.wikipedia.org/wiki/RS-232
https://en.wikipedia.org/wiki/EIA-485
https://en.wikipedia.org/wiki/Ethernet
https://en.wikipedia.org/wiki/Modbus
https://en.wikipedia.org/wiki/BACnet
https://en.wikipedia.org/wiki/DF-1_Protocol
https://en.wikipedia.org/wiki/Communications_protocols
https://en.wikipedia.org/wiki/Fieldbus
https://en.wikipedia.org/wiki/DeviceNet
https://en.wikipedia.org/wiki/Profibus
https://en.wikipedia.org/wiki/List_of_automation_protocols
https://en.wikipedia.org/wiki/List_of_automation_protocols
https://en.wikipedia.org/wiki/SCADA
https://en.wikipedia.org/wiki/Peer-to-peer
https://en.wikipedia.org/wiki/User_interface
https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/RAM
https://en.wikipedia.org/wiki/Flash_memory
https://en.wikipedia.org/wiki/Relay
https://en.wikipedia.org/wiki/IEC_61131-3
https://en.wikipedia.org/wiki/Sequential_function_chart
https://en.wikipedia.org/wiki/Function_block_diagram
https://en.wikipedia.org/wiki/Function_block_diagram
https://en.wikipedia.org/wiki/Ladder_logic
https://en.wikipedia.org/wiki/Structured_text
https://en.wikipedia.org/wiki/Structured_text
https://en.wikipedia.org/wiki/Pascal_programming_language
https://en.wikipedia.org/wiki/Instruction_list
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Sequential_function_chart
https://en.wikipedia.org/wiki/Stuxnet
https://en.wikipedia.org/wiki/Computer_virus
https://en.wikipedia.org/wiki/OS-9
https://en.wikipedia.org/wiki/VxWorks
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Debugging

1.5. PLC COMPARED WITH OTHER CONTROL SYSTEMS 5

PLCLogix Simulation Software

In addition, if a PLC is programmed incorrectly it can re-
sult in lost productivity and dangerous conditions. PLC
simulation software is a valuable tool in the understand-
ing and learning of PLCs and to keep this knowledge re-
freshed and up to date. The advantages of using PLC sim-
ulation tools such as PLCLogix are that they save time in
the design of automated control applications and they can
also increase the level of safety associated with equipment
since various “what if” scenarios can be tried and tested
before the system is activated.[10]

1.4.9 Redundancy

Some special processes need to work permanently with
minimum unwanted down time. Therefore, it is neces-
sary to design a system which is fault tolerant and capa-
ble of handling the process with faulty modules. In such
cases to increase the system availability in the event of
hardware component failure, redundant CPU or I/Omod-
ules with the same functionality can be added to hardware
configuration for preventing total or partial process shut-
down due to hardware failure from any kind.

1.5 PLC compared with other con-
trol systems

Allen-Bradley PLC installed in a control panel

PLCs are well adapted to a range of automation tasks.

These are typically industrial processes in manufacturing
where the cost of developing andmaintaining the automa-
tion system is high relative to the total cost of the automa-
tion, and where changes to the system would be expected
during its operational life. PLCs contain input and out-
put devices compatible with industrial pilot devices and
controls; little electrical design is required, and the de-
sign problem centers on expressing the desired sequence
of operations. PLC applications are typically highly cus-
tomized systems, so the cost of a packaged PLC is low
compared to the cost of a specific custom-built controller
design. On the other hand, in the case of mass-produced
goods, customized control systems are economical. This
is due to the lower cost of the components, which can
be optimally chosen instead of a “generic” solution, and
where the non-recurring engineering charges are spread
over thousands or millions of units.
For high volume or very simple fixed automation tasks,
different techniques are used. For example, a consumer
dishwasher would be controlled by an electromechanical
cam timer costing only a few dollars in production quan-
tities.
A microcontroller-based design would be appropriate
where hundreds or thousands of units will be produced
and so the development cost (design of power supplies,
input/output hardware and necessary testing and certi-
fication) can be spread over many sales, and where the
end-user would not need to alter the control. Automotive
applications are an example; millions of units are built
each year, and very few end-users alter the programming
of these controllers. However, some specialty vehicles
such as transit buses economically use PLCs instead of
custom-designed controls, because the volumes are low
and the development cost would be uneconomical.[11]

Very complex process control, such as used in the chem-
ical industry, may require algorithms and performance
beyond the capability of even high-performance PLCs.
Very high-speed or precision controls may also require
customized solutions; for example, aircraft flight controls.
Single-board computers using semi-customized or fully
proprietary hardware may be chosen for very demand-
ing control applications where the high development and
maintenance cost can be supported. “Soft PLCs” run-
ning on desktop-type computers can interface with in-
dustrial I/O hardware while executing programs within
a version of commercial operating systems adapted for
process control needs.[11]

Programmable controllers are widely used in motion con-
trol, positioning control and torque control. Some man-
ufacturers produce motion control units to be integrated
with PLC so that G-code (involving a CNCmachine) can
be used to instruct machine movements.
PLCs may include logic for single-variable feedback ana-
log control loop, a proportional, integral, derivative (PID)
controller. A PID loop could be used to control the tem-
perature of a manufacturing process, for example. His-

https://en.wikipedia.org/wiki/PLCLogix
https://en.wikipedia.org/wiki/PLCLogix
https://en.wikipedia.org/wiki/Automation
https://en.wikipedia.org/wiki/Dishwasher
https://en.wikipedia.org/wiki/Cam_timer
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Single-board_computer
https://en.wikipedia.org/wiki/G-code
https://en.wikipedia.org/wiki/CNC
https://en.wikipedia.org/wiki/PID_controller
https://en.wikipedia.org/wiki/PID_controller

6 CHAPTER 1. PROGRAMMABLE LOGIC CONTROLLER

torically PLCs were usually configured with only a few
analog control loops; where processes required hundreds
or thousands of loops, a distributed control system (DCS)
would instead be used. As PLCs have becomemore pow-
erful, the boundary between DCS and PLC applications
has become less distinct.
PLCs have similar functionality as remote terminal units
(RTU). An RTU, however, usually does not support con-
trol algorithms or control loops. As hardware rapidly
becomes more powerful and cheaper, RTUs, PLCs and
DCSs are increasingly beginning to overlap in responsi-
bilities, and many vendors sell RTUs with PLC-like fea-
tures and vice versa. The industry has standardized on
the IEC 61131-3 functional block language for creating
programs to run on RTUs and PLCs, although nearly all
vendors also offer proprietary alternatives and associated
development environments.
In recent years “safety” PLCs have started to become
popular, either as standalone models or as functionality
and safety-rated hardware added to existing controller ar-
chitectures (Allen Bradley Guardlogix, Siemens F-series
etc.). These differ from conventional PLC types as being
suitable for use in safety-critical applications for which
PLCs have traditionally been supplemented with hard-
wired safety relays. For example, a safety PLC might
be used to control access to a robot cell with trapped-key
access, or perhaps to manage the shutdown response to
an emergency stop on a conveyor production line. Such
PLCs typically have a restricted regular instruction set
augmented with safety-specific instructions designed to
interface with emergency stops, light screens and so forth.
The flexibility that such systems offer has resulted in rapid
growth of demand for these controllers.

1.6 Discrete and analog signals

Discrete signals behave as binary switches, yielding sim-
ply an On or Off signal (1 or 0, True or False, respec-
tively). Push buttons, Limit switches, and photoelectric
sensors are examples of devices providing a discrete sig-
nal. Discrete signals are sent using either voltage or
current, where a specific range is designated as On and
another as Off. For example, a PLC might use 24 V DC
I/O, with values above 22 V DC representing On, values
below 2VDC representing Off, and intermediate values
undefined. Initially, PLCs had only discrete I/O.
Analog signals are like volume controls, with a range of
values between zero and full-scale. These are typically in-
terpreted as integer values (counts) by the PLC, with var-
ious ranges of accuracy depending on the device and the
number of bits available to store the data. As PLCs typi-
cally use 16-bit signed binary processors, the integer val-
ues are limited between−32,768 and +32,767. Pressure,
temperature, flow, and weight are often represented by
analog signals. Analog signals can use voltage or current

with a magnitude proportional to the value of the process
signal. For example, an analog 0 - 10 V input or 4-20 mA
would be converted into an integer value of 0 - 32767.
Current inputs are less sensitive to electrical noise (i.e.
from welders or electric motor starts) than voltage inputs.

