Fourier Analysis Overview (0B)

- CTFS: Continuous Fourier Series
- CTFT: Continuous Time Fourier Transform
- DTFT: Discrete Time Fourier Transform
- DFT: Discrete Fourier Transform

Copyright (c) 2009 - 2016 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Young Won Lim 9/27/16

Fourier Analysis Methods

Time and Frequency Domains

Frequency Domain

Fourier Analysis Overview (0B)

Discrete Time and Periodic Frequency

Periodic Time and Discrete Frequency

Discrete Frequency

Fourier Analysis Overview (0B)

Discrete Time Resolution

Discrete Frequency Resolution

Discrete Frequency

Fourier Analysis Overview (0B)

Normalized Frequency

Normalized Discrete Frequency

$$\hat{\omega}_s = \frac{2\pi}{1} = \left(\frac{2\pi}{T_s}\right)T_s$$

$$\hat{\omega}_0 = \frac{2\pi}{N_0} = \left(\frac{2\pi}{T_0}\right)T_s$$

Normalized Continuous Frequency

$$\hat{\omega}_s = \frac{2\pi}{1} = \left(\frac{2\pi}{T_s}\right)T_s$$

continuous variable $\hat{\omega}$

Normalized by $1/T_s$

normalized frequency resolution

CTFT pair of an impulse train

Sampling

Replication

Sampling and Replicating

Fourier Analysis Overview (0B)

Normalization

Sampling Period and the Number of Samples

Periodic Relationship

fundamental period T_0 frequency resolution ω_0 $T_0 = T_1 N_1 = T_2 N_2$ $\omega_0 = \frac{2\pi}{T_0} = \frac{2\pi}{N_1 T_1} = \frac{2\pi}{N_2 T_2}$

sampling period T_s:

replication period ω_1 , ω_2 :

 $T_{1} > T_{2}$

 $\omega_1 = \frac{2\pi}{T_1} < \omega_2 = \frac{2\pi}{T_2}$

no of samples N_0 : $N_1 < N_2$ $\hat{\omega}_0 = \frac{2\pi}{N_1} > \hat{\omega}_0 = \frac{2\pi}{N_2}$ $\hat{\omega}_0 = \omega_0 T_1$ $\hat{\omega}_0 = \omega_0 T_2$ coarse fine

Sampling Period and Replication Period

Frequency Resolution

Overview (0B)

Replication Frequency

Fourier Analysis Overview (0B)

Normalized Frequency for Comparison

Normalized Frequency Resolution

Multiplication with an Impulse Train

 $x(t) \cdot p(t)$ Multiplication with a dense impulse train

Fourier Analysis Overview (0B)

Convolution with an Impulse Train

x(t)*p(t) Multiplication with a sparse impulse train

Convolution & Multiplication Properties

$$x(t) * y(t) \qquad \longleftrightarrow \qquad X(j\omega) \cdot Y(j\omega)$$
$$x(t) \cdot y(t) \qquad \longleftrightarrow \qquad \frac{1}{2\pi} X(j\omega) * Y(j\omega)$$

$$x(t) * y(t) \qquad \longleftrightarrow \qquad X(f) \cdot Y(f)$$
$$x(t) \cdot y(t) \qquad \longleftrightarrow \qquad X(f) * Y(f)$$

Multiplication & Convolution

Fourier Analysis Overview (0B)

Convolution & Multiplication

References

- [1] http://en.wikipedia.org/
- [2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
- [3] M.J. Roberts, Fundamentals of Signals and Systems
- [4] S.J. Orfanidis, Introduction to Signal Processing
- [5] K. Shin, et al., Fundamentals of Signal Processing for Sound and Vibration Engineerings