
Young Won Lim
9/27/16

● CTFS: Continuous Fourier Series
● CTFT: Continuous Time Fourier Transform
● DTFT: Discrete Time Fourier Transform
● DFT: Discrete Fourier Transform

Fourier Analysis Overview (0B)
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Fourier Analysis Methods
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Time and Frequency Domains
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Time Domain
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Frequency Domain
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Discrete Time and Periodic Frequency
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Periodic Time and Discrete Frequency
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Discrete Time Resolution
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Discrete Frequency Resolution
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Normalized Frequency
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Normalized by 1/Ts
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CTFT pair of an impulse train
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Sampling and Replicating
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Normalization
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Sampling Period and the Number of Samples
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Periodic Relationship
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Sampling Period and Replication Period
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Frequency Resolution
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Replication Frequency
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Normalized Frequency for Comparison

2π
T 1

2π
T2

ω1

ω2

ω1 =
2π

T 1

ω2 =
2π

T 2

2π

2π

replication freq ω1

replication freq ω2



Fourier Analysis 
Overview (0B) 22 Young Won Lim

9/27/16

Normalized Frequency Resolution
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Multiplication with an Impulse Train
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Convolution with an Impulse Train
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Convolution & Multiplication Properties
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Types of Fourier Transforms
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Multiplication & Convolution
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Convolution & Multiplication

1

x (t)

p (t)

X ( jω)

P( jω)

x (t)⋅p(t) X ( jω)⋅P( jω)Convolution Multiplication

A



Young Won Lim
9/27/16

References

[1] http://en.wikipedia.org/
[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
[3] M.J. Roberts, Fundamentals of Signals and Systems
[4] S.J. Orfanidis, Introduction to Signal Processing
[5] K. Shin, et al., Fundamentals of Signal Processing for Sound and Vibration Engineerings


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