1.6.1 Example

As an example, say a facility needs to store water in a
tank. The water is drawn from the tank by another sys-
tem, as needed, and our example systemmust manage the
water level in the tank by controlling the valve that refills
the tank. Shown is a "ladder diagram" which shows the
control system. A ladder diagram is a method of drawing
control circuits which pre-dates PLCs. The ladder dia-
gram resembles the schematic diagram of a system built
with electromechanical relays. Shown are:

• Two inputs (from the low and high level switches)
represented by contacts of the float switches

• An output to the fill valve, labelled as the fill valve
which it controls

• An “internal” contact, representing the output signal
to the fill valve which is created in the program.

• A logical control scheme created by the intercon-
nection of these items in software

In ladder diagram, the contact symbols represent the state
of bits in processor memory, which corresponds to the
state of physical inputs to the system. If a discrete input
is energized, the memory bit is a 1, and a “normally open”
contact controlled by that bit will pass a logic “true” signal
on to the next element of the ladder. Therefore, the con-
tacts in the PLC program that “read” or look at the
physical switch contacts in this case must be “oppo-
site” or open in order to return a TRUE for the closed
physical switches. Internal status bits, corresponding to
the state of discrete outputs, are also available to the pro-
gram.
In the example, the physical state of the float switch con-
tacts must be considered when choosing “normally open”
or “normally closed” symbols in the ladder diagram. The
PLC has two discrete inputs from float switches (Low
Level and High Level). Both float switches (normally
closed) open their contacts when the water level in the
tank is above the physical location of the switch.
When the water level is below both switches, the float
switch physical contacts are both closed, and a true (logic
1) value is passed to the Fill Valve output. Water begins to
fill the tank. The internal “Fill Valve” contact latches the
circuit so that even when the “Low Level” contact opens
(as the water passes the lower switch), the fill valve re-
mains on. Since the High Level is also normally closed,
water continues to flow as the water level remains between

https://en.wikipedia.org/wiki/Distributed_control_system
https://en.wikipedia.org/wiki/Remote_terminal_unit
https://en.wikipedia.org/wiki/Remote_terminal_unit
https://en.wikipedia.org/wiki/Distributed_control_system
https://en.wikipedia.org/wiki/IEC_61131-3
https://en.wikipedia.org/wiki/Trapped_key_interlocking
https://en.wikipedia.org/wiki/Trapped_key_interlocking
https://en.wikipedia.org/wiki/Limit_switch
https://en.wikipedia.org/wiki/Photoelectric_sensor
https://en.wikipedia.org/wiki/Photoelectric_sensor
https://en.wikipedia.org/wiki/Voltage
https://en.wikipedia.org/wiki/Current_(electricity)
https://en.wikipedia.org/wiki/Voltage
https://en.wikipedia.org/wiki/Current_(electricity)
https://en.wikipedia.org/wiki/4-20_mA
https://en.wikipedia.org/wiki/Analog-to-digital_converter
https://en.wikipedia.org/wiki/Current_loop
https://en.wikipedia.org/wiki/Ladder_logic
https://en.wikipedia.org/wiki/Float_switch

1.9. FURTHER READING 7

the two switch levels. Once the water level rises enough
so that the “High Level” switch is off (opened), the PLC
will shut the inlet to stop the water from overflowing; this
is an example of seal-in (latching) logic. The output is
sealed in until a high level condition breaks the circuit.
After that the fill valve remains off until the level drops
so low that the Low Level switch is activated, and the pro-
cess repeats again.
| (N.C. physical (N.C. physical | | Switch) Switch) | | Low
Level High Level Fill Valve | |------[]------|------[]--------
--------------(OUT)---------| | | | | | | | | | | Fill Valve | | |------[
]------| | | | | |
A complete program may contain thousands of rungs,
evaluated in sequence. Typically the PLC processor will
alternately scan all its inputs and update outputs, then
evaluate the ladder logic; input changes during a program
scan will not be effective until the next I/O update. A
complete program scan may take only a fewmilliseconds,
much faster than changes in the controlled process.
Programmable controllers vary in their capabilities for a
“rung” of a ladder diagram. Some only allow a single
output bit. There are typically limits to the number of se-
ries contacts in line, and the number of branches that can
be used. Each element of the rung is evaluated sequen-
tially. If elements change their state during evaluation of
a rung, hard-to-diagnose faults can be generated, although
sometimes (as above) the technique is useful. Some im-
plementations forced evaluation from left-to-right as dis-
played and did not allow reverse flow of a logic signal (in
multi-branched rungs) to affect the output.

1.7 See also
• Industrial control systems

• Industrial safety systems

1.8 References
[1] E. A. Parr, Industrial Control Handbook, Industrial Press

Inc., 1999 ISBN 0-8311-3085-7

[2] M. A. Laughton, D. J. Warne (ed), Electrical Engineer’s
Reference book, 16th edition,Newnes, 2003 Chapter 16
Programmable Controller

[3] “The father of invention: Dick Morley looks back on the
40th anniversary of the PLC”. Manufacturing Automa-
tion. 12 September 2008.

[4] Harms, Toni M. & Kinner, Russell H. P.E., Enhanc-
ing PLC Performance with Vision Systems. 18th Annual
ESD/HMI International Programmable Controllers Con-
ference Proceedings, 1989, p. 387-399.

[5] Maher, Michael J. Real-Time Control and Communica-
tions. 18th Annual ESD/SMI International Programmable
Controllers Conference Proceedings, 1989, p. 431-436.

[6] Kinner, Russell H., P.E. Designing Programable Con-
troller Application Programs Using More than One De-
signer. 14th Annual International Programmable Con-
trollers Conference Proceedings, 1985, p. 97-110.

[7] W. Bolton, Programmable Logic Controllers, Fifth Edition,
Newnes, 2009 ISBN 978-1-85617-751-1, Chapter 1

[8] Keller, William L Jr. Grafcet, A Functional Chart
for Sequential Processes, 14th Annual International Pro-
grammable Controllers Conference Proceedings, 1984, p.
71-96.

[9]

[10] PLC simulation reference

[11] Gregory K. McMillan, Douglas M. Considine (ed), Pro-
cess/Industrial Instruments and Controls Handbook Fifth
Edition, McGraw-Hill, 1999 ISBN 0-07-012582-1 Sec-
tion 3 Controllers

1.9 Further reading
• Daniel Kandray, Programmable Automation Tech-
nologies, Industrial Press, 2010 ISBN 978-0-8311-
3346-7, Chapter 8 Introduction to Programmable
Logic Controllers

1.10 External links
• PLC Complete Tutorial

• PLC FAQ’s

https://en.wikipedia.org/wiki/Industrial_control_systems
https://en.wikipedia.org/wiki/Industrial_safety_systems
https://en.wikipedia.org/wiki/Special:BookSources/0831130857
http://www.automationmag.com/programable-control/features/the-father-of-invention-dick-morley-looks-back-on-the-40th-anniversary-of-the-plc.html
http://www.automationmag.com/programable-control/features/the-father-of-invention-dick-morley-looks-back-on-the-40th-anniversary-of-the-plc.html
https://en.wikipedia.org/wiki/Special:BookSources/9781856177511
http://books.google.ca/books?id=CHYlTBxqrM8C&pg=PA553&dq=plc+simulation+software&hl=en&sa=X&ei=kVAVU-yDB6OOyAG02oDoAg&ved=0CEIQ6AEwAQ#v=onepage&q=plc%2520simulation%2520software&f=false
https://en.wikipedia.org/wiki/Special:BookSources/0070125821
https://en.wikipedia.org/wiki/Special:BookSources/9780831133467
https://en.wikipedia.org/wiki/Special:BookSources/9780831133467
http://www.mbcurl.me/6MDE
http://support.automationdirect.com/faq/index.html

Chapter 2

IEC 61131-3

IEC 61131-3 is the third part (of 8) of the open
international standard IEC 61131 for programmable logic
controllers, and was first published in December 1993
by the IEC. The current (third) edition was published in
February 2013.
Part 3 of IEC 61131 deals with programming languages
and defines two graphical and two textual PLC program-
ming language standards:

• Ladder diagram (LD), graphical

• Function block diagram (FBD), graphical

• Structured text (ST), textual

• Instruction list (IL), textual

• Sequential function chart (SFC), has elements to or-
ganize programs for sequential and parallel control
processing.

2.1 Data types
• Bit Strings - groups of on/off values

• BOOL - 1 bit
• BYTE - 8 bit
• WORD - 16 bit
• DWORD - 32 bit
• LWORD - 64 bit

• INTEGER - whole numbers

(Considering byte size 8 bits)

• • SINT - signed short (1 byte)
• INT - signed integer (2 byte)
• DINT - double integer (4 byte)
• LINT - long integer (8 byte)
• U -Unsigned - prepend a U to the type tomake
it unsigned integer.

• REAL - floating point IEC 60559 (same as IEEE
754-2008)

• REAL - (4 byte)
• LREAL - (8 byte)

• TIME - duration for timers, processes.

• Date and Time of day:

• DATE - calendar date
• TIME_OF_DAY - clock time
• DATE_AND_TIME: time and date

• STRING - character strings surrounded by single
quotes. Escaped characters are preceded by a dollar
sign.

• • WSTRING - holds multi-byte strings.

• Arrays - multiple values stored in the same variable.

• Sub Ranges - puts limits on value i.e., (4-20) for cur-
rent

• Derived - type derived from one of the above types.

• TYPE - single type
• STRUCT - composite of several variables and
types.

• Generic - groups of the above types:

• ANY
• ANY_DERIVED
• ANY_ELEMENTARY
• ANY_MAGNITUDE

• ANY_NUM - LREAL, REAL
• ANY_INT - LINT, DINT, INT,
SINT, ULINT, UDINT, UINT,
USINT

• ANY_BIT - LWORD, DWORD,
WORD, BYTE, BOOL

• ANY_STRING - STRING, WSTRING
• ANY_DATE - DATE, TOD, DT

8

https://en.wikipedia.org/wiki/International_standard
https://en.wikipedia.org/wiki/IEC_61131
https://en.wikipedia.org/wiki/Programmable_logic_controller
https://en.wikipedia.org/wiki/Programmable_logic_controller
https://en.wikipedia.org/wiki/International_Electrotechnical_Commission
https://en.wikipedia.org/wiki/Programming_languages
https://en.wikipedia.org/wiki/Programmable_logic_controller
https://en.wikipedia.org/wiki/Ladder_logic
https://en.wikipedia.org/wiki/Function_block_diagram
https://en.wikipedia.org/wiki/Structured_text
https://en.wikipedia.org/wiki/Instruction_list
https://en.wikipedia.org/wiki/Sequential_function_chart
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Boolean_datatype
https://en.wikipedia.org/wiki/Byte
https://en.wikipedia.org/wiki/Word_(data_type)
https://en.wikipedia.org/wiki/DWORD
https://en.wikipedia.org/wiki/Integer_(computer_science)
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/IEEE_754-2008
https://en.wikipedia.org/wiki/IEEE_754-2008
https://en.wikipedia.org/wiki/String_(computer_science)
https://en.wikipedia.org/wiki/String_(computer_science)
https://en.wikipedia.org/wiki/Variable_(programming)

2.6. EXTERNAL LINKS 9

2.2 Variables

Variable attributes: RETAIN, CONSTANT, AT

• Global

• Direct (local)

• I/O Mapping - Input, Output, I/O

• External

• Temporary

2.3 Configuration
• Resource - Like a CPU

• Tasks - Can be multiple per CPU.

• Programs - Can be executed once, on a timer, on an
event.

2.4 Program organization units
(POU)

• Functions

• Standard: ADD, SQRT, SIN, COS, GT,MIN,
MAX, AND, OR, etc.

• Custom

• Function Blocks

• Standard:
• Custom - Libraries of functions can be sup-
plied by a vendor or third party.

• Programs

2.5 Configuration, resources, tasks
• Configuration - processing resources, memory for
IO, execution rates, number of tasks.

2.6 External links
• Standard 61131-3 on IEC website

https://en.wikipedia.org/wiki/I/O
https://en.wikipedia.org/wiki/CPU
https://en.wikipedia.org/wiki/CPU
https://en.wikipedia.org/wiki/Computer_program
http://webstore.iec.ch/webstore/webstore.nsf/Artnum_PK/47556

Chapter 3

Function block diagram

Simple function block diagram

The Function Block Diagram (FBD) is a graphical lan-
guage for programmable logic controller design,[1] that
can describe the function between input variables and
output variables. A function is described as a set of ele-
mentary blocks. Input and output variables are connected
to blocks by connection lines.
Inputs and outputs of the blocks are wired together with
connection lines, or links. Single lines may be used to
connect two logical points of the diagram:

• An input variable and an input of a block

• An output of a block and an input of another block

• An output of a block and an output variable

The connection is oriented, meaning that the line carries
associated data from the left end to the right end. The left
and right ends of the connection line must be of the same
type.
Multiple right connection, also called divergence can be
used to broadcast information from its left end to each of
its right ends. All ends of the connection must be of the
same type.
Function Block Diagram is one of five languages for logic
or control configuration[2] supported by standard IEC
61131-3 for a control system such as a Programmable
Logic Controller (PLC) or a Distributed Control System
(DCS). The other supported languages are ladder logic,
sequential function chart, structured text, and instruction
list.

3.1 See also
• Functional block diagram

• Programmable logic controller

3.2 References
[1] R. W Lewis (2001)Modelling Distributed Control Systems

Using IEC 61499. p. 9

[2] W. Bolton (2011) Programmable Logic Controllers. p. 14

10

https://en.wikipedia.org/wiki/Programmable_logic_controller
https://en.wikipedia.org/wiki/Logic
https://en.wikipedia.org/wiki/Control_theory
https://en.wikipedia.org/wiki/Computer_configuration
https://en.wikipedia.org/wiki/Standardization
https://en.wikipedia.org/wiki/IEC_61131-3
https://en.wikipedia.org/wiki/IEC_61131-3
https://en.wikipedia.org/wiki/Control_system
https://en.wikipedia.org/wiki/Programmable_Logic_Controller
https://en.wikipedia.org/wiki/Programmable_Logic_Controller
https://en.wikipedia.org/wiki/Distributed_Control_System
https://en.wikipedia.org/wiki/Ladder_logic
https://en.wikipedia.org/wiki/Sequential_function_chart
https://en.wikipedia.org/wiki/Structured_text
https://en.wikipedia.org/wiki/Instruction_list
https://en.wikipedia.org/wiki/Instruction_list
https://en.wikipedia.org/wiki/Functional_block_diagram
https://en.wikipedia.org/wiki/Programmable_logic_controller

Chapter 4

Ladder logic

This article is about the programming language. For the
FIRST competition, see Ladder Logic.

Ladder logic was originally a written method to docu-
ment the design and construction of relay racks as used
in manufacturing and process control. Each device in the
relay rack would be represented by a symbol on the ladder
diagram with connections between those devices shown.
In addition, other items external to the relay rack such
as pumps, heaters, and so forth would also be shown on
the ladder diagram. See relay logic. Although the di-
agrams themselves have been used since the days when
logic could only be implemented using switches and elec-
tromechanical relays, the term 'ladder logic' was only lat-
terly adopted with the advent of solid state programmable
logic.
Ladder logic has evolved into a programming language
that represents a program by a graphical diagram based
on the circuit diagrams of relay logic hardware. Lad-
der logic is used to develop software for programmable
logic controllers (PLCs) used in industrial control appli-
cations. The name is based on the observation that pro-
grams in this language resemble ladders, with two verti-
cal rails and a series of horizontal rungs between them.
While ladder diagrams were once the only available no-
tation for recording programmable controller programs,
today other forms are standardized in IEC 61131-3.

4.1 Overview

Ladder logic is widely used to program PLCs, where se-
quential control of a process or manufacturing operation
is required. Ladder logic is useful for simple but critical
control systems or for reworking old hardwired relay cir-
cuits. As programmable logic controllers became more
sophisticated it has also been used in very complex au-
tomation systems. Often the ladder logic program is used
in conjunction with an HMI program operating on a com-
puter workstation.
The motivation for representing sequential control logic
in a ladder diagram was to allow factory engineers and
technicians to develop software without additional train-

Part of a ladder diagram, including contacts and coils, compares,
timers and monostable multivibrators

ing to learn a language such as FORTRAN or other
general purpose computer language. Development, and
maintenance, was simplified because of the resemblance
to familiar relay hardware systems.[1] Implementations of
ladder logic have characteristics, such as sequential exe-
cution and support for control flow features, that make
the analogy to hardware somewhat inaccurate. This ar-
gument has become less relevant given that most ladder
logic programmers have a software background in more
conventional programming languages.
Manufacturers of programmable logic controllers gener-
ally also provide associated ladder logic programming
systems. Typically the ladder logic languages from two
manufacturers will not be completely compatible; ladder
logic is better thought of as a set of closely related pro-
gramming languages rather than one language. (The IEC
61131-3 standard has helped to reduce unnecessary dif-
ferences, but translating programs between systems still
requires significant work.) Even different models of pro-
grammable controllers within the same family may have
different ladder notation such that programs cannot be

11

https://en.wikipedia.org/wiki/Ladder_Logic
https://en.wikipedia.org/wiki/Relay_logic
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Circuit_diagram
https://en.wikipedia.org/wiki/Relay_logic
https://en.wikipedia.org/wiki/Programmable_logic_controller
https://en.wikipedia.org/wiki/Programmable_logic_controller
https://en.wikipedia.org/wiki/Ladder
https://en.wikipedia.org/wiki/IEC_61131-3
https://en.wikipedia.org/wiki/Programmable_logic_controller
https://en.wikipedia.org/wiki/Hardwired
https://en.wikipedia.org/wiki/User_Interface
https://en.wikipedia.org/wiki/Timers
https://en.wikipedia.org/wiki/Monostable_Multivibrator
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/IEC_61131-3
https://en.wikipedia.org/wiki/IEC_61131-3

12 CHAPTER 4. LADDER LOGIC

seamlessly interchanged between models.
Ladder logic can be thought of as a rule-based language
rather than a procedural language. A “rung” in the lad-
der represents a rule. When implemented with relays and
other electromechanical devices, the various rules “ex-
ecute” simultaneously and immediately. When imple-
mented in a programmable logic controller, the rules are
typically executed sequentially by software, in a continu-
ous loop (scan). By executing the loop fast enough, typ-
ically many times per second, the effect of simultaneous
and immediate execution is achieved, if considering in-
tervals greater than the “scan time” required to execute all
the rungs of the program. Proper use of programmable
controllers requires understanding the limitations of the
execution order of rungs.

4.2 Example of a simple ladder
logic program

The language itself can be seen as a set of connections
between logical checkers (contacts) and actuators (coils).
If a path can be traced between the left side of the rung
and the output, through asserted (true or “closed”) con-
tacts, the rung is true and the output coil storage bit is
asserted (1) or true. If no path can be traced, then the
output is false (0) and the “coil” by analogy to electrome-
chanical relays is considered “de-energized”. The anal-
ogy between logical propositions and relay contact status
is due to Claude Shannon.
Ladder logic has contacts that make or break circuits to
control coils. Each coil or contact corresponds to the sta-
tus of a single bit in the programmable controller’s mem-
ory. Unlike electromechanical relays, a ladder program
can refer any number of times to the status of a single bit,
equivalent to a relay with an indefinitely large number of
contacts.
So-called “contacts” may refer to physical (“hard”) in-
puts to the programmable controller from physical de-
vices such as pushbuttons and limit switches via an inte-
grated or external input module, or may represent the sta-
tus of internal storage bits which may be generated else-
where in the program.
Each rung of ladder language typically has one coil at the
far right. Some manufacturers may allow more than one
output coil on a rung.

• —()— A regular coil, energized whenever its rung
is closed.

• —(\)— A “not” coil, energized whenever its rung is
open.

• —[]— A regular contact, closed whenever its cor-
responding coil or an input which controls it is ener-
gized.

• —[\]— A “not” contact, closed whenever its cor-
responding coil or an input which controls it is not
energized.

The “coil” (output of a rung) may represent a physical
output which operates some device connected to the pro-
grammable controller, or may represent an internal stor-
age bit for use elsewhere in the program.

4.2.1 Logical AND

------[]--------------[]----------------() Key Switch 1 Key
Switch 2 Door Motor
The above realizes the function: Door Motor = Key
Switch 1 AND Key Switch 2
This circuit shows two key switches that security guards
might use to activate an electric motor on a bank vault
door. When the normally open contacts of both switches
close, electricity is able to flow to the motor which opens
the door.

4.2.2 Logical AND with NOT

------[]--------------[\]----------------() Close Door Ob-
struction Door Motor
The above realizes the function: Door Motor = Close
door AND NOT(Obstruction).
This circuit shows a pushbutton that closes a door, and an
obstruction detector that senses if something is in the way
of the closing door. When the normally open pushbutton
contact closes and the normally closed obstruction detec-
tor is closed (no obstruction detected), electricity is able
to flow to the motor which closes the door.

4.2.3 Logical OR

--+-------[]-------+-----------------() | Exterior Unlock |
Unlock | | +-------[]-------+ Interior Unlock
The above realizes the function: Unlock = Interior Unlock
OR Exterior Unlock
This circuit shows the two things that can trigger a car’s
power door locks. The remote receiver is always pow-
ered. The lock solenoid gets power when either set of
contacts is closed.

4.2.4 Industrial STOP/START

In common industrial latching start/stop logic we have a
“start” button to turn on a motor contactor, and a “stop”
button to turn off the contactor.
When the “start” button is pushed the input goes true,
via the “stop” button NC contact. When the “run” in-

https://en.wikipedia.org/wiki/Procedural_language
https://en.wikipedia.org/wiki/Relay
https://en.wikipedia.org/wiki/Claude_Shannon
https://en.wikipedia.org/wiki/Limit_switch
https://en.wikipedia.org/wiki/Logical_AND
https://en.wikipedia.org/wiki/Logical_AND
https://en.wikipedia.org/wiki/Logical_NOT
https://en.wikipedia.org/wiki/Logical_OR
https://en.wikipedia.org/wiki/Power_door_locks
https://en.wikipedia.org/wiki/Solenoid

4.3. LIMITATIONS AND SUCCESSOR LANGUAGES 13

put becomes true the seal-in “run” NO contact in parallel
with the “start” NO contact will close maintaining the in-
put logic true (latched or sealed-in). After the circuit is
latched the “stop” button may be pushed causing its NC
contact to open and consequently the input to go false.
The “run” NO contact then opens and the circuit logic
returns to its quiescent state.
--+----[]--+----[\]----() | start | stop run | | +----[]--+ run
-------[]--------------() run motor
The above realizes the function: run = (start OR run)
AND (NOT stop)

Note the use of parenthesis to group the log-
ical OR function before evaluating the logical
AND function (which has a higher order of op-
eration priority). Also note the use of NOT to
represent the “stop” NC contact logic.

This latch configuration is a common idiom in ladder
logic. In ladder logic it is referred to as seal-in logic.
The key to understanding the latch is in recognizing that
“start” switch is a momentary switch (once the user re-
leases the button, the switch is open again). As soon as
the “run” solenoid engages, it closes the “run” NO con-
tact, which latches the solenoid on. The “start” switch
opening up then has no effect.
For safety reasons, an Emergency-Stop and/or Stop
should be hardwired in series with the Start switch, and
the relay logic should reflect this.
--[\]----[\]----+--[]--+---------() ES Stop | Start | Motor |
| +--[]--+ Run

4.2.5 Complex logic

Here is an example of what two rungs in a ladder logic
programmight look like. In real world applications, there
may be hundreds or thousands of rungs.
Typically, complex ladder logic is 'read' left to right and
top to bottom. As each of the lines (or rungs) are evalu-
ated the output coil of a rung may feed into the next stage
of the ladder as an input. In a complex system there will
be many “rungs” on a ladder, which are numbered in or-
der of evaluation.
1. ----[]---------+----[]-----+----() Switch | HiTemp |
A/C | | +----[]-----+ Humid 2. ----[]----[\]----------------
----() A/C Heat Cooling
Line 1 realizes the function: A/C = Switch AND (
HiTemp OR Humid)
Line 2 realizes the function: Cooling = A/C AND (NOT
Heat)
This represents a slightly more complex system for rung
2. After the first line has been evaluated, the output coil
“A/C” is fed into rung 2, which is then evaluated and the
output coil “Cooling” could be fed into an output device

“Compressor” or into rung 3 on the ladder. This system
allows very complex logic designs to be broken down and
evaluated.

4.2.6 Additional functionality

Additional functionality can be added to a ladder logic
implementation by the PLC manufacturer as a special
block. When the special block is powered, it executes
code on predetermined arguments. These arguments may
be displayed within the special block.
+-------+ -----[]--------------------+ A +---- Remote Un-
lock +-------+ Remote Counter +-------+ -----[]-------
-------------+ B +---- Interior Unlock +-------+ Interior
Counter +--------+ --------------------+ A + B +----------- |
into C | +--------+ Adder
In this example, the system will count the number of
times that the interior and remote unlock buttons are
pressed. This information will be stored in memory lo-
cations A and B. Memory location C will hold the total
number of times that the door has been unlocked elec-
tronically.
PLCs have many types of special blocks. They in-
clude timers, arithmetic operators and comparisons, ta-
ble lookups, text processing, PID control, and filtering
functions. More powerful PLCs can operate on a group
of internal memory locations and execute an operation
on a range of addresses, for example,to simulate a phys-
ical sequential drum controller or a finite state machine.
In some cases, users can define their own special blocks,
which effectively are subroutines or macros. The large
library of special blocks along with high speed execution
has allowed use of PLCs to implement very complex au-
tomation systems.

4.3 Limitations and successor lan-
guages

Ladder notation is best suited to control problems where
only binary variables are required and where interlocking
and sequencing of binary is the primary control problem.
Since execution of rungs is sequential within a program
and may be undefined or obscure within a rung, some
logic race conditions are possible which may produce un-
expected results; complex rungs are best broken into sev-
eral simpler steps to avoid this problem. Some manu-
facturers avoid this problem by explicitly and completely
defining the execution order of a rung, however program-
mers may still have problems fully grasping the resulting
complex semantics.
Analog quantities and arithmetical operations are clumsy
to express in ladder logic and each manufacturer has dif-
ferent ways of extending the notation for these problems.
There is usually limited support for arrays and loops, of-

https://en.wikipedia.org/wiki/Logical_OR
https://en.wikipedia.org/wiki/Logical_AND
https://en.wikipedia.org/wiki/Logical_NOT
https://en.wikipedia.org/wiki/Latch_(electronic)
https://en.wikipedia.org/wiki/Idiom
https://en.wikipedia.org/wiki/Logical_AND
https://en.wikipedia.org/wiki/Logical_OR
https://en.wikipedia.org/wiki/Logical_AND
https://en.wikipedia.org/wiki/Logical_NOT
https://en.wikipedia.org/wiki/PID_controller
https://en.wikipedia.org/wiki/Finite_state_machine
https://en.wikipedia.org/wiki/Race_condition

14 CHAPTER 4. LADDER LOGIC

ten resulting in duplication of code to express cases which
in other languages would call for use of indexed variables.
As microprocessors have become more powerful, nota-
tions such as sequential function charts and function block
diagrams can replace ladder logic for some limited appli-
cations. Very large programmable controllers may have
all or part of the programming carried out in a dialect that
resembles BASIC or C or other programming language
with bindings appropriate for a real-time application en-
vironment.

4.4 See also
• Programmable logic controller

• Digital circuit

• IEC 61131

4.5 References
[1] Edward W. Kamen Industrial Controls and Manufactur-

ing, (Academic Press, 1999) ISBN 0123948509, Chapter
8 Ladder Logic Diagrams and PLC Implementations

4.6 External links
• Beginners Ladder Logic

• Beginners Ladder Logic Primer

• Basic Ladder Logic

• “Chapter 6: ladder logic” by Tony R. Kuphaldt

• Ladder Logic Programming Examples

https://en.wikipedia.org/wiki/Microprocessors
https://en.wikipedia.org/wiki/Sequential_function_chart
https://en.wikipedia.org/wiki/Function_block_diagram
https://en.wikipedia.org/wiki/Function_block_diagram
https://en.wikipedia.org/wiki/BASIC
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Programmable_logic_controller
https://en.wikipedia.org/wiki/Digital_circuit
https://en.wikipedia.org/wiki/IEC_61131
https://en.wikipedia.org/wiki/Special:BookSources/0123948509
http://www.ladder-logic.com/hello-world/
http://www.plcs.net/contents.shtml
http://www.plctutor.com/index.php?page=relay-ladder-logic
http://www.ibiblio.org/kuphaldt/electricCircuits/Digital/DIGI_6.html
http://plc-course.com/PLC-Basics/ladder-logic-fundamentals-and-programming-examples-plc-tutorial.html

Chapter 5

Structured text

Structured text is one of the five languages supported by
the IEC 61131-3 standard, designed for programmable
logic controllers (PLCs). It is a high level language that
is block structured and syntactically resembles Pascal, on
which it is based. All of the languages share IEC61131
Common Elements. The variables and function calls are
defined by the common elements so different languages
within the IEC 61131-3 standard can be used in the same
program.
Complex statements and nested instructions are sup-
ported:

• Iteration loops (REPEAT-UNTIL; WHILE-DO)

• Conditional execution (IF-THEN-ELSE; CASE)

• Functions (SQRT(), SIN())

5.1 Sample program

(* simple state machine *) TxtState :=
STATES[StateMachine]; CASE StateMachine OF
1: ClosingValve(); ELSE ;; BadCase(); END_CASE;

5.1.1 Additional ST programming exam-
ples

// PLC configuration CONFIGURATION DefaultCfg
VAR_GLOBAL b_Start_Stop : BOOL; // Global
variable to represent a boolean. b_ON_OFF : BOOL; //
Global variable to represent a boolean. Start_Stop AT
%IX0.0:BOOL; // Digital input of the PLC (Address
0.0) ON_OFF AT %QX0.0:BOOL; // Digital output of
the PLC (Address 0.0). (Coil) END_VAR // Schedule
the main program to be executed every 20 ms TASK
Tick(INTERVAL := t#20ms); PROGRAMMain WITH
Tick : Monitor_Start_Stop; END_CONFIGURATION
PROGRAM Monitor_Start_Stop // Actual Program
VAR_EXTERNAL Start_Stop : BOOL; ON_OFF
: BOOL; END_VAR VAR // Temporary variables
for logic handling ONS_Trig : BOOL; Rising_ONS :
BOOL; END_VAR // Start of Logic // Catch the Rising
Edge One Shot of the Start_Stop input ONS_Trig :=

Start_Stop AND NOT Rising_ONS; // Main Logic for
Run_Contact -- Toggle ON / Toggle OFF --- ON_OFF :=
(ONS_Trig AND NOT ON_OFF) OR (ON_OFF AND
NOT ONS_Trig); // Rising One Shot logic Rising_ONS
:= Start_Stop; END_PROGRAM

Function block example

//===
// Function Block Timed Counter : In-
cremental count of the timed interval
//===
FUNCTION_BLOCK FB_Timed_Counter
VAR_INPUT Execute : BOOL := FALSE; // Trig-
ger signal to begin Timed Counting Time_Increment
: REAL := 1.25; // Enter Cycle Time (Seconds) be-
tween counts Count_Cycles : INT := 20; // Number
of Desired Count Cycles END_VAR VAR_OUTPUT
Timer_Done_Bit : BOOL := FALSE; // One Shot
Bit indicating Timer Cycle Done Count_Complete :
BOOL := FALSE; // Output Bit indicating the Count
is complete Current_Count : INT := 0; // Accumulat-
ing Value of Counter END_VAR VAR CycleTimer
: TON; // Timer FB from Command Library Cycle-
Counter : CTU; // Counter FB from Command Library
TimerPreset : TIME; // Converted Time_Increment in
Seconds to MS END_VAR // Start of Function Block
programming TimerPreset := REAL_TO_TIME(in
:= Time_Increment) * 1000; CycleTimer(in := Exe-
cute AND NOT CycleTimer.Q ,pt := TimerPreset);
Timer_Done_Bit := CycleTimer.Q; CycleCounter(cu :=
CycleTimer.Q ,r := NOT Execute ,pv := Count_Cycles);
Current_Count := CycleCounter.cv; Count_Complete :=
CycleCounter.q; END_FUNCTION_BLOCK

5.2 References

15

https://en.wikipedia.org/wiki/IEC_61131-3
https://en.wikipedia.org/wiki/Programmable_logic_controller
https://en.wikipedia.org/wiki/Programmable_logic_controller
https://en.wikipedia.org/wiki/Block_structured
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://en.wikipedia.org/wiki/IEC61131_Common_Elements
https://en.wikipedia.org/wiki/IEC61131_Common_Elements
https://en.wikipedia.org/wiki/IEC_61131-3

Chapter 6

Instruction list

Instruction List (IL) is one of the 5 languages sup-
ported by the IEC 61131-3 standard. It is designed for
programmable logic controllers (PLCs). It is a low level
language and resembles assembly. All of the languages
share IEC61131 Common Elements. The variables and
function call are defined by the common elements so dif-
ferent languages can be used in the same program.
Program control (control flow) is achieved by jump in-
structions and function calls (subroutines with optional
parameters).
The file format has now been standardized to XML by
PLCopen.

6.1 Example

LD Speed GT 1000 JMPCN VOLTS_OK LD Volts
VOLTS_OK LD 1 ST %Q75

6.2 Variations from IEC61131

Many vendors whilst incorporating the full IEC61131 re-
quirements have additional vendor specific calls/function
blocks to suit their hardware such as reading or writing to
I/O. Siemens PLC instruction list language is known as
“Statement List” or “STL” in English, and “Anweisungs-
Liste” or “AWL” in German, Italian and Spanish. The
user of a Simatic development package may choose be-
tween German and International mnemonics to represent
instructions. For example “A” for “AND” or “U” for
“UND”, “I” for “Input” or “E” for “Eingang”.

6.3 See also
• Programmable Logic Controller

16

https://en.wikipedia.org/wiki/IEC_61131-3
https://en.wikipedia.org/wiki/Programmable_logic_controller
https://en.wikipedia.org/wiki/Low-level_programming_language
https://en.wikipedia.org/wiki/Low-level_programming_language
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/IEC61131_Common_Elements
https://en.wikipedia.org/wiki/Control_flow
https://en.wikipedia.org/wiki/Jump_(computer_science)
https://en.wikipedia.org/wiki/Subroutines
https://en.wikipedia.org/wiki/XML
http://www.plcopen.org/
https://en.wikipedia.org/wiki/Mnemonic#Assembly_mnemonics
https://en.wikipedia.org/wiki/Programmable_Logic_Controller

Chapter 7

Sequential function chart

Sequential function chart (SFC) is a graphical pro-
gramming language used for programmable logic con-
trollers (PLCs). It is one of the five languages defined
by IEC 61131-3 standard. The SFC standard is defined
as, Preparation of function charts for control systems, and
was based on GRAFCET (itself based on binary petri
nets [1]). [2]).
It can be used to program processes that can be split into
steps.
Main components of SFC are:

• Steps with associated actions;

• Transitions with associated logic conditions;

• Directed links between steps and transitions.

Steps in an SFC diagram can be active or inactive. Ac-
tions are only executed for active steps. A step can be
active for one of two motives:

• It is an initial step as specified by the programmer.

• It was activated during a scan cycle and not deacti-
vated since.

Steps are activated when all steps above it are active and
the connecting transition is superable (i.e. its associated
condition is true). When a transition is passed, all steps
above are deactivated at once and after all steps below
are activated at once.
Actions associated with steps can be of several types, the
most relevant ones being Continuous (N), Set (S) and Re-
set (R). Apart from the obviousmeaning of Set and Reset,
an N action ensures that its target variable is set to 1 as
long as the step is active. An SFC rule states that if two
steps have an N action on the same target, the variable
must never be reset to 0. It is also possible to insert LD
(Ladder Diagram) actions inside an SFC program (and
this is the standard way, for instance, to work on integer
variables).
SFC is an inherently parallel language in that multiple
control flows (POUs in the standard’s parlance) can be
active at once.

Non-standard extensions to the language include
macroactions: i.e. actions inside a program unit that
influence the state of another program unit. The most
relevant such macroaction is “forcing”, in which a POU
can decide the active steps of another POU.

7.1 References
[1] Fernandez, J. L.; Sanz, R.; Paz, E.; Alonso, C. (19–

23 May 2008). “Using hierarchical binary Petri nets
to build robust mobile robot applications: RoboGraph”.
“IEEE International Conference on Robotics and Au-
tomation, 2008.”. Pasadena, CA, USA. pp. 1372–1377.
doi:10.1109/ROBOT.2008.4543394.

[2] Lewis, R.W. Programming industrial control systems using
IEC 1131-3.

17

https://en.wikipedia.org/wiki/Programmable_logic_controller
https://en.wikipedia.org/wiki/Programmable_logic_controller
https://en.wikipedia.org/wiki/IEC_61131-3
https://en.wikipedia.org/wiki/GRAFCET
https://en.wikipedia.org/wiki/Petri_Net
https://en.wikipedia.org/wiki/Petri_Net
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=&arnumber=4543394&isnumber=4543169
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=&arnumber=4543394&isnumber=4543169
https://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1109%252FROBOT.2008.4543394
http://www.amazon.com/Programming-Industrial-Control-Systems-Engineering/dp/0852969503
http://www.amazon.com/Programming-Industrial-Control-Systems-Engineering/dp/0852969503

18 CHAPTER 7. SEQUENTIAL FUNCTION CHART

7.2 Text and image sources, contributors, and licenses

7.2.1 Text
• Programmable logic controller Source: http://en.wikipedia.org/wiki/Programmable_logic_controller?oldid=628752621 Contributors:
Amillar, Christian List, PierreAbbat, Deb, Ray Van De Walker, TomCerul, Michael Hardy, Modster, Kku, CesarB, Ahoerstemeier,
Stan Shebs, Ronz, Yaronf, Darkwind, Ugen64, Glenn, GRAHAMUK, Mydogategodshat, Gepwiki, Patden, Mrand, Wernher, Antho-
nyQBachler, RedWolf, Texture, Pengo, Tobias Bergemann, Giftlite, Tom harrison, Ssd, Jfdwolff, Utcursch, Ot, Sonett72, Fuzlyssa, An-
dreas Kaufmann, Mike Rosoft, Diagonalfish, Discospinster, Rich Farmbrough, ArnoldReinhold, Vev, Harriv, Kakesson, CanisRufus, El C,
Shanes, Spalding, John Vandenberg, (aeropagitica), Hooperbloob, Mdd, Alansohn, Gary, Wdfarmer, Hammertime, Wtmitchell, Velella,
Wtshymanski, Suruena, Redvers, Woohookitty, WadeSimMiser, MFH, Kralizec!, Mandarax, Kbdank71, Jorunn, Rjwilmsi, Sarg, Utuado,
FlaBot, Emarsee, Ldwolk, Lmatt, Srleffler, Vijayamurugan.p@gmail.com, Banaticus, YurikBot, Gerfriedc, Splash, Kimchi.sg, Bovineone,
Wimt, Robertvan1, Dtrebbien, Aaron Brenneman, ArséniureDeGallium, Jpbowen, TERdON, Bozoid, Syrthiss, DeadEyeArrow, Super-
luser, Nwk, Closedmouth, Back ache, Smurrayinchester, Benandorsqueaks, XAVeRY, CIreland, ChemGardener, Attilios, SmackBot,
Mje112, Mitchan, Lds, Collieman, Shai-kun, Gilliam, JMiall, KD5TVI, Bluebot, Jprg1966, Tripledot, Baa, DHN-bot, Can't sleep, clown
will eat me, Sevicke, VMSMosaic, Pax85, Jwy, Kntrabssi, Vina-iwbot, Rahul.mishra, Gstortz, Skyscrap27, Kuru, JethroElfman, Nharipra,
ML5, Robofish, Minna Sora no Shita, DabMachine, Iridescent, JoeBot, Shoeofdeath, IvanLanin, Lakee911, HaPi, LessHeard vanU, VGar-
ner, CmdrObot, Ale jrb, Drinibot, PurpleChez, Netbymatt, Requestion, A876, Yaamboo, Meno25, DumbBOT, Zalgo, Thijs!bot, Epbr123,
D4g0thur, N5iln, Oliver202, Marek69, Wildthing61476, JustAGal, AntiVandalBot, JimScott, Seaphoto, Prolog, Credema, Jcipc2004,
Dougher, V3co, Steelpillow, Golgofrinchian, Radwell International, PhilKnight, SiobhanHansa, Elmschrat, Ljudina, Bongwarrior, VoABot
II, Loyt, Ishi Gustaedr, Think outside the box, Doug Coldwell, Tedickey, Morphaeous, Email4mobile, Crunchy Numbers, LorenzoB, User
A1, Martynas Patasius, Brian Radwell, Ripogenus77, DerHexer, Dailynetworks, Conquerist, Monkan, Microsp, Jim.henderson, Tholly,
J.delanoy, Bin95, Maurice Carbonaro, Frapacino, Ctdmrod06010, Jerry, Tasnai, Katalaveno, SJP, Cmichael, RB972, Mike V, Pdcook,
MkClark, VolkovBot, Jeff G., Supersteve04038, Ipso2, Philip Trueman, MrRK, TXiKiBoT, Burpen, Xhantar, Rei-bot, Sean D Mar-
tin, Broadbot, CanOfWorms, Jackfork, Ilyushka88, Isis4563, Krushia, Billinghurst, Andy Dingley, CrackleBot, Finalreminder, Cjmul-
vey, Ponyo, SieBot, Dlmackey, Nubiatech, Poliyal, Euryalus, KFullerton, Tiptoety, Oxymoron83, Lightmouse, OKBot, Fbolanos, Point-
bonita, Denisarona, Lcwk86, Chris.rickey, ClueBot, Limebite, Rodhullandemu, Uncle Milty, CounterVandalismBot, Puchiko, Excirial,
Razorflame, SchreiberBike, BOTarate, Skipperalfie, GrimmReaperSound, Versus22, Lambtron, BlueDevil, SoxBot III, XLinkBot, Stic-
kee, Gerhardvalentin, Avoided, Charles Sturm, Skarebo, SilvonenBot, NellieBly, Control.optimization, Addbot, Mortense, Some jerk
on the Internet, Mabdul, Tech Jockey, TutterMouse, Fieldday-sunday, CanadianLinuxUser, Cst17, MrOllie, Chamal N, Smhaatif, De-
bresser, Gary2001, OlEnglish, Teles, Gail, Loupeter, Yaseen805, Namoson, Luckas-bot, Yobot, Derectus, DJ LoPaTa, MrBlueSky, Stef-
fiKl, Peter Flass, AnomieBOT, Ciphers, Pratik rathore, Jim1138, K4rmix, Materialscientist, Straight-shooter(42), ArthurBot, Xqbot,
Athabaska-Clearwater, YakiraLight, MahdiEynian, Turk oğlan, Tatau1234, Shirik, RibotBOT, Gg automation, Shadowjams, Dougof-
borg, FrescoBot, Joe.dolivo, Injeek6, Cartiman, Alexandermorgantop, Mr.TidePubli, Novaseminary, SUL, Pelcer, Rkinner, Calmer Wa-
ters, RedBot, Yosyk07, ВикиКорректор, Newt Winkler, North8000, Theo10011, YouAndMeBabyAintNothingButCamels, Hughjack,
Alperkaradas, DARTH SIDIOUS 2, Jfmantis, The Utahraptor, Tho2468, Midhart90, Ericmortenson, EmausBot, John of Reading, Tu-
ankiet65, WikitanvirBot, Mixabest, MartyRobar, Solarra, Ladybetty, Wikipelli, Neilyboy4306, Fæ, Josve05a, Prdejong, TcomptonMA,
Shible.isteak, Passion of Knowledge, MCorley, RoyKok, Bircwiki, 28bot, Rocketrod1960, Goatboy22, Petrb, ClueBot NG, Satellizer,
Bped1985, DieSwartzPunkt, O.Koslowski, Anaveenraj31, Ryan Vesey, Scantime, Helpful Pixie Bot, Pdfsupply, Toffanin, Gurt Posh,
Lindsey Sh, Wiki13, Maxhitchens, Allecher, Canoe1967, Raldrich123, MaartenMJR, Plc training, PLClogistics, Jama555, Sanjivee, Snow
Blizzard, Afshan5zeba, Brent s plc, Otus scops, Rwgambill, Anbu121, Baka610, Justincheng12345-bot, Moaz786, Maddensue, Mah-
mdmuhy, ChrisGualtieri, Tech77, Toronto30, Rolfds, Sidelight12, Frosty, Aotewell, Maryeputnam, Safety-Hero, Shariat ipe, Cmariella,
BIN95, Napy65, Leroy843, Jianhui67, Jsczurek, Lancie01, Natrajprasanna, Plctrainingin, Mal.hetherington and Anonymous: 780

• IEC 61131-3 Source: http://en.wikipedia.org/wiki/IEC_61131-3?oldid=621208060 Contributors: Pengo, Andreas Kaufmann, Pgquiles,
Diego Moya, Daira Hopwood, Lmatt, Raggha, ArséniureDeGallium, Moe Epsilon, Radagast83, Neelix, AndrewHowse, Loyt, Windymilla,
STBot, Pekaje, VolkovBot, Krushia,WRK,ClueBot,Wlydon, Kolyma,MitchAmes, Dekart, MystBot, Addbot, MrOllie, SteffiKl, Rubinbot,
Mopza, SassoBot, Dinhxuanduyet, Louperibot, Csciec, MD.KW, Christian Ettinger, Josve05a, KineticaRT, Mentibot, ChuispastonBot,
Hmainsbot1 and Anonymous: 40

• Function block diagram Source: http://en.wikipedia.org/wiki/Function_block_diagram?oldid=580425168 Contributors: Gadfium, Mdd,
Yobot and Anonymous: 1

• Ladder logic Source: http://en.wikipedia.org/wiki/Ladder_logic?oldid=624142699 Contributors: The Anome, TomCerul, Altenmann,
Pengo, Tobias Bergemann, Brouhaha, DavidCary, Zigger, Gadfium, Sam Hocevar, Hugh Mason, Discospinster, Scampiandchips, Mjager,
Mdd, Frank101, Cgmusselman, Wtshymanski, Emvee, Suruena, Bookandcoffee, Bushytails, Daira Hopwood, Cbdorsett, Lazynitwit, Bote-
man, FlaBot, Lmatt, JiVE, DVdm,Wavelength, LexiMarie,Wilfried Elmenreich, Gaius Cornelius, DragonHawk, Thalter, MugunthKumar,
Imaninjapirate, TBadger, Bruyninc, SmackBot, Eskimbot, Ordinant, Commander Keane bot, Russvdw, JoelWhy, Nmnogueira, Dudecon,
Ninjayeti, Rajkosto, VdSV9, BananaFiend, Wm Seán Glen, CRGreathouse, Requestion, P.N, Malleus Fatuorum, Guy Macon, Rehnn83,
Tarkaan, I B Wright, Ken g6, Rei-bot, One half 3544, Andy Dingley, Synthebot, Dj Adz, Phmoreno, Jooplefers, Yngvarr, SieBot, Jhar-
ris693, Carl142, Miremare, Masgatotkaca, ClueBot, Lambtron, Addbot, MrOllie, MrBlueSky, AnomieBOT, CBMalloch, Kdefoor, Name-
less23, Rackmount-guy, RedBot, Toolnut, Jfmantis, AndyHe829, EmausBot, Racerx11, Plcancircuitdia, PhanuelB, Chris857, Tszhangto,
Adamjgreen, ClueBot NG, Jeff Song, DieSwartzPunkt, Antiqueight, Pentagonpie, ChrisGualtieri, Maryeputnam, Langefj, SamizdataPrime,
Leroy843 and Anonymous: 131

• Structured text Source: http://en.wikipedia.org/wiki/Structured_text?oldid=618591038 Contributors: Karol Langner, Discospinster, Tou-
ssaint, FlaBot, YurikBot, Mahahahaneapneap, Zwobot, Cedar101, Schmiteye, Bluebot, Jimwelch, JoaquinFerrero, Dougher, PhilKnight,
Magioladitis, Andy Dingley, Addbot, Mortense, Rubinbot, Sae1962, DrilBot and Anonymous: 16

• Instruction list Source: http://en.wikipedia.org/wiki/Instruction_list?oldid=619212404 Contributors: Pengo, Karol Langner, Lmatt,
Schmiteye, Bluebot, Jimwelch, STBot, Ziounclesi, SheffGruff, Krushia, Addbot, TechBot, Nameless23, ClueBot NG, Makecat-bot, Lu-
gia2453 and Anonymous: 14

• Sequential function chart Source: http://en.wikipedia.org/wiki/Sequential_function_chart?oldid=630271923 Contributors: Pnm, Mb-
schenkel, Bearcat, Beland, Karol Langner, Pgquiles, Pearle, Ruud Koot, Lmatt, Romanc19s, BirgitteSB, ArséniureDeGallium, Peterthek-
ing, SmackBot, Saihtam, CmdrObot, Suzannejb, E-s-B, Dougher, Magioladitis, Dbaechtel, One half 3544, VVVBot, ImageRemovalBot,
Dekart, Kbkane, Addbot, David dawkins, Denispir, LucienBOT, Saehrimnir, Teuxe, RjwilmsiBot and Anonymous: 21

http://en.wikipedia.org/wiki/Programmable_logic_controller?oldid=628752621
http://en.wikipedia.org/wiki/IEC_61131-3?oldid=621208060
http://en.wikipedia.org/wiki/Function_block_diagram?oldid=580425168
http://en.wikipedia.org/wiki/Ladder_logic?oldid=624142699
http://en.wikipedia.org/wiki/Structured_text?oldid=618591038
http://en.wikipedia.org/wiki/Instruction_list?oldid=619212404
http://en.wikipedia.org/wiki/Sequential_function_chart?oldid=630271923

7.2. TEXT AND IMAGE SOURCES, CONTRIBUTORS, AND LICENSES 19

7.2.2 Images
• File:BMA_Automation_Allen_Bradley_PLC_3.JPG Source: http://upload.wikimedia.org/wikipedia/commons/2/25/BMA_
Automation_Allen_Bradley_PLC_3.JPG License: CC-BY-SA-3.0 Contributors: Own work Original artist: Elmschrat Coaching-Blog

• File:Commons-logo.svg Source: http://upload.wikimedia.org/wikipedia/en/4/4a/Commons-logo.svg License: ? Contributors: ? Original
artist: ?

• File:FBS_Maximum.jpg Source: http://upload.wikimedia.org/wikipedia/commons/d/d0/FBS_Maximum.jpg License: CC0Contributors:
Own work Original artist: JLes

• File:HelloWorld.svg Source: http://upload.wikimedia.org/wikipedia/commons/2/28/HelloWorld.svg License: Public domain Contribu-
tors: Own work Original artist: Wooptoo

• File:Ladder_diagram.png Source: http://upload.wikimedia.org/wikipedia/commons/8/83/Ladder_diagram.png License: CC-BY-SA-
2.5 Contributors: Own work Original artist: Nuno Nogueira (w:User:Nmnogueira)

• File:PLCLogix_sample.jpg Source: http://upload.wikimedia.org/wikipedia/commons/4/48/PLCLogix_sample.jpg License: CC-BY-
SA-3.0 Contributors: Own work Original artist: 38chad

• File:PLC_Control_Panel.png Source: http://upload.wikimedia.org/wikipedia/commons/4/42/PLC_Control_Panel.png License: Public
domain Contributors: Originally from en.wikipedia; description page is/was here. Original artist: Original uploader was Dailynetworks at
en.wikipedia

• File:Question_book-new.svg Source: http://upload.wikimedia.org/wikipedia/en/9/99/Question_book-new.svg License: ? Contributors:
Created from scratch in Adobe Illustrator. Based on Image:Question book.png created by User:Equazcion Original artist:
Tkgd2007

• File:Siemens_Simatic_S7-416-3.jpg Source: http://upload.wikimedia.org/wikipedia/commons/f/f3/Siemens_Simatic_S7-416-3.jpg
License: Public domain Contributors: Own work Original artist: Mixabest

• File:Wikiversity-logo.svg Source: http://upload.wikimedia.org/wikipedia/commons/9/91/Wikiversity-logo.svg License: ? Contributors:
Snorky (optimized and cleaned up by verdy_p) Original artist: Snorky (optimized and cleaned up by verdy_p)

7.2.3 Content license
• Creative Commons Attribution-Share Alike 3.0

http://upload.wikimedia.org/wikipedia/commons/2/25/BMA_Automation_Allen_Bradley_PLC_3.JPG
http://upload.wikimedia.org/wikipedia/commons/2/25/BMA_Automation_Allen_Bradley_PLC_3.JPG
//commons.wikimedia.org/wiki/User:Elmschrat
http://coaching-38.de/
http://upload.wikimedia.org/wikipedia/en/4/4a/Commons-logo.svg
http://upload.wikimedia.org/wikipedia/commons/d/d0/FBS_Maximum.jpg
//commons.wikimedia.org/w/index.php?title=User:JLes&action=edit&redlink=1
http://upload.wikimedia.org/wikipedia/commons/2/28/HelloWorld.svg
//commons.wikimedia.org/wiki/User:Wooptoo
http://upload.wikimedia.org/wikipedia/commons/8/83/Ladder_diagram.png
//en.wikipedia.org/wiki/User:Nmnogueira
http://upload.wikimedia.org/wikipedia/commons/4/48/PLCLogix_sample.jpg
//commons.wikimedia.org/wiki/User:38chad
http://upload.wikimedia.org/wikipedia/commons/4/42/PLC_Control_Panel.png
http://en.wikipedia.org/
http://en.wikipedia.org/w/index.php?title=Image%253APLC_Control_Panel.png
//en.wikipedia.org/wiki/User:Dailynetworks
http://en.wikipedia.org/
http://upload.wikimedia.org/wikipedia/en/9/99/Question_book-new.svg
//en.wikipedia.org/wiki/File:Question_book.png
//en.wikipedia.org/wiki/User:Equazcion
//en.wikipedia.org/wiki/User:Tkgd2007
http://upload.wikimedia.org/wikipedia/commons/f/f3/Siemens_Simatic_S7-416-3.jpg
//commons.wikimedia.org/wiki/User:Mixabest
http://upload.wikimedia.org/wikipedia/commons/9/91/Wikiversity-logo.svg
//commons.wikimedia.org/wiki/User:Snorky
//commons.wikimedia.org/wiki/User:Verdy_p
//commons.wikimedia.org/wiki/User:Snorky
//commons.wikimedia.org/wiki/User:Verdy_p
http://creativecommons.org/licenses/by-sa/3.0/

	Programmable logic controller
	History
	Development
	Programming

	Functionality
	Programmable logic relay (PLR)

	PLC topics
	Features
	Scan time
	System scale
	User interface
	Communications
	Programming
	Security
	Simulation
	Redundancy

	PLC compared with other control systems
	Discrete and analog signals
	Example

	See also
	References
	Further reading
	External links

	IEC 61131-3
	Data types
	Variables
	Configuration
	Program organization units (POU)
	Configuration, resources, tasks
	External links

	Function block diagram
	See also
	References

	Ladder logic
	Overview
	Example of a simple ladder logic program
	Logical AND
	Logical AND with NOT
	Logical OR
	Industrial STOP/START
	Complex logic
	Additional functionality

	Limitations and successor languages
	See also
	References
	External links

	Structured text
	Sample program
	Additional ST programming examples

	References

	Instruction list
	Example
	Variations from IEC61131
	See also

	Sequential function chart
	References
	Text and image sources, contributors, and licenses
	Text
	Images
	Content license

